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What is Image 
Segmentation?

OutputInput
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Three Talks in One

• Image Segmentation Experimental

• Image Segmentation Theory

• Solving needed linear systems 
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What is Hard for Computers!

In the spaces below, type three (3) different English words 
appearing in the picture above.
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Annual Report 2005

s

  Image Processing is every where

✓Medical Image Analysis

✓Matting & Manipulation 

✓Data Mining & Information Retrieval 

✓Intelligent Surveillance Systems
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CS Reduction

• Convert the image segmentation 
problem into a well studied computer 
science problem.

• Hopefully, use an off-the-shelf solution 
to the CS problem.

• First attempt,  Shi and Malik (2000)
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Image Segmentation as
Graph Partitioning
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Basic Approach

Generate an affinity graph

•Each pixel a vertex

•Neighboring  pixels are connected with an 
edge

• The weight      corresponds to their 
similarity  

wij
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Ways to View edges

• Max-flow min-cut models

•  Each edge is a “pipe” that can carry a flow up 
to

• Pick a source and sink and find mincut

• Electrical conductor models

• Each edge is a conductor of size 

• Set voltage on some nodes to +1 and some to -1

wij

wij
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Siemens Assisted Segmentation 2005

• S
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(a) Original (b) Seeds indicating four objects (c) Resulting segmentation

(d) Label 1 probabilities (e) Label 2 probabilities (f) Label 3 probabilities (g) Label 4 probabilities

Fig. 2. Overview of segmentation computation. a) Original image to be segmented. b) User-placed seeds indicating a desired segmentation into four objects.
d-g) Probabilities (potentials) obtained by solving (10) for each label. c) Segmentation obtained by assigning each pixel to the label for which a random
walker is most likely to reach first. Each system required less than three seconds to solve using MATLAB.

topology [60] might significantly improve the computation

speed.

The Graph Analysis Toolbox [61] for MATLAB may be

used to easily build weighted image graphs and solve the

requisite system of linear equations. Specialty code to perform

the random walker segmentation will be made available upon

publication on the author’s webpage. Although MATLAB

has efficient, C++ (MEX), direct solvers for sparse linear

systems, the preconditioned conjugate gradient method is

written in highly inefficient MATLAB code. Therefore, for

research purposes we recommend using the MATLAB code

provided (sufficient for 512 × 512 images, on present-day

technology). A more industrial use will require implementation

of conjugate gradients or multigrid code in C++. Fortunately,

good references exist for these methods (with source code)

[52] that allow for a straightforward implementation. Using

MATLAB’s direct solver, solution of (10) for a 256 × 256
image with two randomly placed seed points required 2.5
seconds on an Intel Xeon 2.40GHz processor with 1GB of

RAM.

G. Algorithm summary

To summarize, the steps of the algorithm are:

1) Using (1), map the image intensities to edge weights in

the lattice.

2) Obtain a set, VM , of marked (labeled) pixels with K
labels, either interactively or automatically.

3) Solve (11) outright for the potentials or solve (10) for

each label except the final one, f (for computational

efficiency). Set xf
i = 1 −

∑

s<f xs
i .

4) Obtain a final segmentation by assigning to each node,

vi, the label corresponding to maxs (xs
i ).

Code is available (in MATLAB) on the author’s webpage at:

http://www.cns.bu.edu/˜lgrady/random walker matlab code.zip.

We note that other options might be explored for assigning

a label to each pixel based on the potentials (e.g., applying

a clustering algorithm to the K-dimensional vectors at each
node). Figure 2 displays all of the steps in this process from

seed acquisition to calculation of the potentials (probabilities)

and the resulting segmentation.

If interactive editing of the segmentation were needed (i.e.,

through the addition/deletion of seeds), one could start at

step 2 in the above procedure with the new seed set and

use the previous solution as the starting point for an iterative

matrix solver for the new system (10). In general, the previous

solution will be “close” to the desired solution, requiring much

less time to compute.

