Using Simple Physical Models for Image Segmentation

Gary L Miller Computer Science Yiannis Koutis and Dave Tolliver

What is Image Segmentation?

Input

Three Talks in One

- Image Segmentation Experimental
- Image Segmentation Theory
- Solving needed linear systems

What is Hard for Computers!

In the spaces below, type three (3) different English words appearing in the picture above.

Image Processing is every where

Medical Image Analysis (SIEMENS)

Matting & Manipulation

ObiectVideo

✓ Data Mining & Information Retrieval Google Microsoft YAHOO! Intelligent Surveillance Systems

CS Reduction

- Convert the image segmentation problem into a well studied computer science problem.
- Hopefully, use an off-the-shelf solution to the CS problem.
- First attempt, Shi and Malik (2000)

Image Segmentation as Graph Partitioning

7

Basic Approach Generate an affinity graph

- Each pixel a vertex
- Neighboring pixels are connected with an edge
- \bullet The weight w_{ij} corresponds to their similarity

Ways to View edges

- Max-flow min-cut models
 - $\bullet~$ Each edge is a "pipe" that can carry a flow up to \mathbf{W}_{ij}
 - Pick a source and sink and find mincut
- Electrical conductor models
 - \bullet Each edge is a conductor of size W_{ii}
 - Set voltage on some nodes to +1 and some to -1

Siemens Assisted Segmentation 2005

User assisted segmentation of the heart no prior knowledge of hearts

More Ways to View edges

ullet The distance between neighbors is $1/w_{ij}$

- Random Walk Models
 - The probability we walk on an edge is proportional to $\mathbf{w_{ij}}$
 - Distance between node is the expect commute time

Even More Ways to View edges

- Spring Models (This talk)
 - \bullet The spring constant is w_{ij}
 - Separate based on modes of vibration (eigenvectors).
- Classic Spring Solution.
 - Compute a few low frequency eigenvectors say 2.
 - Map the vertices into 2D using the eigenvectors.
 - Apply a geometric cut the graph.

Airfoil Graph and it Spectral Embedding

Image Segmentation as Graph Partitioning

Goal: segment into 4 pieces

Output of the Classic Spring Model

Spring model using 4 eigenvectors

Output for Our Spectral Rounding Algorithm

What is new

• Spectral Rounding :

 A better method to use eigenvectors for graph partitioning.

• Fast Planar Solvers :

Optimal time linear solvers for planar systems.

The Standard Spring Model Algorithm

Representation used by the Standard Algorithm

Result - Standard Algorithm

Our Technology

Result - Spectral Rounding

SR leverages the physical intuition!

Mathematical Formulation

• Let
$$A_{ij} = w_{ij}$$
 and $D_{ii} = \sum_j w_{ij}$

The Laplacian

$$L = D - A$$

• Simple fact LV = I where V is voltage I current

Mathematical Formulation

- Solving conductor model problems reduces to solving Laplacians
- Here the Graphs are in fact planar.

Mathematical Formulation for spring models

- We consider the case where the node has mass equal to its weighted degree.
 The Normalized Laplacian!
- Thus our eigenvalues and vectors satisfy $Lf = \lambda Df$

Mathematical Formulation for spring models

• Zero eigenvalue L1 = 0D1• Rayleigh quotient $\lambda_2 = \inf_{f\perp D1} \frac{f^T L f}{f^T D f}$

• Goal: reweight graph to reduce λ_2

Spectral Rounding Edge reweighting

- Algorithm
 - Solve $Lf = \lambda_2 Df$
 - ullet Reweight graph getting L' and D'
 - Solve $L'f = \lambda_2 D'f$
 - repeat while Lambda not zero
 - repeat while best threshold cut is changing

Spectral Rounding Finding a good reweighting

Lemma 1. Given a weighted symmetric graph G = (V, E, w) then the normalized Rayleigh quotient can be written as

$$\frac{f^T L f}{f^T D f} = \frac{\sum_{(i,j)\in E, i(3.3)$$

where $f_i = f(v_i)$

Finding a good reweighting Mediant of fractions

Definition 1. *Given formal fractions*

$$\frac{a_1}{b_1}, \cdots, \frac{a_n}{b_n}$$

the fractional average is the formal fraction

$$\frac{\sum_{i=1}^{n} a_i}{\sum_{i=1}^{n} b_i}$$

where the a_i 's and b_i 's are reals.

