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VWWhat is Image
Segmentation?
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Three Talks in One

® |Image Segmentation Experimental
® |mage Segmentation Theory

® Solving needed linear systems




What is Hard for Computers!
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In the spaces below, type three (3) different English words
appearing in the picture above.

Monday, December 10, 2007



Image Processing is every where
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CS Reduction

@ Convert the image segmentation
problem into a well studied computer
science problem.

@ Hopefully, use an off-the-shelf solution
to the CS problem.

@ First attempt, Shi and Malik (2000)

eeeeeeeeeeeeeeeeeeeeee



Image Segmentation as
Graph Partitioning
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Basic Approach

Generate an affinity graph

@® Each pixel a vertex

® Neighboring pixels are connected with an
edge

@® The weight wij corresponds to their
similarity
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Ways to View edges

® Max-flow min-cut models

@® Each edge is a "pipe” that can carry a flow up
to Wijj

® Pick a source and sink and find mincut
® Electrical conductor models
® Each edge is a conductor of size Wi;

@ Set voltage on some nodes to +1 and some to -1
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Siemens Assisted Segmentation 2005

User assisted segmentation of the heart

no prior Knowledge of hearts

Monday, December 10, 2007

10



More Ways to View edges

® Shortest Path Models

® The distance between neighbors is 1/wj;

® Random Walk Models

® The probability we walk on an edge is
proportional fo wi;

@ Distance between node is the expect commute
time
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Even More Ways to View edges

@® Spring Models (This talk)
® The spring constant is Wwi;

@® Separate based on modes of vibration
(eigenvectors).

@® Classic Spring Solution.
® Compute a few low frequency eigenvectors say 2.
@® Map the vertices into 2D using the eigenvectors.

@® Apply a geometric cut the graph.
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Airfoil Graph and it Spectral
Embedding

1
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Image Segmentation as
Graph Partitioning

© A Fe Bennett, ./ ATPM, www atpm com

Goal: segment into 4 pieces
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Output of the Classic Spring Model
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Spring model using 4 eigenvectors
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Output for Our Spectral Rounding
Algorithm
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What Is new

® Spectral Rounding :

® A better method to use eigenvectors for
graph partitioning.

® Fast Planar Solvers :

® Optimal time linear solvers for planar
systems.

Monday, December 10, 2007

17



Inside the CS Reduction -
Graph Partitioning

Standard Algorithm Spectral Rounding
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The Standard Spring Model
Algorithm

Result - Standard Algorithm

0.4}

0.2

—0.2}
—0.4|
0.6}

-0.8 -

Representation used by the Standard Algorithm

0.8

0.6}

| | | | |
-2 -1.5 -1 -0.5 0

Monday, December 10, 2007

19



Our Technology

SR leverages the physical intuition!

Result - Spectral Rounding

20
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Mathematical Formulation

Ohm’s Law and Graph Laplacians

A — and
ij = Wij Dii =) wi
j

Let

The Laplacian

L=D-A

Simple fact 11/ — J Wwhere V is voltage T current
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Mathematical Formulation

@® Solving conductor model problems
reduces to solving Laplacians

® Here the Graphs are in fact planar:




Mathematical Formulation for spring
models

® We consider the case where the node
has mass equal to its weighted degree.
The Normalized Laplacian!

@® Thus our eigenvalues and vectors
satisfy Lf=\Df
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Mathematical Formulation for spring
models

@ Zero eigenvalue L1 =0D1

@® Rayleigh quotient

N — inf fULf
2= fib1 fTDf

@ Goal: reweight graph to reduce X,
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Spectral Rounding
Edge reweighting

@ Algorithm

® Solve L/ =XDf

® Reweight graph getting L' and D’
® Solve L f=XDYf

@® repeat while Lambda not zero

@ repeat while best threshold cut is
changing
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Spectral Rounding
Finding a good reweighting

emma 1. Given a weighted symmetric graph G = (V, £, w) then the normalized
Rayleigh quotient can be written as

frLf _ Z(i,j)EE,i<j(f’i — f3)wi
FEDf X nerici((fi)? + (f3)?)wi

(3.3)

here f; = f(v:)
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Finding a good reweighting
Mediant of fractions

Definition 1. Given formal fractions
a1 Up
by’ " by,
the fractional average is the formal fraction

22;1 %
2?21 bi

where the a;’s and b;’s are reals.

Monday, December 10, 2007



Finding a good reweighting
using Mediant of fractions

Lemma 2. [f 3+ <.-.- < 32 and w; > --- > w, then

b1
Z?:l % > Z?:l Wy
Z?:l bi — Z?:1 biw;

The inequality is strict if for some pair 1 > 1 < 7 < n we have that % < Z—j and
W; > Wj.
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Inverse Fractional Reweighting

Given T, and D weget 1, and D’

where T f7’2 i f~72 W
(T A

Gives fTLf > fTL/f
f'Df = fTD'f

Problem: in general /
Ao Z Ag
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ID Family of Matrices

® 1D family W(t) =W +tW’
® Theorem:

T T 17/
A\ = f Lf ;LT implies dA(t)

[Df = fTD'f t

<0
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Defining Segmentation Quality

® Two Measures of Quality

® A Mathematical Quantity e.g.
Normalized Cut(NC)

® Human hand segmentation

We do well with respect to both measures
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Normalized Cut

@® Definition:

k

ne(G) 1 Zcut(V};,V\Vi)

Vi k vol (V;)

WhereV, - Vi is a Partition of V.
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Comparison with Human Segmentation

Input Image Human
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Comparison with Human Segmentation
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Results: Medical Images

=.019 nc(ElG)=.061 nc(SR)=.024 nc(EIG)= 057

c(SR)=.048 nc(EIG)=.068 SR) 021 nc( EIG 021

MRI data of left ventricle
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Anatomy of the Eye

* Sclera
\
Choroid
\

Ciliary body Retina

Trabecular
meshwork

Cornea ~ acula

||"i5 _ - Fowves \‘ ]
Vitreous |
Pupil W |
Anterior A%\ | - "% Optic nerve
chamber ="
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Spectral OCT
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Spectral Rounding:
Global vs. Local

Threshold - common in MIP
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pectral Rounding:
Global vs. Local
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. IN action...