IV. THEORETICAL PROPERTIES OF THE ALGORITHM

Although a new technique was presented for interactive

image segmentation, it is necessary to explore what may be

User assisted segmentation of the heart
no prior knowledge of hearts 
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More Ways to View edges

• Shortest Path Models

• The distance between neighbors is 

• Random Walk Models

• The probability we walk on an edge is 
proportional to 

• Distance between node is the expect commute 
time

wij

1/wij
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 Even More Ways to View edges

• Spring Models (This talk)

• The  spring constant is 

• Separate based on modes of vibration 
(eigenvectors).

• Classic Spring Solution.

• Compute a few low frequency eigenvectors say 2.

• Map the vertices into 2D using the eigenvectors.

• Apply a geometric cut the graph.

wij
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Airfoil Graph and it Spectral 
Embedding
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Image Segmentation as
Graph Partitioning

Goal:  segment into 4 pieces
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Output of the Classic Spring Model

Spring model using 4 eigenvectors 
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Output for Our Spectral Rounding 
Algorithm
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What is new

• Spectral Rounding :

• A better method to use eigenvectors for 
graph partitioning.

• Fast Planar Solvers :

• Optimal time linear solvers for planar 
systems.
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Inside the CS Reduction - 
Graph Partitioning

Standard Algorithm Spectral Rounding

Data Graph
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The Standard Spring Model 
Algorithm

Result - Standard Algorithm
Representation used by the Standard Algorithm 
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Our Technology

SR leverages the physical intuition!Result - Spectral Rounding
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Mathematical Formulation

• Ohm’s Law and Graph Laplacians

• Let                       and   

• The Laplacian

• Simple fact                     where       is voltage      current

Aij = wij Dii =

∑

j

wij

L = D − A

LV = I V I
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Mathematical Formulation

• Solving conductor model problems 
reduces to solving Laplacians

• Here the Graphs are in fact planar.
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Mathematical Formulation for spring 
models

• We consider the case where the node 
has mass equal to its weighted degree. 
The Normalized Laplacian!

• Thus our eigenvalues and vectors 
satisfy  Lf = λDf
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Mathematical Formulation for spring 
models

• Zero eigenvalue

• Rayleigh quotient

• Goal: reweight graph to reduce  

L1 = 0D1

λ2 = inf
f⊥D1

fT Lf

fT Df

λ2
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Spectral Rounding
Edge reweighting

• Algorithm 

• Solve 

• Reweight graph getting     and

• Solve

• repeat while Lambda not zero

• repeat while best threshold cut is 
changing

Lf = λ2Df

L
′

D
′

L′f = λ2D
′f
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Spectral Rounding
Finding a good reweighting

Equation 2.1 has been studied in the context of image segmentation in the
vision community [13, 16] and clustering in the learning community [11, 15]. In
all cases a standard spectral algorithm is used. The methods [13, 16, 11] differ
primarily in how the eigenvectors are used to find a feasible solution satisfying
the constraints in Equation 2.1.

3 Preliminaries
Throughout this paper we let G = (V, E, w) denote an edge weighted undirected
graph without multiple edges or selfloops, where V is a set of n vertices numbered
from 1 to n, E is a set of m edges, and w : E → [0, 1] is the edge weighting.

We associate four matrices with the graph: First, W the weighted adjacency
matrix,

Wij =

{
wij = w(i, j) if (i, j) ∈ E
0 otherwise (3.1)

The weighted degree of vertex i is di =
∑n

j=1 wij . We assume that no vertex has
zero degree. Second, the weighted degree matrix D is

Dij =

{
di if i = j
0 otherwise . (3.2)

Third, the generalized Laplacian or simply the Laplacian of G is L = D −W .
Finally, the normalized Laplacian of G is L = D−1/2LD−1/2.

Rather than working directly with the normalized Laplacian we shall work
with a similar system. If D1/2f = g and g is an eigenvector of L with eigen-
value λ, i.e., Lg = λg then it is an easy calculation to see that f is a generalized
eigenvector for the pair (L, D) with eigenvalue λ. That is Lf = λDf . It will be
convenient to work with the generalized eigenvalues and vectors of (L, D). In this
case the normalized Rayleigh quotient is fT Lf/fT Df of the valuation f .

