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ABSTRACT
Ever since the advent of “multiserver jobs” (jobs that require more
than one server or core simultaneously), practitioners have been
faced with the question of how to pack these jobs into a compute
cluster. While many policies have been proposed, including First-
Come-First-Served (FCFS), BackFilling, MaxWeight, and Most
Servers First, it is not well understood which policies simultane-
ously achieve (1) throughput-optimality and also (2) both low and
theoretically predictable mean queueing times.

This paper reviews some very recent work from [9, 10] on an
alternative packing policy called ServerFilling (SF) and some ex-
tensions of this policy. The SF policy achieves both goals (1) and
(2) above. This paper discusses and evaluates existing policies in
comparison to SF, in order to prompt discussion on the tradeoffs
between different scheduling policies.
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1 MULTISERVER JOBS
Most computing centers today, be they a public cloud or a private
server farm, run multiserver jobs. A multiserver job requests some
number of servers, typically more than one, and holds onto those
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servers for some amount of time. In this paper, the term “server”
is an abstraction; a server might refer to a CPU, a GPU, or some
other processor. A multiserver job has two components: (i) its server
need, which is the number of servers requested by the job, and (ii) its
duration, which is the time that the job will hold onto those servers.
The size of the multiserver job is the product of its server need and
its duration, and is expressed in units of server-hours.

Importantly, the server need can vary across jobs, often differing
by orders of magnitude [14, 15]. Furthermore, the maximum server
need is often a large fraction of the total number of servers [4, 16].
While a job’s exact server need is known by the system, the job’s
duration may not be known at all, or sometimes only an estimate or
upper bound is known.

Figure 1 illustrates what we will refer to as the multiserver job
queueing model. Here there are a total of 𝑘 servers. Jobs arrive
according to a Poisson process with average rate 𝜆. With probability
𝑝𝑖 an arrival is of class 𝑖. An arriving job of class 𝑖 requests 𝑛𝑖 servers
and holds onto these servers for 𝑋𝑖 time, where 𝑋𝑖 is a random
variable. In Figure 1, the scheduling policy is FCFS. However, in
general any scheduling policy can be used, and we describe several
in this paper.

2 FCFS SCHEDULING AND ITS DRAWBACKS
The most common scheduling policy for multiserver jobs is FCFS;
see for example the CloudSim, iFogSim, EPSim and GridSim cloud
computing simulators [11], or the Google Borg Scheduler [14].

Unfortunately, FCFS scheduling results in servers being left idle,
as seen in Figure 1. This happens when the job at the head of the
queue does not “fit” into the available servers (the job’s server need
is greater than the number of available servers) so servers are left
idle until the job can fit. This results in wasted servers. Under FCFS,
depending on the particular server needs, half of all servers might
be wasted [4, 7, 16]. This large degree of waste occurs when the
maximum server need is a large fraction of the total number of
servers 𝑘 .

A second drawback of FCFS is that it is currently unknown how
to estimate the mean waiting time of multiserver jobs under FCFS
beyond the case of 𝑘 = 2 servers [2, 6].

3 FORMALIZING THE MODEL
We assume that jobs arrive according to a Poisson process with
average rate 𝜆.

We define the load 𝜌 of a system to be the time-average fraction
of total server capacity in use. In particular,

𝜌 =
𝜆
∑
𝑖 𝑛𝑖𝑝𝑖𝐸 [𝑋𝑖 ]

𝑘
, 0 < 𝜌 < 1 (1)
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Figure 1: The multiserver job queueing model with 𝑘 = 8 servers and FCFS scheduling policy. An arriving job of class 𝑖 requests 𝑛𝑖 servers
and holds onto these servers for 𝑋𝑖 time. In this particular illustration, 𝑛𝑖 = 𝑖.

Note that the numerator of (1) can be viewed as the rate of work ar-
riving to the system, while the denominator is the maximum possible
rate of work completion. Throughout, we assume that the numerator
is smaller than the denominator, so 𝜌 is less than 1. If instead the nu-
merator exceeded the denominator, jobs would back up indefinitely.
This behavior is called “instability”, and we focus in this paper on
stable settings only. Observe that loads 𝜌 approaching 1 are reached
only when the system is always working at capacity, i.e. all servers
are occupied.

Importantly, for some scheduling policies 𝜋 and workloads 𝑤 ,
loads 𝜌 near 1 are unachievable: For 𝜆 high enough to bring 𝜌 close
to 1, the system is already unstable.

