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A polynomial time algorithm for testing isomorphism of graphs which are 

pairwise k-separable for fixed k is given. The pairwise k-separable graphs are those

graphs where each pair of distinct vertices are k-separable. This is a natural 

generalization of the bounded valence test of Luks.The subgroup of automorphisms

of a hypergraph whose restriction to the vertices is in a given group, for fixed k

is constructed in polynomial time.

INTRODUCTION

The computational complexity of testing isomorphism of graphs is one of

the outstanding open questions in the theory of computation. The problem of

graph isomorphism is not believed to be NP-complete since the counting 

version of the problem, the number of isomorphisms, is polynomial time

Turing equivalent to graph isomorphism (Babai, 1979; 1979). For

NP-complete problems their counting version seems to be harder (Angluin,

1980; Valient, 1979). On the other hand, polynomial time algorithms have 

only been found for special cases. These cases include; graphs of bounded

genus et 1980; Lichtenstein, 1980; Miller, graphs of

bounded valence (Luks, and graphs of bounded eigenvalue 

multiplicity (Babai 1982). In this paper and a companion paper 

(Miller, to appear) we consider two new classes of graphs. Here we consider

the pairwise k-separable graphs. 

DEFINITION. A graph G is pairwise k-separable if for each pair of 

distinct vertices of G there exists a set of size k consisting of vertices and

edges disjoint from x and which separates x from

This class of graphs is interesting for two reasons. First, graphs of valence

at most k are trivially contained in the graphs which are pairwise k-
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separable, and thus, isomorphism testing in this case is a generalization of

the bounded valence case. Second, these graphs arise in an attempt to

decompose graphs into k-connected components. Among other things

and Tarjan (1972) show that graph isomorphism could be reduced 

to isomorphism of 3-connected graphs. It is open if graph isomorphism is

reducible to isomorphism of 4-connected graphs. We believe that the results

in this paper may be useful since we can directly handle those graphs which

are nowhere 3-separable graphs. 

The techniques used here combine the group theoretic ideas employed by 

Luks for testing isomorphism of graphs of bounded valence with the classic

connectivity ideas in graph theory. Luks approximated the automorphism of

a graph by computing the automorphism of induced subgraphs. The induced

subgraphs are obtained by leveling the vertices according to how far they are

from some edge. Here, we shall find other characteristic subsets of vertices

determined by some edge and consider the induced hypergraph on these

vertices. So, in a natural way we shall approximate the graph with a

sequence of hypergraphs.

One of the interesting subproblems we solve is finding the

automorphisms of a hypergraph which induce an action on the vertices in

some given group G (where G is in

The paper is divided into three sections: The preliminaries, gives the basic

definitions and facts we will need. The second section gives the main group

theoretic result we shall need. The third section gives the isomorphism test

and the graph theoretic constructions.

1. PRELIMINARIES

Throughout this paper graphs will be denoted by G, H , K , groups by A , B,
C, and sets by X, Graphs and hypergraphs may have multiple edges

and the edges may be colored. The edges and vertices of G will be denoted

by and respectively. An isomorphism is a surjective map which

sends edges to edges, vertices to vertices, and preserves incidence and color. 

Groups will normally be permutation groups and they will act from the left.

It can easily be shown that the isomorphism of G onto can be written as

if G is isomorphic to G’ , where is an arbitrary isomorphism and A is

the group of automorphisms of G. The properties of are so similar to a

coset of A we shall call a coset. The isomorphism can be

simply by a plus generators for A . Since any subgroup of can be

generated using only n log n elements or strong generators 1980)

we have a compact representation for the isomorphisms, polynomial

space in n.
A few simple are necessary about the relationship between
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hypergraph isomorphisms from G to G’ and the induced action from vertices

to which we will write as means restricted to V.) Note that

two elements A are the same map on if and only if fixes

pointwise. If we let A , denote the elements of A which fix then the

elements that act the same on are left coset of Now, the group A has

a simple form; it simply permutes edges with the same points of attachment.

