Using Simple Physical Models for

Image Segmentation

Gary L Miller
Computer Science
Yiannis Koutis and Dave Tolliver

What is Image Segmentation?

Input

Output

Three Talks in One

- Image Segmentation Experimental
- Image Segmentation Theory
- Solving needed linear systems

What is Hard for Computers!

In the spaces below, type three (3) different English words appearing in the picture above.

Image Processing is every where

$\sqrt{\text { Medical Image Analysis SIEMENS }}$

$\sqrt{ }$ Data Mining \& Information Retrieval Google Microsoft YAHOO!
$\sqrt{ }$ Intelligent Surveillance Systems
$=\frac{\text { SARNOFF }^{(3)}}{\text { Corporation }}$

CS Reduction

- Convert the image segmentation problem into a well studied computer science problem.
- Hopefully, use an off-the-shelf solution to the CS problem.
- First attempt, Shi and Malik (2000)

Image Segmentation as Graph Partitioning

Basic Approach

Generate an affinity graph

- Each pixel a vertex
- Neighboring pixels are connected with an edge
- The weight w_{ij} corresponds to their similarity

Ways to View edges

- Max-flow min-cut models
- Each edge is a "pipe" that can carry a flow up to $\mathbf{W}_{\mathbf{i j}}$
- Pick a source and sink and find mincut
- Electrical conductor models
- Each edge is a conductor of size $\mathbf{W}_{\mathbf{i} \mathbf{j}}$
- Set voltage on some nodes to +1 and some to -1

Siemens Assisted Segmentation 2005

(a) Original

(b) Seeds indicating four objects

(c) Resulting segmentation

User assisted segmentation of the heart no prior knowledge of hearts

More Ways to View edges

- Shortest Path Models
- The distance between neighbors is $1 / \mathbf{w}_{\mathbf{i j}}$
- Random Walk Models
- The probability we walk on an edge is proportional to $\mathbf{w}_{\mathbf{i j}}$
- Distance between node is the expect commute time

Even More Ways to View edges

- Spring Models (This talk)
- The spring constant is $\mathbf{w}_{\mathbf{i j}}$
- Separate based on modes of vibration (eigenvectors).
- Classic Spring Solution.
- Compute a few low frequency eigenvectors say 2.
- Map the vertices into 2D using the eigenvectors.
- Apply a geometric cut the graph.

Airfoil Graph and it Spectral Embedding

Image Segmentation as Graph Partitioning

Goal: segment into 4 pieces

Output of the Classic Spring Model

Spring model using 4 eigenvectors

Output for Our Spectral Rounding Algorithm

What is new

- Spectral Rounding :
- A better method to use eigenvectors for graph partitioning.
- Fast Planar Solvers :
- Optimal time linear solvers for planar systems.

Inside the CS Reduction Graph Partitioning

Data Graph

Standard Algorithm

Spectral Rounding

The Standard Spring Model Algorithm

Representation used by the Standard Algorithm
Result - Standard Algorithm

Our Technology

Result - Spectral Rounding

SR leverages the physical intuition!

Mathematical Formulation

- Ohm's Law and Graph Laplacians
- Let $A_{i j}=w_{i j}$ and $\quad D_{i i}=\sum_{j} w_{i j}$
- The Laplacian

$$
L=D-A
$$

- Simple fact $L V=I$ where V is voltage I current

Mathematical Formulation

- Solving conductor model problems reduces to solving Laplacians
- Here the Graphs are in fact planar.

Mathematical Formulation for spring models

- We consider the case where the node has mass equal to its weighted degree. The Normalized Laplacian!
- Thus our eigenvalues and vectors satisfy $L f=\lambda D f$

Mathematical Formulation for spring models

- Zero eigenvalue $L 1=0 D 1$
- Rayleigh quotient $\quad \lambda_{2}=\inf _{f \perp D 1} \frac{f^{T} L f}{f^{T} D f}$
- Goal: reweight graph to reduce λ_{2}

Spectral Rounding

Edge reweighting

- Algorithm
- Solve $L f=\lambda_{2} D f$
- Reweight graph getting L^{\prime} and D^{\prime}
- Solve $L^{\prime} f=\lambda_{2} D^{\prime} f$
- repeat while Lambda not zero
- repeat while best threshold cut is changing

Spectral Rounding Finding a good reweighting

Lemma 1. Given a weighted symmetric graph $G=(V, E, w)$ then the normalized Rayleigh quotient can be written as

$$
\begin{equation*}
\frac{f^{T} L f}{f^{T} D f}=\frac{\sum_{(i, j) \in E, i<j}\left(f_{i}-f_{j}\right)^{2} w_{i j}}{\sum_{(i, j) \in E, i<j}\left(\left(f_{i}\right)^{2}+\left(f_{j}\right)^{2}\right) w_{i j}} \tag{3.3}
\end{equation*}
$$

where $f_{i}=f\left(v_{i}\right)$

Finding a good reweighting Mediant of fractions

Definition 1. Given formal fractions

$$
\frac{a_{1}}{b_{1}}, \cdots, \frac{a_{n}}{b_{n}}
$$

the fractional average is the formal fraction

$$
\frac{\sum_{i=1}^{n} a_{i}}{\sum_{i=1}^{n} b_{i}}
$$

where the a_{i} 's and b_{i} 's are reals.

