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Abstract—While sleep states have existed for mobile devices
and workstations for some time, these sleep states have not been
incorporated into most of the servers in today’s data centers.
High setup times make data center administrators fearful of
any form of dynamic power management, whereby servers
are suspended or shut down when load drops. This general
reluctance has stalled research into whether there might be
some feasible sleep state (with sufficiently low setup overhead
and/or sufficiently low power) that would actually be beneficial
in data centers.

This paper investigates the regime of sleep states that would
be advantageous in data centers. We consider the benefits
of sleep states across three orthogonal dimensions: (i) the
variability in the workload trace, (ii) the type of dynamic power
management policy employed, and (iii) the size of the data
center.

Our implementation results on a 24-server multi-tier testbed
indicate that under many traces, sleep states greatly enhance
dynamic power management. In fact, given the right sleep
states, even a naı̈ve policy that simply tries to match capacity
with demand, can be very effective. By contrast, we charac-
terize certain types of traces for which even the “best” sleep
state under consideration is ineffective. Our simulation results
suggest that sleep states are even more beneficial for larger
data centers.

I. INTRODUCTION

Energy costs of data centers continue to double every 5
years [4], but what is most disappointing is that much of this
power is wasted. Servers are only busy 10-30% of the time
on average [5, 27] (despite virtualization), but they are often
left on, while idle, utilizing 60% or more of peak power. The
total reported cost (in terms of power, space, etc) of idle
servers exceeds $19 billion per year and results in over 11
million tons of unnecessary CO2 emissions each year [12].

The de facto power management policy used in data
centers today is AlwaysOn, which leaves as many servers
on as needed to handle the estimated peak demand. This is
clearly wasteful of power during periods of lower loads. To
reduce this “waste”, it has been proposed [3, 19, 24, 25, 26]
that idle servers should be put into some sleep state (or
turned off). This is commonly referred to as dynamic power
management. A big challenge with dynamic power manage-
ment is that sleeping servers incur a high setup time to get
them back on again. Given this high setup time, it is not at
all obvious whether sleep states are useful or not.
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Figure 1. Existing sleep states in a Dell desktop.

Another challenge with dynamic power management is
the scarcity of sleep states in today’s computers. Servers in
today’s data centers do not yet support sleep states. Desktops
and laptops support sleep states, but are only equipped with
a handful of sleep states. Figure 1 shows the sleep states
(and off and idle states) in a Dell desktop. We see that,
apart from the off state, there are only two sleep states.

Given that sleep states do not yet exist for most servers, it
is hard to estimate how much power they can actually save.
Further, given that there is a setup time needed to bring
sleeping servers back online, it is hard to judge the negative
effect of sleep states on performance.

Prior work [9, 10, 13, 16, 18, 28, 29, 31] evaluated
dynamic power management using only existing sleep states.
That is, they only consider dynamic power management
using the S3, S4 and S5 states, as shown in Figure 1.
Given the limited range of existing sleep states, and because
sleep states on different systems may look very different, it
is difficult to assess the full potential of dynamic power
management. While there has been some work [19, 20]
considering the effectiveness of hypothetical sleep states,
the hypothetical states considered in [19, 20] are limited to
transition times (setup times) on the order of 1 millisecond,
and thus do not span the space of what is realistically
possible today in servers. There is also a long list of papers
that look at dynamic power management assuming zero
setup times (see, for example, [6, 17]). However, our focus
in this paper is on dynamic power management using sleep
states with realistic (non-zero) setup times.



Figure 2. Our experimental setup.

The purpose of this paper is to gauge the effectiveness
of a realistic range of sleep states. A sleep state is defined
by the pair, (Psleep, Tsetup). Here Psleep denotes the power
consumed while sleeping (typically Psleep � Pidle, where
Pidle is the idle power), and Tsetup denotes the time delay
required to move a server from the sleep state to the on
state. Furthermore, the whole time that the server is in setup
mode, power is consumed at peak rate, Pmax. Figure 1
shows our measurements for (Psleep, Tsetup) values for sleep
states in a Dell desktop. In this paper, we consider a hundred
different hypothetical sleep states, ranging from (Psleep =
0W,Tsetup = 20s) to (Psleep = 126W,Tsetup = 200s).