We make a simple, but important, observation about these Rayleigh quotients:

Lemma 1. Given a weighted symmetric graph G = (V, E, w) then the normalized
Rayleigh quotient can be written as

fT Lf

fT Df
=

∑
(i,j)∈E,i<j(fi − fj)2wij∑

(i,j)∈E,i<j((fi)2 + (fj)2)wij
(3.3)

where fi = f(vi)

4
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Finding a good reweighting
Mediant of fractions

||w||k = 0 iff the weighting w disconnects the graph into at least k pieces. A pair
R, || · ||k is called a reweighting scheme if the SR-Step converges in a finite
number of iterations. We define Algorithm 2, the SR-Algorithm, as the itera-
tion of Algorithm 1 until ||w(N)||k ! 0. In the following sections we propose Rs
and corresponding norms || · ||k such that the SR-Step and SR-Algorithm
converge in the desired fashion.

In §4.6 a simplified version of SR-Algorithm is shown to converge on
graphs with || · ||k < 1. In the case of a 2-cut this reduces to λ2(L) < 1. The
class of graphs satisfying this spectral constraint is very general, excluding an un-
interesting collection of graphs for our purposes. In particular, if λ2 ≥ 1 then
no subset of the vertices exists with more than half of its edge volume contained
within it (entailed by the Cheeger bound 2Φ(G) ≥ λ2 [3]). Such graphs are often
called expander graphs.

4.2 Fractional Averages: a reweighting function
By Lemma 1 we saw that the Rayleigh quotient could be written as a sum of for-
mal fractions where the numerators are added separately from the denominators.
Define a formal fraction as a pair of real numbers a

b and its value as the real num-
ber a/b. We call the average of a set of formal fractions the fractional average.
We now prove a few simple but important facts about fractional averages.

Definition 1. Given formal fractions
a1

b1
, · · · ,

an

bn

the fractional average is the formal fraction
∑n

i=1 ai∑n
i=1 bi

where the ai’s and bi’s are reals.

We will simply call formal fractions fractions and only make a distinction
between the formal fraction and its value when needed. In the case when the ai’s
and bi’s are nonnegative we first observer that the fractional average is a convex
combination of the fractions. That is we can rewrite the sum as

n∑

i=1

bi

b̄
· ai

bi

6

27Monday, December 10, 2007



Finding a good reweighting
 using Mediant of fractions

where b̄ =
∑n

i=1 bi. Thus fractional average lies between the largest and smallest
fraction.

Possibly a more important interpretation is by viewing each fraction ai
bi

as the
point Pi = (bi, ai) in the plane and the value of the fraction is just its slope. The
fractional average is just the vector sum of the points. Since we are only interested
in the value of the fraction, the slope, we will think of the fractional average as the
centroid of the points. If we multiply the numerator and denominator by a scalar
w we shall say we reweighted the fraction by w. Geometrically, we are scaling
the vectors or points Pi and then computing the centroid.

In the next lemma we show that we can control the slope of the fractional
average by reweighting.

Lemma 2. If a1
b1
≤ · · · ≤ an

bn
and w1 ≥ · · · ≥ wn then
∑n

i=1 ai∑n
i=1 bi

≥
∑n

i=1 aiwi∑n
i=1 biwi

The inequality is strict if for some pair 1 ≥ i < j ≤ n we have that ai
bi

< aj

bj
and

wi > wj .