For example, consider the setting with 𝑘 = 2 servers, FCFS
scheduling, and a workload 𝑤 in which half of the jobs have server
need 1 and the other half have server need 2, and where 𝑋1 and 𝑋2
are both exponentially distributed with mean 1. Here for 𝜌 ≥ 7/8,
the system is already unstable. By contrast, the Most Servers First
(MSF) policy, which prioritizes jobs with server need 2, can achieve
loads 𝜌 arbitrarily close to 1 for this workload, while remaining
stable. FCFS wastes servers unnecessarily, while MSF keeps all
servers busy whenever possible.

As another example, consider a setting with 𝑘 = 4 and a workload
𝑤 ′ in which all jobs require 3 servers. In this setting, no scheduling
policy 𝜋 can achieve loads 𝜌 near 1. In particular, no scheduling
policy can achieve a load above 3/4.

We say that a policy 𝜋 is throughput-optimal for a particular
workload 𝑤 if 𝜋 can achieve the highest 𝜌 of any scheduling policy
working on workload 𝑤 .

We allow scheduling policies to preempt jobs. When a job is
preempted, it is placed back at the head of the queue, and it can be
resumed later with no loss of work.

4 GOALS
Ideally a scheduling policy should have these three properties:

(1) The policy should be throughput-optimal for commonly en-
countered workloads 𝑤 .

(2) It should be possible to theoretically analyze the expected
waiting time under the policy. This is important when load
balancing across different clusters. Specifically, it allows one
to balance the load to ensure comparable mean waiting time
at each cluster. Ideally, we also want mean waiting time to be
low.

(3) We would ideally like our policy to be simple. By this we
mean that we don’t want to optimize over all possible pack-
ings, and we don’t want to perform extensive preemption.

5 OTHER SCHEDULING POLICIES IN THE
LITERATURE

We now review scheduling policies in the literature.

5.1 EASY BackFilling
To mitigate the idle servers which result from FCFS scheduling,
BackFilling is sometimes used [3, 5, 13]. Two of the most common
versions of BackFilling are called Conservative and EASY Back-
Filling. Under EASY BackFilling, if the job 𝑗 at the head of the
queue has a server need larger than the number of available servers,
the system tries to estimate a time 𝑡 at which point enough servers
will become available for 𝑗 to run. The system then allows jobs that
arrived after job 𝑗 to run if their server needs allow them to fit and if
they will complete before time 𝑡 . Conservative BackFilling is similar,
but performs this reservation process for all jobs in the queue, not
just the job at the head of the queue. There are several problems with
these versions of BackFilling. First, they are hard to implement, in
that they require knowing the durations of the jobs. Next, although
BackFilling is better than FCFS at avoiding idle servers, it is not un-
derstood under which workloads each of these BackFilling policies
is throughput-optimal. Finally, just as there is no queueing analysis
of waiting time under FCFS, it is even harder to imagine analyzing
waiting time under these BackFilling policies.
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5.2 FirstFit BackFilling
There are also alternative versions of BackFilling that do not in-
corporate duration information, such as FirstFit BackFilling. These
policies allow the backfilling process to look arbitrarily far back
in the queue and consider jobs with arbitrarily long duration. As a
consequence, these policies may excessively delay jobs with large
server need, leading to poor and unpredictable waiting times. For
this reason, these policies are rarely used in practice.

5.3 Most Servers First (MSF)
In this policy, one prioritizes jobs based on server need, at all times
preemptively running the jobs with highest server need. This pol-
icy also goes by the name “BestFit”, which can either refer to the
preemptive or nonpreemptive version of the policy [1, 12]

The preemptive version of MSF has the advantage of being
throughput-optimal for many common workloads𝑤 because it packs
jobs into servers well. Unfortunately, in order to pack well, MSF
emphasizes jobs with large server need, which often results in high
mean waiting time. Moreover, there is no known analysis of mean
waiting time under MSF.

In contrast, the nonpreemptive version of MSF is not throughput-
optimal for almost any workload. Moreover, the problem of high
waiting time and no waiting time analysis both still exist. Nonpre-
emptive MSF does have the advantage of not requiring preemption.