We evaluate the benefits of sleep states for use in dynamic
power management via implementation on a 24-server multi-
tier data center, serving a web site of the type seen in
Facebook or Amazon, with a key-value store workload.
Since sleep states don’t yet exist in servers, we “fake”
their effect in implementation by marking a server as off
when we would be putting it to sleep and then delaying
resumption of service at the server for Tsetup seconds when
it would be in setup. To understand the effect of sleep
states on larger data centers, which is beyond the scope of
our implementation, we resort to a discrete-event simulator.
We use real-world arrival traces to generate load for our
experiments and simulations.

Our first experiments involve the simple dynamic power
management policy called Reactive. Reactive responds to
changes in load by putting servers to sleep when load drops
and turning servers back on when the load increases (see
Section IV-A for more details). We evaluate Reactive on a
wide range of sleep states and compare it with AlwaysOn.
For each policy (Reactive and AlwaysOn), we measure the
95th percentile of response times, T95, since it captures
the response time of 95% of the customers, and not just
the average customer. We also measure the average power
consumption, Pavg . These yield the Performance-per-Watt,
PPW , for each policy, defined as:

PPW =
1

T95 · Pavg
Observe that higher PPW is better. To compare the policies,
we look at the Normalized Performance-per-Watt, NPPW ,

defined as the PPW for Reactive, normalized by that for
AlwaysOn:

NPPW =
PPWReactive

PPWAlwaysOn

When NPPW exceeds 1, we say that Reactive is superior
to AlwaysOn.

We find that for sufficiently “good” sleep states (low
enough Psleep and Tsetup), under most traces, Reactive beats
AlwaysOn with respect to NPPW . However, this is not
always true. There are some traces (sufficiently bursty ones)
where Reactive is inferior to AlwaysOn for all sleep states
that we consider.

One might think that the fact that Reactive does not
always dominate AlwaysOn is less a matter of the sleep state
than it is the fact that Reactive is a very simple policy. To
test out this theory, we therefore introduce a more sophis-
ticated dynamic power management policy which we call
SoftReactive. SoftReactive avoids needless state transitions
in servers by being conservative about scaling down capacity
(see Section V-A for more details). Under SoftReactive, we
find that for sufficiently “good” sleep states, SoftReactive
beats AlwaysOn with respect to NPPW for all traces we
consider (when using SoftReactive, we define NPPW as
the ratio between PPWSoftReactive and PPWAlwaysOn).
However, for bursty traces, the sleep state needed is on the
order of the best sleep state (S3) currently available for
today’s Desktop machines (but not yet available for servers).

Finally, we consider how our results might change as the
size (number of servers) of the data center increases. Using
simulation, we consider data center sizes ranging from 14
servers to 1,400 servers, and scale the load proportionately
so that the average load remains the same. We find that as
the data center size grows, the setup time has less and less
effect on performance. Thus, we can get away with larger
values of Tsetup. This finding holds true for both Reactive
and SoftReactive.

This paper is based on a previous workshop paper, [11],
wherein we consider a much narrower version of the same
problem. In particular, in that paper, we only consider the
Reactive policy, but do not introduce SoftReactive. We also
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Table I
DESCRIPTION OF THE TRACES WE USE FOR EXPERIMENTS.

do not include any simulation results in [11] and do not
examine the effects of scaling to 1,400 servers. The work in
this paper was motivated by the response we got from the
workshop.

The rest of the paper is organized as follows. We describe
our multi-tier implementation testbed in Section II. We then
describe the AlwaysOn policy in Section III, which we will
use as a yardstick to compare against. In Section IV, we
describe the Reactive policy and examine the effectiveness
of sleep states for Reactive. In Section V, we describe our
SoftReactive policy and examine the effectiveness of sleep
states for SoftReactive. We consider the effect of data center
size on the effectiveness of sleep states in Section VI, and
conclude in Section VII.