This means we can extend elements of to elements of almost

arbitrarily. If V, e is an edge of G, and e , are the edges of G

which have the same points of attachment as then we can extend as

follows: Since is an isomorphism is equivalent to m - 1 edges also,

say We now arbitrarily send onto To obtain

from we extend the generators of to and add 

generators for To find the isomorphisms we can replace multiple edges 

of G and G’ with labeled single edges which keep track of edge multiplicity.

In this case, the cosets and are isomorphic as groups. A graph or

hypergraph is simple if it has no multiple edges of the same color. A graph is

common if it has only two point edges.

Besides coloring edges to symmetries we shall use cosets of

groups which have very special properties, namely,

DEFINITION (Luks, 1980). For k 2, let denote the class of groups A

such that all the composition factors of A are subgroups of S , .

The importance of groups in involves the special nature of their 

primitive actions. Recently Babai-Cameron-Palfy have shown that the 

primitive groups are of polynomial size in this case. 

THEOREM 1 (Babai al., to appear). There is a function such that

any primitive group of degree has order at most

In Luks’ paper (1980) he does not use this theorem, but instead analyzes

the nature of subgroups of primitive groups Luks’ approach is

very interesting and any implementation should consider it. Since the

contribution of this paper consists of an analysis of the case when the group 
is not transitive, we shall present all algorithms using Theorem 1.

Any of the algorithms presented here can easily be extended to include

Luks’ p-Sylow subgroup ideas.

DEFINITION. is a coset of onto Y if A subgroup of and a is

a surjective map from to

Let G be a graph o r hypergraph, say G = E) , and YE We define
the notion of a bridge and an induced hypergraph. We say two edges e and
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of G are equivalent with respect to Y if there exists a path from e to

avoiding points in Y.

DEFINITION. The induced graph Br of an equivalence class of edges of G

with respect to Y is called a bridge, or a bridge of the pair (G, The

frontier of Br is the vertices of Br in Y. A bridge is trivial if it is a single

edge.

Given the bridges we define the induced hypergraph.

DEFINITION. The of the pair (G, is the hypergraph

(Y, where the hyperedges E’ are the frontiers of the bridges of (G, Y).
Two bridges may have the same frontier and thus introduce multiple

hyperedges. We shall denote this graph by Y).

A hypergraph can be also viewed as a bipartite graph. We introduce a new

vertex for each hyperedge and connect an old vertex to a new hyperedge

vertex if the edge contains the vertex. We shall call this graph the bipartite

graph of (G, denoted by Bipart (G,

2. ISOMORPHISMS OF Two HYPERGRAPHS IN A

In this section we construct a polynomial time algorithm for the following

problem :

Hypergraph Isomorphism a

where A

Input.

Find.

natural application for hypergraph isomorphism in a is

testing isomorphism of graphs of bounded valence. Here we test for

isomorphisms sending some edge e onto some edge e’. The vertices are

labeled by how far they are from e and respectively. Let and be the 

induced graphs on vertices with labels The edges between the vertices on

the i and 1 levels form a bipartite graph which we can also view as a

hypergraph on vertices labeled If we have constructed the

isomorphisms from onto which send e to e’ we can intersect this

with the isomorphism of the hypergraph. This is in fact what Luks does but 

the algorithm presented uses exponential space if the hyperedges are allowed

to have edge of arbitrarily high valence even the constrained to
Using our solution to hypergraph isomorphism for we speed up the 

Hypergraphs G and G’, and a coset of onto

Coset of isomorphisms of G onto in
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bounded valence algorithm by approximately the kth root of the previous

time.

Luks has observed that combining the new bounded valence algorithm 

with work of Zemlyachenko and Babai (1981) one gets an

for > 0, algorithm for general graph isomorphism.

For graphs (having edges with only two points of attachment) the problem

for cosets was known to be polynomial.

Graph Isomorphism in a Coset

Input.

Find.

Here one simply constructs the sets [ and all pairs in and V',

respectively, considers as acting from [ onto [ and colors the points

according to whether they are edges or nonedges. This reduces graph

isomorphism in a coset to:

A coset where A G and G' graphs.

