
The case for sleep states in servers

Anshul Gandhi, Mor Harchol-Balter∗
Carnegie Mellon University

Michael A. Kozuch
Intel Labs Pittsburgh

ABSTRACT
While sleep states have existed for mobile devices
and workstations for some time, these sleep states
have largely not been incorporated into the servers
in today’s data centers.

Chip designers have been unmotivated to design
sleep states because data center administrators haven’t
expressed any desire to have them. High setup times
make administrators fearful of any form of dynamic
power management, whereby servers are suspended
or shut down when load drops. This general reluc-
tance has stalled research into whether there might
be some feasible sleep state (with sufficiently low
setup overhead and/or sufficiently low power) that
would actually be beneficial in data centers.

This paper uses both experimentation and theory
to investigate the regime of sleep states that should
be advantageous in data centers. Implementation
experiments involve a 24-server multi-tier testbed,
serving a web site of the type seen in Facebook or
Amazon with key-value workload and a range of
hypothetical sleep states. Analytical modeling is
used to understand the effect of scaling up to larger
data centers. The goal of this research is to encour-
age data center administrators to consider dynamic
power management and to spur chip designers to
develop useful sleep states for servers.

1. INTRODUCTION
While energy costs of data centers continue to dou-
ble every 5 years [3], unfortunately, most of this
energy is wasted. Servers are only busy 10-30% of
the time on average [4], but they are often left on,
while idle, utilizing 60% or more of peak power.

To save power, it has been proposed that servers

∗Research supported by an MSR/CMU computational
thinking grant, an ISTC Intel grant, and an NSF award
“CSR: Dynamic Traffic-Oblivious Power Management”.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HotPower’11, October 23, 2011, Cascais, Portugal.
Copyright 2011 ACM 978-1-4503-0981-3/11/10 ...$5.00.

Figure 1: Empirical results for a Dell desk-
top.

should be put into some sleep state (or turned off)
when they are not in use [7]. However, given that
sleep states do not yet exist for most servers, it is
hard to know how effective they will be in actually
saving power. It is also hard to judge their negative
effect on response time.

Prior work in dynamic power management us-
ing sleep states primarily deals with designing al-
gorithms that figure out when to transition into an
existing sleep state ([5, 6, 11]). Since most sys-
tems have only a handful of existing sleep states,
and since sleep states on different systems may look
very different, it is difficult to come to a consistent
conclusion on the effectiveness of sleep states in gen-
eral. While there has been some work considering
the effectiveness of hypothetical sleep states ([7, 8]),
the hypothetical states considered here are limited
to transition times (setup times) on the order of 1
millisecond, and thus do not span the space of what
is realistically possible today in servers.

The purpose of this paper is to gauge the effective-
ness of a realistic range of sleep states. To determine
this effectiveness fairly, we compare two algorithms.
The first, AlwaysOn, is the status quo in power man-
agement, where the servers are left on all the time,
regardless of load changes. We implement an opti-
mistic version of AlwaysOn that actually knows the
trace load ahead of time, and provisions the number
of servers to exactly handle the peak load during the
trace. The second algorithm, Reactive, is a popu-
lar algorithm in the literature [6] that reacts to the
changes in load by turning on servers when load in-
creases or putting servers into a (fixed) sleep state

Figure 2: Our experimental setup.

when load drops. The Reactive algorithm does not
know load in advance.

For each algorithm we measure the average re-
sponse time, Tavg, and the average power consump-
tion, Pavg. These yield the Performance-per-Watt,
PPW , for each policy, defined as:

PPW =
1

Tavg · Pavg
Observe that higher PPW is better. To compare
the algorithms, we look at the Normalized Performance-
per-Watt, NPPW , defined as the PPW for Reac-

tive normalized by that for AlwaysOn:

NPPW =
PPWReactive

PPWAlwaysOn

When NPPW exceeds 1, we say that Reactive is
superior to AlwaysOn.

A sleep state is defined by the pair, (Psleep, Tsetup).
Here Psleep denotes the power consumed while sleep-
ing (typically Psleep � Pidle, where Pidle is the idle
power), and Tsetup denotes the time delay required
to move a server from the sleep state to the on state.
Furthermore, the whole time that the server is in
setup mode, power is consumed at peak rate, Pmax.
Figure 1 shows our measurements for (Psleep, Tsetup)
values for sleep states in a Dell desktop.