Proof. It will suffice to show that
∑n

i=1 ai∑n
i=1 bi

−
∑n

i=1 aiwi∑n
i=1 biwi

≥ 0 (4.1)

Multiplying the left hand side through by its denominators we get
∑

i,j

ajbiwi −
∑

i,j

ajbiwj =
∑

i,j

ajbiwi − ajbiwj (4.2)

Observe that term where i = j are zero. Thus we can write the sum as:
∑

i<j

ajbi(wi − wj) + aibj(wj − wi) (4.3)

Rearranging the last term in the sum gives:
∑

i<j

ajbi(wi − wj)− aibj(wi − wj) (4.4)

Finally we get:

7

28Monday, December 10, 2007



Inverse Fractional Reweighting

• Given                  we get

• where

• Gives

• Problem: in general  

L and D L’ and D’

w′

ij =
f2

i + f2
j

(fi − fj)2
wij

fT Lf

fT Df
≥

fT L′f

fT D′f

λ2 !≥ λ
′

2
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1D Family of Matrices

• 1D family

• Theorem:   

W (t) = W + tW
′

λ =
fT Lf

fDf
>

fT L′f

fT D′f
implies

dλ(t)

dt
< 0
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Defining Segmentation Quality

• Two Measures of Quality

• A Mathematical Quantity e.g. 
Normalized Cut(NC)

• Human hand segmentation

We do well with respect to both measures
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Normalized Cut

• Definition: 

nc(G) = min
V1,..,Vk

1

k

k∑

i=1

cut(Vi, V \ Vi)

vol(Vi)

Where V1 ...  Vk  is a Partition of  V.
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5.3. HUMAN SEGMENTATION AND SR 87

Input Image Human EIG SR

k = 4 nc = .0051 nc = .0017

k = 5 nc = .0076 nc = .0060

k = 11 nc = .0068 nc = .0033

k = 4 nc = .0039 nc = .0009

k = 7 nc = .0023 nc = .0011

k = 8 nc = .0012 nc = .010

Figure 5.7: Example segmentations from the Berkeley Hand Segmentation Database. Image

results comparing the k−way cut generated from hand segmentation (column 2), the standard
spectral algorithm (column 3), and spectral rounding with expansion edges and the derivative

heuristic (column 4). For each image, the number of segments was fixed for both the spectral

rounding algorithm SR and the standard algorithm Eig. Each method was initialized with the

same weight matrix, and the reported cut costs are given on the original weighted graph (i.e.

affinity matrix).

33

Comparison with Human Segmentation
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Comparison with Human Segmentation
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Input Data Eig [20] Intermediate SR final

k=6, SR iteration nc(EIG) = .0074 i = 1, nc(SR) = .0062 i = 4, nc(SR) = .0057
Figure 4. A sequence of iterations projected onto the feasible set, starting left with solution from Yu’s method and ending with the fourth

and final SR iteration on the right. Notice that the large cuts in the sky and field shift to small cuts in the area around the farm.

nc(SR)=.019 nc(EIG)=.061 nc(SR)=.024 nc(EIG)=.057

nc(SR)=.021 nc(EIG)=.021nc(SR)=.048 nc(EIG)=.068

Figure 5. Examples of the left ventricle, and qualitative results

for the SR and EIG algorithms. Segmentations required approx-

imately 1.2 seconds for EIG and 1.9 seconds for SR.

with n = |V | and m = |E|. Fortunately, recent theoretical
results hold out the promise of nearly-linear time eigencom-
putation. Recent work by Spielman and Teng [18] on linear
time linear solvers suggests that ε−approximate eigencom-
putation may soon fall into same time complexity.
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Results: Medical Images

MRI data of left ventricle
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Medical Segmentation

assisted tumor extractionretinal volume processing
36
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Spectral OCT
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Spectral Rounding: 
Global vs. Local

Threshold - common in MIP
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Spectral Rounding: 
Global vs. Local

A. H.

R. S.
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S.R. in action...
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Segmentation Results
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Segmentation Results
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Fly Through
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NFL Extraction:
Detection of the Nerve 
Fiber Layer Contour

45
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NFL Extraction:
Intensity proportional 
to probability-of-a-cut 
under the eigen-space

46
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Another view of SR
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Mammogram Segmentations
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Numerical Algorithms

•Solving Laplacian Lx = b

• Finding eigenvectors 

•Spielman and Teng 

•O(n logk n) time for some k.