5.4 MaxWeight and other optimization-based
policies

The MaxWeight policy is designed to be throughput-optimal for all
workloads. It is a preemptive policy which at all times 𝑡 searches
over all possible packings to pick a packing 𝑧 which maximizes

max
𝑧

∑︁
𝑖

𝑁𝑖 (𝑡)𝑧𝑖 ,

where 𝑁𝑖 (𝑡) is the number of jobs in the system with server need
𝑖 and 𝑧𝑖 is the number of jobs with server need 𝑖 that are served by
packing 𝑧. While MaxWeight is provably throughput-optimal [12], it
is prohibitively complex to implement, and there is no analysis of its
mean waiting time. Empirically, the waiting time can be high under
moderate load (when queue lengths are short) because in this regime
MaxWeight has only limited information to make its decisions.

Another optimization-based policy of note is the Idle-avoid 𝑐𝜇-
rule [17, 18]. By incorporating size information, this policy can
empirically achieve better mean waiting time than MaxWeight and
other prior policies. However, theoretical analysis is even more
limited, due to the combined complexity of optimization and size
information. Throughput-optimality already an open problem, and
mean waiting time results are only known for the 2-server setting.

6 A NEW IDEA: SERVERFILLING
In this paper we summarize a very new approach to scheduling mul-
tiserver jobs which achieves our three goals [9]. The ServerFilling
policy operates under the regime where the total number of servers,
𝑘 , is a power of two, and the server need of each job is also a power
of two. The power of two setting is common for computing jobs.
ServerFilling can also handle certain other workloads, such as the
case where all jobs require either 1 or 𝑘 servers. Additionally, there is

a variant of ServerFilling, called DivisorFilling (see [8, Appendix A]
or [10, Appendix C]), which allows for the more general case where
all job server needs are divisors of 𝑘 .

ServerFilling is actually not that different than FCFS scheduling.
Jobs join a queue in FCFS order. ServerFilling only serves jobs that
are near the head of the queue. ServerFilling designates a “candidate
set”, 𝑀 , which consists of the minimal prefix of jobs in arrival order
which collectively require ≥ 𝑘 servers. Notice that |𝑀 | ≤ 𝑘 because
all server needs are at least 1. Once the set 𝑀 has been determined,
the jobs within 𝑀 are ordered by their server needs, the 𝑛𝑖 ’s, from
largest to smallest, tie-broken by arrival order. Jobs from 𝑀 are then
placed into service in order of largest server need first. Note that
because 𝑀 is small and consists only of the oldest jobs in the system
in arrival order, ServerFilling serves jobs in near-FCFS order.

While preemption is needed under ServerFilling, it is not frequent.
When jobs complete, 𝑀 changes, and the set of jobs in service is
recomputed, which can lead to a preemption. By contrast, when jobs
arrive, they do not change 𝑀 unless 𝑀 was previously not full (total
server need < 𝑘).

The property that makes ServerFilling so powerful is that, when-
ever the set 𝑀 is full (total server need ≥ 𝑘), ServerFilling will result
in all 𝑘 servers being full. This is a consequence of the assumption
that all server needs are powers of 2 and that 𝑘 is a power of 2. Thus,
the ServerFilling policy has the property that whenever it is possible
to utilize all servers, the policy does so. Hence, the ServerFilling pol-
icy is able to achieve throughput-optimality, or equivalently 𝜌 → 1.

It is further shown in [9] that the ServerFilling policy has very
predictable performance. Specifically, let 𝑊SF denote the waiting
time under ServerFilling, namely the entire amount of time from
when a job arrives until it completes service during which the job is
waiting in the queue. Then the mean waiting time under ServerFilling
is bounded as follows:

𝜌

1 − 𝜌

E
[
𝑆2
]

2𝑘E [𝑆] + 𝑐low ≤ E [𝑊SF] ≤
𝜌

1 − 𝜌

E
[
𝑆2
]

2𝑘E [𝑆] + 𝑐up, (2)

where 𝑆 represents the job size (the product of the job’s server need
and its duration) and 𝜌 represents the system load, see (1). In (2),
𝑐low and 𝑐up are constants that do not grow with load. One can show
from this bound that as 𝜌 → 1, the ServerFilling system operates
like a system where all 𝑘 servers have been aggregated into a single
powerful server, and all jobs are run in FCFS order on that single
powerful server with zero waste. While the bound in (2) is stated for
overall mean waiting time, one can use the same approach as in [9]
to prove a bound on the mean waiting time of each class of jobs.