We evaluate the benefits of sleep states via im-
plementation on a 24-server multi-tier data center,
serving a web site of the type seen in Facebook or
Amazon, with a key-value store workload. We use
real-world arrival traces to generate load for our ex-
periments.

Our results are surprising: For some traces, cer-
tain sleep states provide significant benefit in terms
ofNPPW , while for other traces (particularly bursty
ones), even the best possible sleep state does not
improve NPPW . We find that when the arrival
rate varies slowly over time, then the Psleep value
dictates the benefits of a given sleep state, while if
the arrival rate varies quickly, then the Tsetup value

dictates the benefits of a given sleep state. Finally,
we find that there is increased benefit to using sleep
states as the size of the data center scales up.

2. EXPERIMENTAL SETUP
Our experimental testbed
Figure 2 illustrates our data center testbed, consist-
ing of 24 Intel Xeon E5520 servers, each equipped
with two quad-core 2.26 GHz processors. We em-
ploy one of these servers as the front-end load gen-
erator running httperf [9] and another server as the
front-end load-balancer running Apache, which dis-
tributes requests from the load generator to the ap-
plication servers. We modify Apache on the load-
balancer to also act as the capacity manager, which
is responsible for suspending servers and waking
them up. Another server is used to store the en-
tire data set, a billion key-value pairs (∼500GB) on
a BerkeleyDB [10] database.

Seven servers are used as memcached servers, each
with 4GB of memory for caching, which serve all
requests. The remaining 14 servers are employed as
application servers, running Apache, which parse
the incoming php requests and collect the required
data from the back-end memcached servers.

We employ power management on the “front-end”
application servers only, as they maintain no non-
volatile state. We monitor the power consumption
of servers by reading the power values off of the
power distribution unit. The idle power consump-
tion for our servers is Pidle = 140W (with C-states
enabled) and the peak power is Pmax = 200W .

In our experiments, we replicate the effect of us-
ing a sleep state, (Psleep, Tsetup), by not sending re-
quests to a server if it is marked for sleep, and by
replacing its power consumption values by Psleep
watts. When the server is marked for setup, we
wait for Tsetup seconds before starting to send re-
quests to the server.

Workload
Each key is a 9-digit number, and each value is
a concatenation of random 9-digit numbers. Each
generated request (or job) is a php script that runs
on the application server. A job begins when the
application server requests a value for a key from
the memcached servers. The memcached servers
provide the value, which itself is a collection of new
keys. The application server then again requests
values for these new keys from the memcached servers.
This process can continue iteratively. In our experi-
ments, we set the number of iterations to correspond
to an average of roughly 3500 key requests per job,
which translates to a mean job size of approximately
123 ms, assuming no resource contention.

Trace-based arrivals
Table 1 describes the traces we use. In our exper-
iments, the seven memcached servers can together
handle at most 800 job requests per second, which
corresponds to roughly 400,000 key requests per sec-
ond at each memcached server. Thus, we scale the
arrival traces such that the maximum request rate
into the system is 800 req/sec. We scale the dura-
tion of the traces to 2 hours.

Trace Plot

ITA [2]

(Slowly Varying)

NLANR 1 [1]

(Slowly Varying

with Big Spike)

NLANR 2 [1]

(Dual Phase)

NLANR 3 [1]

(Dual Phase

with Huge Variations)

Synthetic

(Multi-phase)

Table 1: Description of the traces we use for
experiments.

The AlwaysOn and Reactive algorithms
The AlwaysOn algorithm maintains a fixed num-
ber of front-end servers on at all times. In our
experiments, a single front-end server can handle
roughly 60 req/sec while maintaining a 95%tile re-
sponse time of 400ms. Based on this, AlwaysOn

maintains d 80060 e = 14 servers on at all times. The
average data center utilization is between 30-40%
for each trace under AlwaysOn.

By contrast, the Reactive algorithm tries to main-

tain kreq(t) = dλ(t)60 e front-end servers at time t,
where λ(t) is the observed request rate at time t. If
the actual number of servers at time t, k(t), is lower
than kreq(t), then we turn on (kreq(t)−k(t)) servers
(which will come online after Tsetup seconds), else
we put (k(t)− kreq(t)) servers to sleep.