Coset of isomorphsm of G onto G' in

Color Isomorphism in a Coset

Input.

Find.

A coset from to and a coloring of V'.

Coset of which preserves colors. 

Luks (1980) gives a polynomial time algorithm for the color isomorphism 

problem a coset which turn gives a polynomial time algorithm for

graph isomorphism a coset. Let be the isomorphisms

from G to in and let G', be the proposed algorithm for the

graph isomorphism in a coset problem. 

Given a hypergraph G and a subset of vertices X we define three technical 

but important derived graphs. Recall that hypergraphs have colored edges,

G = (V,E), where is disjoint union E , } and is the set of

hyperedges of G with color i.

We can partition the edges of according to whether they are contained

in contained in V -X,or straddle X and V -X . We will assume that G
has no multiple edges of the same color; G is simple. This gives the partition 

(i) =

= e X =

= { e e n X 0,e } .

Abusing notation, let X = { e X e for 1
We now define the first two graphs.
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DEFINITION.

where = and
The restriction of G with respect to X is X )=

= ( E , E,,, nX E,,

DEFINITION. The partition of G with respect to X is
X ) = where = and

= , X ,

n E , , n

where V-X .

Note that the set as defined does not have multiple edges. Thus

the graph’s restriction and partition have no multiple edges when G not.

We next define a simple graph.

DEFINITION. The join of G with respect to X , denoted X ) will be
where = the vertices and edges of A).

for 1 is the pair
of vertices X and e n which are edges of X)and thus vertices

of

We shall often drop the reference to X in the denotation of these graphs

when there is no risk of confusion.

As before, let be the isomorphisms (sending edges to edges

and vertices to vertices) which induce elements in Let X be an A-stable

subset of and let = The join, restriction, and partition are all with
respect to X and for G and G’, respectively. Using this idea the coset:

))

is well defined. Note that this coset is not acting on the same sets as

G’, But since G has no multiple edges the edges of G which

straddle X correspond to While the edges which do not straddle X
correspond to edges of with the appropriate color. A similar remark 
is true for G’. This allows us to state

LEMMA 1. is equivalent to

Join( G), Part( G’), )).

Proof. Suppose g LHS. Since g and X is A-stable, will preserve

the refinement of the color classes. We consider the edges which do not

straddle X first. Since these edges lie in and
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unchanged, we can apply g to them in a natural way. If e is an edge which

straddles X,then e nX and e n are in and respectively.

= for some unique in G so g(e nX )= n =e‘ X’

and g(e = Since (e X,e n and are

unique edges, we can in well-defined way iet one be sent to the other by g.

Suppose g RHS and e is some edge of G. If e does not straddle X then the
image of e will simply be the image of e in Here we use the fact that
the color of e differs from all the edges which straddle X. In the case e

straddles X the edge ( e nX,e n is sent to some edge X’,

by g. Since g g must send e nX to and

e n to n SO we can let =

We need one more easy lemma.

LEMMA 2. is to

X’),

We define the main procedure for this section G’, X, where G, G‘

are hypergraphs, X is an subset of V, is a from to V’,

and the edges of contains only points of = The procedure
should return with the coset of isomorphism from G to which induce

elements in 

Procedure. G‘,X,

Begin

otherwise.

if is an isomorphism, 
(1) 1 then

(2) is not transitive on X say is a partition of X into stable 
subsets then set

:=

:=

(where is computed using the solution to graph isomorphism in a 
coset).

(3) If A is transitive on X then

(a) Find a block system of X with of
blocks.
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(b) Find subgroup B which stabilizes these blocks and coset 

representatives of B in A , say Compute

G', X , G', X, Write result as

coset.

End.

The correctness of follows from Lemmas and 2, and standard

techniques. To analyze the running time of we look at the recursive

control structure. Note that we have a tree of recursive calls where the leaves

are either (*) or We can view not a recursive call but an added 

processing cost at the node of the tree. Then, the only are Let

be the number of leaves as a function of n = The recurrence

relation for the leaves is = and = 1 . So =

where t is from Theorem 1 . Since the coset at each node is polynomial the

running time of the algorithm is polynomial. We state this as

THEOREM 2. is a polynomial time algorithm for the hypergraph

isomorphism a coset for fixed k.