There are several possible extensions of the ServerFilling idea,
most notably the ServerFilling-SRPT (SF-SRPT) policy from [10].
SF-SRPT is less practical because it requires much more preemption
of jobs, but we describe it here because it results in asymptotically
optimal mean waiting time for multiserver jobs as 𝜌 → 1. SF-SRPT
is similar to ServerFilling, except that the jobs are ordered in terms
of their Shortest-Remaining-Processing-Time (SRPT), where a job’s
processing time is its size, which is the product of its server need
and duration. One now defines the candidate set 𝑀 in the same way
based on that ordering, and again runs jobs in set 𝑀 in order of
largest server need first. New arrivals cause the 𝑀 set to change,
which can result in a job preemption.
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Figure 2: Mean waiting time in a system with 𝑘 = 8 servers. Workload consists of server need 1 with probability 2/3, otherwise
server need 8. Duration is distributed 𝐸𝑥𝑝 (1) independent of server need. We simulate 106 arrivals and loads up to 𝜌 = 0.999. EASY
BackFilling and ServerFilling-SRPT make use of exact size information.

7 COMPARISON OF POLICIES VIA
SIMULATION

Figure 2 shows a comparison of the different scheduling policies that
we have discussed, evaluated via simulation. The setting is 𝑘 = 8
servers, and the workload consists of jobs of server needs 1 and 8.
While 2/3 of jobs require 1 server, 1/3 require 8 servers. Service
duration is 𝐸𝑥𝑝 (1), independent of server need.

Comparison of Mean Waiting Time
Unsurprisingly, FCFS has by far the worst performance, becoming
unstable around 𝜌 = 0.6. The EASY BackFilling policy, on the other
hand, performs much better than FCFS, due to its better packing.
However, EASY BackFilling requires knowing the durations of
jobs, and we have optimistically assumed perfect knowledge of this
duration. ServerFilling (SF) outperforms EASY BackFilling and
does not require knowledge of job durations. The difference between
SF and EASY BackFilling can be explained with the following
observation: EASY BackFilling often serves just a few jobs with
server need 1 when a job with server need 8 is at the head of the
queue, leaving the other servers idle; this waste can never happen
under SF.

The algorithm that sounds the closest to SF is Most Servers First
(MSF), because it too minimizes idle servers by favoring the jobs
with most server need. However, SF only consider jobs among the
𝑀 set of oldest jobs, while MSF considers all jobs. Consequently,
the bias in MSF is much more extreme, causing small sized jobs to
have to wait behind too much work of large sized jobs, resulting in
high mean waiting times.

Recall that MaxWeight is provably throughput-optimal. However,
as shown in Figure 2, its performance only approaches the good
performance of SF at high loads (𝜌 ≥ 0.95). For moderate loads,

MaxWeight simply does not have enough jobs in the queue to make
sound scheduling decisions.

Finally, ServerFilling-SRPT (SF-SRPT) has extremely good mean
waiting time at all loads. This is unsurprising, since it both benefits
from the good packing properties of SF, while also prioritizing small
sized jobs, which is known to improve mean waiting time. However,
SF-SRPT requires exact job size information and preemption when
new jobs arrive.

Comparison of Preemption Rate
It is obviously desirable to have as few preemptions as possible.
However, many of the above policies do preempt jobs. FCFS and
EASY Backfilling avoid preemption entirely. To compare the rest
of the policies, we use simulation in the setting of Figure 2. The
next best policy with respect to preemption is Most Servers First
(MSF). This is because in our setting, MSF only preempts jobs
when a 8-server job arrives to a system containing only 1-server
jobs. The next best policy is ServerFilling, which only preempts jobs
at times when another job completes, and only if that completion
causes an 8-server job to enter the candidate set 𝑀 . By comparison,
MaxWeight and ServerFilling-SRPT both perform a much larger
number of preemptions, as both can preempt jobs on any arrival.

8 CONCLUSION
Our purpose in this paper was to compare scheduling policies with re-
spect to our three goals of (1) throughput-optimality, (2) predictable
and low mean waiting times, and (3) simplicity. After examining
a wide variety of scheduling policies, the ServerFilling (SF) and
ServerFilling-SRPT (SF-SRPT) policies stand out in their ability to
meet these goals. However, SF requires some minimal preemption,
while SF-SRPT requires frequent preemption. This leads one to the
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open question of whether it is possible to achieve all the benefits of
SF with even less preemption.
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