Finding a good reweighting using Mediant of fractions

Lemma 2. If $\frac{a_1}{b_1} \leq \cdots \leq \frac{a_n}{b_n}$ and $w_1 \geq \cdots \geq w_n$ then

$$\frac{\sum_{i=1}^{n} a_i}{\sum_{i=1}^{n} b_i} \ge \frac{\sum_{i=1}^{n} a_i w_i}{\sum_{i=1}^{n} b_i w_i}$$

The inequality is strict if for some pair $1 \ge i < j \le n$ we have that $\frac{a_i}{b_i} < \frac{a_j}{b_j}$ and $w_i > w_j$.

Inverse Fractional Reweighting

• Given L and D we get L' and D'

where
$$w_{ij}^\prime = \frac{f_i^2 + f_j^2}{(f_i - f_j)^2} w_{ij}$$

$$\frac{f^T L f}{f^T D f} \geq \frac{f^T L' f}{f^T D' f}$$

• Problem: in general
$$\lambda_2
eq \lambda_2'$$

1D Family of Matrices

• 1D family
$$W(t) = W + tW'$$

• Theorem:

$$\lambda = \frac{f^T L f}{f D f} > \frac{f^T L' f}{f^T D' f} \quad \text{implies} \quad \frac{d\lambda(t)}{dt} < 0$$

Defining Segmentation Quality

• Two Measures of Quality

- A Mathematical Quantity e.g.
 Normalized Cut(NC)
- Human hand segmentation

We do well with respect to both measures

Normalized Cut

Definition:

$$nc(G) = \min_{V_1,...,V_k} \frac{1}{k} \sum_{i=1}^k \frac{cut(V_i, V \setminus V_i)}{vol(V_i)}$$

Where $V_1 \cdots V_k$ is a Partition of V.

Comparison with Human Segmentation

EIG

nc = .0051

k = 4

SR

nc = .0017

Comparison with Human Segmentation

k = 4

nc = .0012 nc = .010

Results: Medical Images

nc(SR)=.019 nc(EIG)=.061

nc(SR)=.024 nc(EIG)=.057

nc(SR)=.048

l8 nc(EIG)=.068

nc(SR)=.021 nc(EIG)=.021

MRI data of left ventricle

Medical Segmentation

retinal volume processing

assisted tumor extraction

Spectral OCT

Spectral Rounding: Global vs. Local

Threshold - common in MIP

Spectral Rounding: Global vs. Local

Monday, December 10, 2007

A. H.

R. S.

S.R. in action...

input subimage

initial vector

2nd SR-vector

Segmentation Results

Segmentation Results

Fly Through

NFL Extraction: Detection of the Nerve Fiber Layer Contour

NFL Extraction: Intensity proportional to *probability-of-a-cut* under the eigen-space

Another view of SR

Intermediate H-contracted Cheeger Cut

Mammogram Segmentations

Numerical Algorithms

Solving Laplacian Lx = b
Finding eigenvectors Lf = λ₂Df
Spielman and Teng
O(n log^k n) time for some k.

Iterative Solvers Ax = b

Richardson: x⁽ⁱ⁺¹⁾ ← (I − A)x⁽ⁱ⁾ + b
Preconditioned: B⁻¹Ax = B⁻¹b = b' x⁽ⁱ⁺¹⁾ ← (I − B⁻¹A)x⁽ⁱ⁾ + b'
Computing z = B⁻¹Ax⁽ⁱ⁾ y ← Ax⁽ⁱ⁾ solve Bz = y

Combinatorial Preconditioners

- Recall: A graph G, B graph H
- Vaidya: Max Weight Spanning Tree.
- EEST: Low Stretch Spanning Tree.
- Gremban-M: Steiner Tree

All these generate one for all of G

Planar Solvers

- The speed of planar solvers has been dramatically improving over the last 50 years.
- 2. We have an optimal sequential time algorithm.
- 3. It also can be used on in parallel.

Giga-pixel images and beyond...

Our Preconditioner

- Partition G into small pieces with small boundary.
- Use one of the known preconditioners for each piece.

Our Partitioner

Planar G = (V,E)

- Partition P_{1,} P_m of E
- |P_i| <= k
- sum over bdaries <= O(n/ sqrt k)
- Work: O(n)
- Time: O(k log n)

Giga-pixel images and beyond...

Image Segmentation in Surveillance

Thanks

Any image software can be improved by adding good image segmentation code.

nc = .0047 nc = .0006

nc = .0093 nc = .0048

nc = .0081 nc = .0055

Major Types of Image Segmentation

- Assisted Segmentation
 - Input from the consumer
 - Prior Knowledge (e.g. model of the heart)
- Unassisted Segmentation
 - No Prior Knowledge No User Input

This Talk addresses a harder problem!

- Unassisted Segmentation without prior knowledge of the scene (image contents)
- Our methods can be used with prior information as well.

Image Segmentation