II. EXPERIMENTAL SETUP

A. Our experimental testbed

Figure 2 illustrates our data center testbed, consisting of
24 Intel Xeon servers, each equipped with two quad-core
2.26 GHz processors. We employ one of these servers as the
front-end load generator running httperf [21]. Another server
is used as the front-end load-balancer running Apache,
which distributes requests from the load generator to the 14
application servers. We modify Apache on the load-balancer
to also act as the capacity manager, which is responsible for
suspending servers and waking them up. Each application
server communicates with 7 memcached servers, each with
4GB of memory for caching, to retrieve data required to
service the requests. Another server is used to store the
entire data set, a billion key-value pairs (∼500GB) on a
BerkeleyDB [23] database.

We employ power management on the “front-end” appli-
cation servers only, as they maintain no persistent state. We

monitor the power consumption of the application servers,
Pavg , by reading the power values from the power distribu-
tion unit. We do not consider the power consumed by the
memcached servers. The idle power consumption for our
servers is Pidle = 140W (with C-states enabled) and the
peak power observed for our experiments is Pmax = 200W .

In our experiments, we replicate the effect of using a
sleep state, (Psleep, Tsetup), by not sending requests to a
server if it is marked for sleep, and by replacing its power
consumption values by Psleep watts. When the server is
marked for setup, we wait for Tsetup seconds before sending
requests to the server, and replace its power consumption
values during the Tsetup seconds with Pmax = 200W .

B. Workload

We design a key-value workload to model realistic multi-
tier applications such as the social networking site, Face-
book, or e-commerce sites like Amazon [8]. Each generated
request (or job) is a php script that runs on the applica-
tion server. A request begins with the application server
requesting a value for a key from the memcached servers.
The memcached servers provide the value, which itself is
a collection of new keys. The application server then again
requests values for these new keys from the memcached
servers. This process can continue iteratively. In our ex-
periments, we set the number of iterations to correspond
to an average of roughly 3,500 key-value requests per job,
which translates to a mean service time of approximately
123 ms, assuming no resource contention. The request size
distribution is highly variable, with the largest request being
roughly 20 times the size of the smallest request.

In this paper, we use the Zipf [22] distribution to model
the popularity of requests. To minimize the unpredictable
effects of misses in the memcached layer, we tune the
parameters of the Zipf distribution so that only a negligible
fraction of requests miss in the memcached layer.

C. Traces

Table I shows the traces we use. We choose these par-
ticular traces because of the huge variability in request
rates that they exhibit, which makes them challenging for
dynamic power management. In our experiments, the seven
memcached servers can together handle at most 800 job
requests per second, which corresponds to roughly 400,000
key requests per second at each memcached server. Thus,
we scale the arrival traces such that the maximum request
rate into the system is 800 req/s. We scale the duration of
the traces to 2 hours. The 4 traces include a Slowly Varying
trace [2], a Big Spike trace [1], a Dual Phase trace [1], and
a Dual Phase with Huge Variations trace [1].



Figure 3. Each front-end server can handle 60 req/s.

III. THE ALWAYSON POLICY

AlwaysOn [7, 13, 30] is a static power management
policy that is currently used by most of the industry. The
policy maintains a fixed number of front-end servers on at
all times. In order to determine the number of front-end
servers AlwaysOn should provision, we look at the request
rate that each front-end server can handle. Typically, data
center operators require that the 95th percentile of response
times, T95, stays below a certain threshold. Throughout the
paper, we use 400 ms as the threshold. In our experiments,
a single front-end server can handle roughly 60 req/s while
maintaining a T95 of 400ms, as shown in Figure 3. Based
on this, AlwaysOn maintains d 80060 e = 14 servers on at all
times, where 800 req/s is the peak request rate for each of
our traces. Note that realistically, one doesn’t know the peak
request rate ahead of time. However, we empower AlwaysOn
by assuming that the peak request rate is known in advance.