Finding a good reweighting
 using Mediant of fractions

Lemma 2. If $\frac{a_{1}}{b_{1}} \leq \cdots \leq \frac{a_{n}}{b_{n}}$ and $w_{1} \geq \cdots \geq w_{n}$ then

$$
\frac{\sum_{i=1}^{n} a_{i}}{\sum_{i=1}^{n} b_{i}} \geq \frac{\sum_{i=1}^{n} a_{i} w_{i}}{\sum_{i=1}^{n} b_{i} w_{i}}
$$

The inequality is strict if for some pair $1 \geq i<j \leq n$ we have that $\frac{a_{i}}{b_{i}}<\frac{a_{j}}{b_{j}}$ and $w_{i}>w_{j}$.

Inverse Fractional Reweighting

- Given L and D we get L ' and D^{\prime}
- where

$$
w_{i j}^{\prime}=\frac{f_{i}^{2}+f_{j}^{2}}{\left(f_{i}-f_{j}\right)^{2}} w_{i j}
$$

$$
\frac{f^{T} L f}{f^{T} D f} \geq \frac{f^{T} L^{\prime} f}{f^{T} D^{\prime} f}
$$

- Problem: in general

$$
\lambda_{2} \nsupseteq \lambda_{2}^{\prime}
$$

1D Family of Matrices

- 1D family

$$
W(t)=W+t W^{\prime}
$$

- Theorem:
$\lambda=\frac{f^{T} L f}{f D f}>\frac{f^{T} L^{\prime} f}{f^{T} D^{\prime} f} \quad$ implies $\quad \frac{d \lambda(t)}{d t}<0$

Defining Segmentation Quality

- Two Measures of Quality
- A Mathematical Quantity e.g. Normalized Cut(NC)
- Human hand segmentation

We do well with respect to both measures

Normalized Cut

- Definition:
$n c(G)=\min _{V_{1}, . ., V_{k}} \frac{1}{k} \sum_{i=1}^{k} \frac{\operatorname{cut}\left(V_{i}, V \backslash V_{i}\right)}{\operatorname{vol}\left(V_{i}\right)}$

Where $V_{1} \cdots V_{k}$ is a Partition of V.

Comparison with Human Segmentation

Comparison with Human Segmentation

$k=4$

$k=7$

$k=8$

$n c=.0012$
$n c=.010$

Results: Medical Images

MRI data of left ventricle

Medical Segmentation

retinal volume processing
assisted tumor extraction

Anatomy of the Eye

Spectral OCT

Spectral Rounding: Global vs. Local

Threshold - common in MIP

Spectral Rounding: Global vs. Local

S.R. in action...

Segmentation Results

Segmentation Results

Fly Through

NFL Extraction:

 Detection of the Nerve Fiber Layer Contour

NFL Extraction:
 Intensity proportional to probability-of-a-cut under the eigen-space

Another view of SR

Mammogram Segmentations

Numerical Algorithms

Solving Laplacian Lx $=\mathrm{b}$
Finding eigenvectors $L f=\lambda_{2} D f$

- Spielman and Teng
- O(n $\log ^{k} n$) time for some k.

Iterative Solvers $A x=b$

- Richardson: $x^{(i+1)} \leftarrow(I-A) x^{(i)}+b$
- Preconditioned: $B^{-1} A x=B^{-1} b=b^{\prime}$
$x^{(i+1)} \leftarrow\left(I-B^{-1} A\right) x^{(i)}+b^{\prime}$
- Computing $z=B^{-1} A x^{(i)}$
- $y \leftarrow A x^{(i)}$
- solve $B z=y$

Combinatorial Preconditioners

- Recall: A graph G, B graph H
- Vaidya: Max Weight Spanning Tree.
- EEST: Low Stretch Spanning Tree.
- Gremban-M: Steiner Tree

All these generate one for all of G

Planar Solvers

1. The speed of planar solvers has been dramatically improving over the last 50 years.
2. We have an optimal sequential time algorithm.
3. It also can be used on in parallel.

Dealing with larger images

Dealing with larger images

Images up to 1 mega-pixel

Dealing with larger images

Dealing with larger images

Giga-pixel images and beyond...

Our Preconditioner

- Partition G into small pieces with small boundary.
- Use one of the known preconditioners for each piece.

Our Partitioner

Planar $G=(V, E)$

- Partition $\mathrm{P}_{1, \ldots} . \mathrm{P}_{\mathrm{m}}$ of E
- $\left|\mathrm{P}_{\mathrm{i}}\right|<=\mathrm{k}$
- sum over bdaries <= $O(n /$ sqrt k)
- Work: O(n)
- Time: $O(k \log n)$

Dealing with larger images

Dealing with larger images

Images up to 1 mega-pixel

Dealing with larger images

Images up to 1 giga-pixel

Dealing with larger images

Giga-pixel images and beyond...

Image Segmentation in Surveillance

Thanks

Any image software can be improved by adding good image segmentation code.

$n c=.0093 \quad n c=.0048$

$n c=.0081 \quad n c=.0055$

$n c=.0047$
$n c=.0006$

Major Types of Image Segmentation

- Assisted Segmentation
- Input from the consumer
- Prior Knowledge (e.g. model of the heart)
- Unassisted Segmentation
- No Prior Knowledge - No User Input

This Talk addresses a harder problem!

- Unassisted Segmentation without prior knowledge of the scene (image contents)
- Our methods can be used with prior information as well.

Image Segmentation