Input subimage initial vactor

2" SR-vector 3 SR-vector
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Segmentation Results
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Segmentation Results




WL: 30897 WW: 61794

Fly Through
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NFL Extraction:

Detection of the Nerve
Fiber Layer Contour
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Intensity proportional
to probability-of-a-cut
under the eigen-space
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Another view of SR

Input Image Current exp-SR Vector Intermediate H-contracted Cheeger Cut
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Mammogram Segmentations
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Numerical Algorithms

@® Solving Laplacian Lx = b
@® Finding eigenvectors Lf=XDf
@® Spielman and Teng

® O(n log* n) time for some k.
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Iterative Solvers Ax = b

» Richardson: xU*1) — (1 — A)x{) + b
» Preconditioned: B71Ax = B~ 1b =}
X(r’+1) “ (I o B—lA)X(I) + b

» Computing z = B~ 1Ax{)
[ _}f — AX("}
» solve Bz =y
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Combinatorial Preconditioners

* Recall: A graph G, B graph H
» Vaidya: Max Weight Spanning Tree.
« EEST. Low Stretch Spanning Tree.

e Gremban-M: Steiner Tree

All these generate one for all of G

53
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Planar Solvers

The speed of planar solvers has been
dramatically improving over the last 50 years.

We have an optimal sequential time
algorithm.

It also can be used on in parallel.
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Dealing with larger images

X1 1950-1980 : Handling benchmark images

81 1950 - n? algorithm

Time
on

|

|

2t 1980 - n'-° algorithm -

| | | | | | |
0 1 2 3 4 5 6 7 8 9
Size x 10*

Image sizes up to 100K pixels
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Dealing with larger images

<107 1980-1992 : Handling digital cam pictures

1980 - n'-° algorithm

Time

1992 - n'2 algorithm

Size x 10°

Images up to 1 mega-pixel

Monday, December 10, 2007



Dealing with larger images

Jx10" 1992-2006 : Handling large medical images

T

7t 1992 - n'2 algorithm

Time

This is us : n algorithm

Size x10°

Images up to 1 giga-pixel
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Dealing with larger images

X 10" The parallel era: as fast as it gets

Time

Size x 10°

Giga-pixel images and beyond...
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Our Preconditioner

» Partition G into small pieces with small
boundary.

» Use one of the known preconditioners for
each piece.

59
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Our Partitioner
Planar G = (V,E)

« Partition Pq
» |[Pi| <=k

* sum over bdaries <= O(n/ sqrt k)
 Work: O(n)

 Time: O(k log n)

Pm of E

60
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Dealing with larger images

10’ 1950-1980 : Handling benchmark images

81 1950 - n? algorithm -

Time
on
|

2r 1980 -n'-° algorithm

Size x 10"

Image sizes up to 100K pixels
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Dealing with larger images

<107 1980-1992 : Handling digital cam pictures

1980 - n'-° algorithm -

Time

1992 - n'2 algorithm

Size x 10°

Images up to 1 mega-pixel
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Dealing with larger images

Jx10" 1992-2006 : Handling large medical images

T

T

7t 1992 - n'2 algorithm

Time

This is us : n algorithm

Size x10°

Images up to 1 giga-pixel
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Dealing with larger images

10" The parallel era: as fast as it gets
15 | | | I I I
1 cpu
10+ .
a
E
|_
2 cpus
s |
4 cpus
8 cpus
0 | | | | | | |
0 1 2 3 4 5 6 7 8 9
Size x 10°

Giga-pixel images and beyond...
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Image Segmentation in Surveillance
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Thanks

Any image software can be improved by adding
good image segmentation code.
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nc = .0093 nc = .0048 nc = .0085 nc = .0080

nc = .0047 nc = .0006

67
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Major Types of Image Segmentation

® Assisted Segmentation

® Input from the consumer

@® Prior Knowledge (e.g. model of the heart)
® Unassisted Segmentation

® No Prior Knowledge - No User Input
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This Talk addresses a harder
problem!

@ Unassisted Segmentation without prior
knowledge of the scene (image contents)

® Our methods can be used with prior
information as well.
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Image Segmentation

JPS Sk P Graph Partitioning:
Probabilistic: 4" ."u,. .+ Veskler, Zabih, Boykov 97+
’." Besag '74 “*==*"  Freeman & Perona ‘97
s Geman & Geman "84 Shi & Malik 98+
:' Veskler, Zabih, Boykov ‘98 Yu & Shi ‘03
E .., Zhu, ... ‘'Ol+ Sharon et al. ‘00
- Tu et al. ‘05
Variational/Contour:
. Statistical: Kass, Witkin, Terzopoulos ‘88
. Diday & Simon "80 Mumford & Shah ‘89+
‘: Comaniciu & Meer '99+ Sethian ‘96+
. “."Zhu, Lee, Yuille ‘95

)
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