Since AlwaysOn provisions for the peak request rate, it
results in a good T95. However, the Pavg under AlwaysOn
is usually high. Note that since AlwaysOn is a static power
management policy, the T95 and Pavg for a given trace
under AlwaysOn are unaffected by the choice of sleep
states. This makes AlwaysOn a good policy to compare
against when examining the effectiveness of sleep states
for Reactive and SoftReactive. In particular, we consider a
sleep state to be useful, if the PPW for a policy (Reactive
or SoftReactive) under the given sleep state is better than
the PPW for AlwaysOn. Thus, a sleep state is considered
useful if NPPW > 1.

IV. EFFECT OF SLEEP STATES ON REACTIVE

A. The Reactive policy

The Reactive policy tries to maintain dλ(t)60 e front-end
servers at time t, where λ(t) is the observed request rate
at time t, and 60 req/s is the request rate that can be
handled by a single front-end server. If the actual number

of servers at time t is lower than dλ(t)60 e, then we turn on
the required additional servers (which will come online after
Tsetup seconds), else, we put the extra servers to sleep. Note
that the servers can only go into a single fixed sleep state.

B. Evaluation

This section evaluates the effect of different sleep states,
denoted by (Psleep, Tsetup), on Reactive.

Figure 4 shows our experimental results for Reactive un-
der different sleep states, all for the “Slowly Varying” trace
(see Table I). As expected, the 95th percentile of response
times, TReactive95 , increases as Tsetup is increased. The
average power, PReactiveavg , increases slightly with increased
Tsetup and increases significantly with increased Psleep.
Thus, the inverse of the product, PPWReactive, decreases
with both Tsetup and Psleep. By contrast, PPWAlwaysOn

is unaffected by the sleep states and sits at a constant value
of PPWAlwaysOn = 1.7 · 10−6 (ms · watts)−1.

Figure 5 shows our experimental results for the Nor-
malized Performance-per-Watt, NPPW , for four different
arrival traces, including the Slowly Varying trace. Lighter
regions indicate higher NPPW , where NPPW > 1
indicates that Reactive is superior to AlwaysOn. In general,
NPPW increases as Tsetup → 0 or Psleep → 0.

We find that using sleep states can provide a huge
benefit in terms of NPPW for most of the arrival traces
we consider. Interestingly, the effect of Tsetup and Psleep
on NPPW depends on the variability in request rates. For
example, for the Dual Phase trace in Figure 5(c) (where
the request rate varies quickly), the Tsetup value greatly
affects NPPW (varying by more than a factor of 4 between
Tsetup = 20s and Tsetup = 200s). This is because variations
in request rate induce multiple setups. However, for the
Slowly Varying trace in Figure 5(a), the Psleep value dictates
the NPPW .

We also find that the superiority of Reactive over
AlwaysOn depends on the arrival trace. For example,
for the Slowly Varying trace in Figure 5(a), our best sleep
state, (Psleep = 0W , Tsetup = 20s), provides a factor
2.1 improvement in NPPW when compared to AlwaysOn.
However, for the Slowly Varying with Big Spike trace
in Figure 5(b), even our best sleep state results in an
NPPW of only 0.74. Likewise, for the Dual Phase with
Huge Variations trace in Figure 5(d), our best sleep state
results in an NPPW of 0.94. We also ran experiments with
Tsetup = 0s and found that NPPW ranged from about 2.5
under Psleep = 0W to 1.1 under Psleep = 126W for most
traces.

Figure 6 further illustrates the effect of arrival traces on
the usefulness of sleep states. In general, as Tsetup drops,



(a) TReactive
95 (in ms) (b) PReactive

avg (in watts) (c) PPWReactive (in (ms · watts)−1)

Figure 4. Results for Reactive with respect to (a) T95, (b) Pavg , and (c) PPW , under the Slowly Varying trace for a range
of sleep states. For all sleep states, PPWAlwaysOn = 1.7 · 10−6 (ms · watts)−1.