3. EVALUATION
This section evaluates the effect of different sleep

states, denoted by (Psleep, Tsetup) in our testbed.
Figure 3 shows our experimental results for Reac-

tive under different sleep states, all for the “Slowly
Varying” trace (see Table 1). As expected, the aver-
age response time, TReactiveavg , increases as Tsetup is

increased. The average power, PReactiveavg , increases
slightly with increased Tsetup and increases signif-
icantly with increased Psleep. Thus, the inverse
of the product, PPWReactive, decreases with both
Tsetup and Psleep. By contrast, PPWAlwaysOn is
unaffected by the sleep states and sits at a constant
value of PPWAlwaysOn = 3 · 10−6.

Figure 4 shows our experimental results for the
Normalized Performance-per-Watt, NPPW , for four
different arrival traces, including the Slowly Varying
trace. Regions that are lightly shaded indicate the
superiority of Reactive over AlwaysOn, and vice-
versa. In general, NPPW increases as Tsetup → 0
or Psleep → 0. We find that using sleep states can
provide a huge benefit in terms of NPPW for most
of the arrival traces we consider. Interestingly, the
effect of Tsetup and Psleep on NPPW depends on
the variability in arrival rates. For example, for
the Dual Phase trace in Figure 4(c) (where the ar-
rival rate varies quickly), the Tsetup value greatly
effects NPPW (varying by almost a factor of 2 be-
tween Tsetup = 20s and Tsetup = 200s). This is
because variations in arrival rate induce multiple
setups. However, for the Slowly Varying trace in
Figure 4(a), the Psleep value dictates the NPPW .
Further, the superiority of Reactive over AlwaysOn
also depends on the arrival trace. For example, for
the Slowly Varying trace in Figure 4(a), our best
sleep state (Tsetup = 20s, Psleep = 0W) provides
a factor 2.2 improvement in NPPW when com-

(a) TReactive
avg (in ms) (b) PReactive

avg (in watts) (c) PPWReactive (in (ms · watts)−1)

Figure 3: Results for Reactive under the Slowly Varying trace for a range of sleep states. For
all sleep states, PPWAlwaysOn = 3 · 10−6 (ms · watts)−1.

(a) Slowly Varying (b) Slowly Varying with Big Spike

(c) Dual Phase (d) Dual Phase with Huge Variations

Figure 4: Normalized Performance-per-Watt (NPPW) for different traces.

pared to the idle state. However, for the Slowly
Varying with Big Spike trace in Figure 4(b), even
our best sleep state results in an NPPW of only
0.79. We also ran experiments with Tsetup = 0s
and found that NPPW ranged from about 2.5 un-
der Psleep = 0W to 1.1 under Psleep = 126W for
most traces. We also evaluated the NPPW metric
using 95%tile response time values instead of Tavg
and found the results to be within 10% of those in
Figure 4 for the different traces.

4. ANALYTICAL MODEL
To understand the effect of increasing the number

of front-end servers, which is beyond the scope of
our implementation, we develop a novel queueing-
theoretic analysis. We model the data center via an
Mt/M/k queueing system with setup times, which
is then solved via matrix-analytic methods. The
Mt/M/k queueing system with setup times allows

us to evaluate the transient effects of changes in
arrival rate as well as the effect of setup times, both
of which cannot be captured by simply analyzing a
sequence ofM/M/k queueing systems with different
arrival rates.

Our queueing system is characterized by a single
central queue from which the servers take requests.
The maximum number of servers which are on, k, is
set to k = 14·8, mimicking the 14 8-core servers used
in implementation. The Mt notation indicates that
the arrival process is time-varying Poisson, namely,
the arrival rate varies from that suitable for 2 8-
core servers (120 requests/sec) to an arrival rate
requiring 14 8-core servers (14 · 60 requests/sec), as
shown for the multi-phase Synthetic trace in Ta-
ble 1. The average utilization for the multi-phase
trace is 30%, matching the implementation experi-
ments. Job sizes are exponentially-distributed, with
mean 120 ms, matching the implementation.

(a) Theory (b) Implementation

Figure 5: NPPW for the multi-phase trace obtained via (a) theory and (b) implementation.