Lf = λ2Df
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Combinatorial Preconditioners

• Recall:  A  graph G,  B graph H
• Vaidya:  Max Weight Spanning Tree.
• EEST:   Low Stretch Spanning Tree.
• Gremban-M:  Steiner Tree

53

All these generate one for all of G
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Planar Solvers

1. The speed of planar solvers has been 
dramatically improving over the last 50 years.

2. We have an optimal sequential time 
algorithm.

3. It also can be used on in parallel. 
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Dealing with larger images

Image sizes up to 100K pixels
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Dealing with larger images

Images up to 1 mega-pixel
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Dealing with larger images

Images up to 1 giga-pixel
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Dealing with larger images

Giga-pixel images and beyond...
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Our Preconditioner

• Partition G into small pieces with small  
boundary.

• Use one of the known preconditioners for 
each piece.  

59
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Our Partitioner

• Partition P1, .... Pm of E
• |Pi| <= k
• sum over bdaries <= O(n/ sqrt k)
• Work:  O(n)
• Time:   O(k log n)

60

Planar G = (V,E)
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Dealing with larger images

Image sizes up to 100K pixels
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Dealing with larger images

Images up to 1 mega-pixel
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Dealing with larger images

Images up to 1 giga-pixel
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Dealing with larger images

Giga-pixel images and beyond...
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Image Segmentation in Surveillance
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(a) Original cardiac CT volume

(b) Segmented aorta

Fig. 9. Segmentation on a 3D, 6-connected, lattice without any modification
of the algorithm. Seeds were placed on a single slice, consisting of a mark
inside the aorta and a ring of background seeds around the outside. a)
Original cardiac CT volume, b) Segmentation of the aorta is shown in high-
intensity pixels with the foreground/background seeds shown in black and
white respectively.

to weak object boundaries and that the solution respects the

user’s pre-labeling choices. Furthermore, there is only a single

free parameter, β in (1), and all of the segmentations shown

in this paper were produced with the same choice of that

parameter. Of course, this approach could also be combined

with pre-filters (e.g., median) or post-filters (e.g., clustering the

probabilities) to produce enhanced, problem-specific results.

Finally, the algorithm simply requires solution to a sparse,

symmetric, positive-definite system of equations, which is

straightforward to implement and performs efficiently. Ad-

ditionally, interactive editing of the segmentation generally

results in even faster computation time, since the previous

solution may be used as an initial solution for an iterative

matrix solver.

The connections between random walks, combinatorial

potential theory, trees and electric circuits allowed us to

prove that the segments are guaranteed to be connected (i.e.,

unfragmented), and that noise robustness may be expected.

Furthermore, the direct correspondence with analog electric

circuits opens the possibility for a hardware (e.g., VLSI)

implementation of the algorithm, where the physics of the

circuit perform the same “computation” as the standard CPU,

except at the extremely fast speed of the physical world.

Finally, since our variational problem is formulated on a graph,

there are no concerns about discretization errors or variations

in implementation that sometimes cause problems for other

variational approaches.

Future work will concentrate on a specialty solver, user

validation, the use of prior information in the segmentation and

leveraging the theoretical results to produce a more effective

weighting function.
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Any image software can be improved by adding 
good image segmentation code.
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88 CHAPTER 5. RESULTS

Input Data Eig SR Input Data Eig SR

nc = .0093 nc = .0048 nc = .0085 nc = .0080

nc = .0081 nc = .0055 nc = .0047 nc = .0006

nc = .0122 nc = .0090 nc = .0159 nc = .0102

nc = .0145 nc = .0121 nc = .0098 nc = .0043

Figure 5.8: Example Images
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Major Types of Image Segmentation

• Assisted Segmentation

• Input from the consumer 

• Prior Knowledge (e.g. model of the heart)

• Unassisted Segmentation

• No Prior Knowledge - No User Input
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This Talk addresses a harder 
problem!

• Unassisted Segmentation without prior 
knowledge of the scene (image contents)

• Our methods can be used with prior 
information as well. 
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Image Segmentation 
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