(a) Slowly Varying trace (b) Slowly Varying with Big Spike trace

(c) Dual Phase trace (d) Dual Phase with Huge Variations trace

Figure 5. Normalized Performance-per-Watt (NPPW ) for different traces under Reactive.

Figure 6. Effect of arrival traces on usefulness of sleep
states for Reactive. For the sleep states in the above plot,
Psleep = 0W .

we see that T95 drops as well. Recall that ideally our system
should achieve a T95 of 400 ms. For the Slowly Varying with
Big Spike trace (solid line), we see that T95 drops almost
linearly with Tsetup, but is always well above 400 ms. This
is because of the big spike in the trace, which cannot be
handled even by Tsetup = 20s. By contrast, for the Dual
Phase trace (dotted line), we see that T95 drops quickly to
about 400 ms as Tsetup drops from 200s to 140s, and is
relatively constant thereafter. Thus, even a high setup time
(Tsetup = 140s) is fine for the Dual Phase trace while the
lowest setup time (Tsetup = 20s) is still insufficient for the
Big Spike trace.

We also investigated Reactive with C-states instead of
sleep states. Recall that our idle state already has C-states
enabled. In Reactive with C-states, the “unneeded” servers,
as computed via the Reactive policy, transition to the best
C-state (Psleep = 140W , Tsetup = 0s). Our results suggest
that Reactive with C-states is always worse than AlwaysOn,



Figure 7. T95 vs. packing factor for a single server under
SoftReactive.

with NPPW ranging from 0.68 – 0.97 for the traces we
use. This is because C-states do not provide any significant
power savings over the idle state. Further, the T95 under
AlwaysOn is usually significantly lower than Reactive with
C-states since AlwaysOn load balances requests among all
14 application servers at all times.

V. THE SOFTREACTIVE POLICY

One might think that the less-than-ideal performance of
Reactive stems from the fact that it is too slow to turn servers
on when needed. However, an equally big concern is the fact
that Reactive is quick to turn servers off when not needed,
and hence does not have those servers available when load
subsequently rises. This rashness is particularly problematic
in the case of bursty workloads, such as those in Table I.
To remedy this problem, we now introduce the SoftReactive
policy.

A. Description of SoftReactive

SoftReactive addresses the problem of scaling down ca-
pacity by being very conservative in turning servers off while
doing nothing new with respect to turning servers on (the
turning on algorithm is the same as in Reactive). We will
show that by simply taking more care in turning servers off,
SoftReactive is able to outperform Reactive with respect to
T95, while simultaneously keeping Pavg low.

twait → t∗wait
4

t∗wait
2

t∗wait 2t∗wait 4t∗wait↓ (Psleep, Tsetup)

(0W, 20s) 1.63 1.64 1.62 1.57 1.49
(56W, 100s) 1.15 1.15 1.14 1.12 1.08

(126W, 200s) 0.84 0.84 0.85 0.86 0.86

Table II
Effect of twait on NPPW for the Slowly Varying trace. We see that

twait = t∗wait ≈ Tsetup · Pmax
Pidle

works well for a range of sleep states.

When to turn a server off?
Under SoftReactive, each server decides autonomously when
to turn off. When a server goes idle, rather than turning off
immediately, it sets a timer of duration twait and sits in the
idle state for twait seconds. If a request arrives at the server
during these twait seconds, then the server goes back to the
busy state (with zero setup cost); otherwise the server is
turned off.

A natural question that arises is how to choose the optimal
value of twait, which we denote as t∗wait. A good choice for
t∗wait is t∗wait ≈ Tsetup · Pmax

Pidle
, where Pmax = 200W and

Pidle = 140W are the power consumption of the server
when in setup and when in the idle state respectively. The
intuition behind this idea is to equate the energy consumed
waiting in the idle state, (t∗wait · Pidle), to the energy
consumed when turning a server on, (Tsetup ·Pmax). Table II
verifies our choice of t∗wait for the Slowly Varying trace
under SoftReactive. We see that our choice of t∗wait works
well for various sleep states.