3. ISOMORPHISM FOR k-SEPARABLE GRAPHS

The bounded valence isomorphism algorithm of Luks is based in part on

the simple fact that the edge stabilizer of a connected graph of valence k is in

Here we shall need a similar statement about pairwise k-separable

graphs. But, for pairwise k-separable graphs we must also assume that they

are 2-connected.

THEOREM 3 . G is 2-connected and pairwise k-separable for k 3 then

the edge stabilizer is in ,.
This theorem is an interesting exercise in the case k = 3. A simple proof of

this theorem would be interesting. We prove the theorem via a general

discussion of the main result of this section.

THEOREM 4. Isomorphism pairwise k-separable graphs is polynomial
time testable for k.

Throughout this section we shall only discuss the problem of finding the

stabilizer of an edge, automorphisms. One can formally reduce the

isomorphism problem in this case to the edge stabilizer problem in this case.

On the other hand, one can prove what is to follow directly for the

isomorphism problem. In any case, the content seems to be in the edge 

stabilizer problem.
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In the bounded valence algorithm, one used the fact that not only is the

edge stabilizer in for connected graphs of valence k but any stabilizer

of a connected is also in For graphs which are 2-connected

and k-separable it seems much harder to decompose the graph such

that subgraphs are 2-connected. We circumvent this problem by considering

a new approximation technique. The automorphisms of a simple graph G

which fix some edge e = ( y , of G will be determined by finding a

sequence of subsets of = = and inductively

computing where is the group of

automorphism of H which fix e.

The subsets must be chosen satisfying two properties. The first of these

two properties ensures that the automorphisms at the ith stage are sufficient

to compute the automorphisms at the 1 stage. That is, we need that

are contained in In fact, 
the satisfy a stronger property which we shall call characteristic. 

DEFINITION. Let e be an edge of G and = (x, y } , the end points of e,

then the set Y, where c is characteristic with respect to if for all 

is stabilized by the group X)).

If is characteristic and X then A = X)) Y
Y)). This follows by noting that A preserves the equivalence

relation defined on the edges of by Thus, A sends bridges of
to bridges of and preserves the bridge-frontier relation. 

The second property will allow us to extend since it will ensure that 

the groups are in ,.

DEFINITION. The subset is consistent if the graph Y) is

2-connected.

Note that if G is 2-connected then is consistent if no hyperedge of

is critical. If is consistent then a bridge Br of (G, will

contain at least two points in its frontier, and the frontier points of will be

k- 1 separable in Br.

We digress for a moment into a discussion of vertex separators for a pair 

of distinct and not adjacent vertices x and of some hypergraph H. Let

and be subsets of vertices of H disjoint from x and which separate x

from y. We shall say with respect to the pair (x,y ) if the size of
T < the size of or if the size of size of and the bridge containing x

(H, is contained in the corresponding bridge of (H, T').This defines a

partial order on the separators of x and y. We next show the well-known fact

that there is a minimum separator for the pair

LEMMA 3. The pair (x, y ) H has a unique minimal
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We give a proof for the sake of completeness. Let T be a minimal

separator and be an arbitrary separator of the pair We show that

T If the size of T < the size of T’ we are done. So, let the size of and

be t . Let Br, and Br, be the bridges of x and y, respectively, in If

- T contains no points of we are done. So suppose contains

k > 0 points, in - Now the bridge of X in must

contain at least t - k + points of T, say for otherwise the points

T , form a separator for (x,y ) which is less than Thus, we can reach

t - k + 1 points on from x avoiding T’. On the other hand, the bridge Br,,

in (H, T )contains at most t - k points of T’. Thus, by similar arguments we

can reach at least k points of T from y avoiding T’.Since ( t - k + 1) + k > t

we must be able to find a path from x to y avoiding T’. This is a

contradiction. Thus T T’.

We need the previous lemma to apply to intermediate hypergraphs. 