Within our theoretical model, we analyze the Al-

waysOn and Reactive algorithms. While we don’t
expect theory to match implementation perfectly,
we believe that our model can identify regimes where
Reactive is superior to AlwaysOn, that is, NPPW >
1. Figure 5(a) shows our analytical results forNPPW
as a function of the sleep state used, under the syn-
thetic multi-phase trace. Our model suggests that
the NPPW is not very sensitive to Tsetup for this
trace, and that Reactive is superior to AlwaysOn

when Psleep ≤ 70W . Figure 5(b) shows our imple-
mentation results for the same multi-phase trace.
Our implementation results agree with the insensi-
tivity of NPPW to Tsetup, and match the regime
where NPPW > 1. The above observations indi-
cate that theory can be a useful tool for predicting
the regimes where sleep states are effective.

Theory is particularly useful in understanding the
effect of scaling up the data center size. In Figure 6
we concentrate on just one sleep state, (Psleep =
0W,Tsetup = 20s), and scale up the maximum num-
ber of servers from 7 to 70 for the multi-phase trace,
while scaling the arrival rate proportionately such
that the utilization is fixed at 30%. Scaling up
the number of servers increases NPPW , making
the Reactive algorithm more desirable as compared
with AlwaysOn. Implementation results, shown in
red crosses, seem to agree with the trends of our
theoretical results.

Figure 6: Effect of scaling on NPPW .

5. CONCLUSION AND FUTURE WORK
We examine the effectiveness of sleep states which

are realistically feasible to implement today (with

setup times ranging from 20s to 200s). Evaluation
is done on a 24-server multi-tier testbed using real
traces. We find that for most traces, if the power
used in sleep (Psleep) is less than half the idle power
(Pidle), then a simple algorithm that reacts to cur-
rent load by putting servers to sleep (Reactive) can
increase PPW by 10-100% over an optimistic static
provisioning policy (AlwaysOn). Interestingly, for
very bursty traces, even the best sleep state we con-
sider is ineffective. We also develop a new queueing-
theoretic model which allows us to predict the range
of sleep states which are effective.

6. REFERENCES
[1] National Laboratory for Applied Network Research.

Anonymized access logs. Available at
ftp://ftp.ircache.net/Traces/.

[2] The internet traffic archives: WorldCup98. Available
at http://ita.ee.lbl.gov/html/contrib/WorldCup.html.

[3] U.S. Environmental Protection Agency. Epa report on
server and data center energy efficiency. 2007.

[4] Luiz André Barroso and Urs Hölzle. The case for
energy-proportional computing. Computer,
40(12):33–37, 2007.

[5] Tibor Horvath and Kevin Skadron. Multi-mode energy
management for multi-tier server clusters. In
Proceedings of the 17th international conference on
Parallel architectures and compilation techniques,
2008.

[6] Andrew Krioukov, Prashanth Mohan, Sara Alspaugh,
Laura Keys, David Culler, and Randy Katz. Napsac:
Design and implementation of a power-proportional
web cluster. In First ACM SIGCOMM Workshop on
Green Networking, August 2010.

[7] David Meisner, Brian T. Gold, and Thomas F.
Wenisch. Powernap: eliminating server idle power. In
ASPLOS ’09, pages 205–216, New York, NY, USA.

[8] David Meisner, Christopher M. Sadler, Luiz André
Barroso, Wolf-Dietrich Weber, and Thomas F.
Wenisch. Power management of online data-intensive
services. In Proceedings of the 38th ACM International
Symposium on Computer Architecture, 2011.

[9] David Mosberger and Tai Jin. httperf—A Tool for
Measuring Web Server Performance. ACM Sigmetrics:
Performance Evaluation Review, 26:31–37, 1998.

[10] Michael A. Olson, Keith Bostic, and Margo Seltzer.
Berkeley db. In USENIX Annual Technical
Conference, pages 43–43, Berkeley, CA, USA, 1999.

[11] Etienne Le Sueur and Gernot Heiser. Slow down or
sleep, that is the question. In USENIX Annual
Technical Conference, Portland, Oregon, USA, April
2011.

	Introduction
	Experimental Setup
	Evaluation
	Analytical Model
	Conclusion and Future Work
	References