The idea of setting a timer before turning off an idle server
has been proposed before (see, for example, [14, 15, 18]),
however, only for a single server. For a multi-server sys-
tem, independently setting timers for each server can be
inefficient, since we can end up with too many idle servers.
Thus, we need a more coordinated approach for using timers
in our multi-server system which takes routing into account,
as explained below.

How to route jobs to servers?
Timers prevent the mistake of turning off a server just
as a new arrival comes in. However, they can also waste
power by leaving too many servers in the idle state. We
want to keep only a small number of servers (just the
right number) in this idle state. To do this, we introduce
a routing scheme that tends to concentrate jobs onto a small
number of servers, so that the remaining (unneeded) servers
will naturally “timeout.” Our routing scheme uses an index-
packing idea, whereby all on servers are indexed from 1
to n. Then we send each request to the lowest-numbered
on server that currently has fewer than p requests, where p
stands for packing factor and denotes the optimal number of
requests that a server can serve concurrently. For example, in
Figure 7, we see that to meet a T95 of 400 ms, the packing
factor for our servers is p = 10. When all on servers are
already packed with p requests each, additional arrivals are
routed to servers via the join-the-shortest-queue routing.

B. Evaluation

We now examine the effectiveness of sleep states under
SoftReactive. Figure 8 shows our experimental results for
NPPW for all four arrival traces. Lighter regions indicate
higher NPPW , where NPPW > 1 indicates that SoftRe-
active is superior to AlwaysOn.



(a) Slowly Varying trace (b) Slowly Varying with Big Spike trace

(c) Dual Phase trace (d) Dual Phase with Huge Variations trace

Figure 8. Normalized Performance-per-Watt (NPPW ) for different traces under SoftReactive.

Figure 9. Effect of arrival traces on usefulness of sleep
states for SoftReactive. For the sleep states in the above
plot, Psleep = 0W .

We find that SoftReactive enhances the effectiveness
of sleep states for all arrival traces we consider. This
can be seen by comparing each of the traces in Figure 5
with the corresponding ones in Figure 8. Interestingly, under
SoftReactive, the Tsetup value does not significantly affect
NPPW for most of the traces we consider. The NPPW
value is largely invariant for a given Psleep and a given trace
in Figure 8. For example, if we consider the Dual Phase trace
with Psleep = 0W , we see that under SoftReactive, NPPW
decreases by only 17% as we move from Tsetup = 20s to
Tsetup = 200s. By contrast, under the same Dual Phase trace
with Psleep = 0W , the NPPW decreases by 80% under
Reactive as we move from Tsetup = 20s to Tsetup = 200s.

The insensitivity of SoftReactive to Tsetup is to be expected
since SoftReactive is designed to avoid setup times.

While SoftReactive is fairly insensitive to the choice of
sleep states, it is sensitive to the arrival trace. For example,
for the Slowly Varying trace in Figure 8(a), our best sleep
state, namely (Psleep = 0W , Tsetup = 20s), provides
a factor 2.3 improvement in NPPW (huge win) when
compared to AlwaysOn. By contrast, for the Slowly Varying
with Big Spike trace in Figure 8(b), our best sleep state
results in an NPPW of 1.34 (smaller win over AlwaysOn).
The sensitivity of SoftReactive to arrival traces is further
illustrated in Figure 9. For the Slowly Varying with Big
Spike trace (solid line), we see that T95 drops almost linearly
from about 900 ms at Tsetup = 200s to about 350 ms at
Tsetup = 20s. By contrast, for the Dual Phase trace (dotted
line), we see that T95 is largely insensitive to Tsetup, and
lies between 350 ms and 400 ms.

In Section IV-B, we saw that there were no sleep states
for which Reactive was effective on some traces (see
Figures 5(b) and 5(d)). With SoftReactive, in contrast,
there is a set of sleep states, namely Tsetup ≤ 60s and
Psleep ≤ 28W , for which NPPW > 1 under all traces
(see Figures 8(a) - 8(d)). It is sleep states in this range that
we would recommend hardware designers to focus on. The
superiority of SoftReactive over Reactive is because of the
huge improvement with respect to T95, which is evident from
Figures 6 and 9.