LEMMA 4. is a minimum separator (x,y ) in H then T is also the

minimum separator (x,y ) in where

The lemma follows by arguments similar to Lemma 3.

Using Lemma 3 the decomposition of a pair (G, Y) is plus the union

over all minimum separators for triples (x, Br), where Br is a nontrivial 

bridge of (G, Y) and are distinct points in its frontier. We shall denote

this set by Y).The are defined as follows: (1) =

where and are end points of some edge e; (2) ,= for

<
It follows from the definitions that (C, Y , ) has the following three

properties :

(1) (G, Y , ) is consistent,

(2) (G, Y , ) is .characteristic,

(3) Y , ) is a group.

We show that these three properties are true inductively for (G, Y,).

LEMMA 5 . If Y is consistent in G then is consistent.

Proof: Let = Br’ be a bridge of (G, and Br be the

bridge in (G, containing Br’. Letting X’ be the frontier of Br’ we must

show that there is path between any two vertices of X’avoiding Br’. It will

to find a path from any vertex to the frontier of Br avoiding

since is consistent. Since is in Y‘ it is either in in which case we

are done, or x’ is in a separator, say T. Suppose x’ T. Now partitions Br

up into bridges at least two of which contain vertices of One of these
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intermediate bridges contains Br’. So by avoiding this intermediate bridge we

can find a path to

LEMMA 6.

Proof:

The set is characteristic in G.

The proof is by induction on i . For i = it is clear. Suppose that

is characteristic we shall show that is characteristic. Let X be a set

such that V and let We must show that

stabilizes Let H = Since stabilizes can be

viewed as an automorphism of the graph Now, the minimum

separators for (G, will be minimum separators for ( H , by

So will take bridges of ( H , to bridges and minimum separators to

minimum separators. Thus will stabilize

To show that ,, as well as to construct this 

group, we will use an intermediatry graph, say In,. 

The hypergraph In, equals (V,E ) where

V = (x,y, Br) Br is a bridge of (G, and

x, y are distinct frontier points of Br},

where

= { (x,y , Br) z is in the minimum separator of

x and in Br }.

Let A , = By Lemma 6 there is a natural

homomorphism from to A , which takes minimum separators to

minimum separators. On the other hand, acts on the triples Br), the
vertices of In,. Thus, there is a natural homomorphism of into

whose kernal fixes So A , , , can be viewed

as a subgroup of To show that A , , , is in , we need only show that

in and that is implies that in

Both of these statements reduce to showing that the graphs In, and

have edge multiplicity at most k - 1. Each triple (x,y, Br) of

the vertices of has a cut set of size at most k - 1. Thus the valence of

is at most k - 1, and therefore, the multiplicity is at most k - 1.

We state the fact that the edge multiplicity is bounded in

LEMMA G is a simple 2-connected graph which is k-

separable, e is an edge G withfrontier { y , , and { V then

is a k-bond Y = { y , , and contains k edges

between y , , or the edge multiplicity is at most k -
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Proof: The edge multiplicity in Y) can be at most k since G is

pairwise k-separable. Suppose that the vertices x, Y share k multiple

edges in Y). Since the k edges form k vertex disjoint paths between

any two of the there may be no other disjoint paths between the

Thus the vertices are in disjoint components in Y) minus the k

edges. If the component containing contain some other point then

would separate from i#j in Y). But would also be a

separator in G contradicting the hypothesis that G is 2-connected. So
Y) consists of the vertices and k multiple edges. Since one of the

edges is the two point edge e, Y) is a k-bond.

By the lemma either G, has edge multiplicity k- 1 or

We give the algorithm explicitly for computing the automorphism

stabilizing e in G, where G is 2-connected and pairwise k-separable:

(1) Compute for G with respect to using a maximum flow
algorithm.

(2) Inductively compute from using algorithm from
Section 2.

(3) Inductively compute from using algorithm from 
Section 2.

us trivially in

(4) output A,.

Since each step takes only polynomial time and (the number of

vertices of G), the algorithm will run for polynomial time.
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