We also investigated SoftReactive with C-states. Our
results suggest that SoftReactive with C-states, just like



(a) Simulation: Reactive (b) Simulation: SoftReactive

(c) Implementation: Reactive (d) Implementation: SoftReactive

Figure 10. NPPW for the Slowly Varying trace obtained via simulation for (a) Reactive and (b) SoftReactive, and via
implementation for (c) Reactive and (d) SoftReactive. We see that simulation and implementation match well for almost all
sleep states.

Reactive with C-states, is always worse than AlwaysOn, with
NPPW ranging from 0.69 – 0.94 for the traces we use.
Note that t∗wait = 0s for SoftReactive with C-states since
Tsetup = 0s.

VI. EFFECT OF SCALE

Thus far, we have only looked at the effectiveness of
sleep states on an implementation testbed with 14 front-end
servers. In this section, we examine the effectiveness of sleep
states for larger data centers. Since this is beyond the scope
our implementation testbed, we resort to simulations.

A. Simulation details

Our discrete event simulator, written in about 3000 lines
of C++, models a data center as described in Section II-A.
In particular, our simulator comprises: (i) a load genera-
tor, which can replay arrival traces, (ii) a load balancer,
which dispatches arrivals to front-end servers, and is also
responsible for suspending servers and waking them up, and
(iii) 8-core front-end servers, that can either be busy, idle,
sleeping, or in setup mode. We model each request as a task
that requires a certain number of CPU cycles. To model the
variability in requests, we use exponentially-distributed task
sizes, with a mean of 123ms, matching the implementation.
The simulator carefully tracks every arriving request and
calculates the response time for each request based on its
task size and the CPU contention at the servers.

Using the simulator, we replay the exact same traces we
use for implementation (see Table I); we also use the same

range of Psleep (0W to 126W) and Tsetup (20s to 200s).
During the setup time, the servers consume Pmax = 200W ,
as in our implementation. We vary the data center size from
14 servers to 1,400 servers. Since our memcached servers
are always on, and are thus not a bottleneck, we ignore
these servers in our simulation. We have implemented the
AlwaysOn, Reactive and SoftReactive policies in our simu-
lator based on their descriptions in the previous sections.

While we don’t expect simulations to match implemen-
tation perfectly, we believe that our simulator can broadly
identify regimes where Reactive or SoftReactive is supe-
rior to AlwaysOn, that is, regimes where NPPW > 1.
Figures 10(a) and 10(b) show our simulation results for
the Slowly Varying trace under Reactive and SoftReactive
respectively. We see that our simulation results agree with
our implementation results with respect to NPPW in
Figures 10(c) and 10(d). The above observations indicate
that our simulator can be a useful tool for predicting the
regimes where sleep states are effective.

B. Evaluation

We now use our simulator to examine the effect of data
center size on the effectiveness of sleep states for both
Reactive and SoftReactive. Figure 11 shows our simula-
tion results for all four traces under our best sleep state,
(Psleep = 0W,Tsetup = 20s). In our simulations, we vary
the data center size from 14 servers to 140 servers, and
scale the request rate for each trace proportionately, so as to



(a) Slowly Varying trace (b) Slowly Varying with Big Spike trace

(c) Dual Phase trace (d) Dual Phase with Huge Variations trace

Figure 11. Effect of scaling on NPPW under our best sleep state: (Psleep = 0W,Tsetup = 20s). Note that the range of
y-values (NPPW ) varies across the traces.

maintain the same load per server.

We see that scaling up the number of servers increases
NPPW , making the Reactive and SoftReactive policies
more desirable as compared to AlwaysOn. In particular,
NPPW increases by about 50%, on average (across all
traces), as the data center size increases from 14 servers to
140 servers, for both Reactive and SoftReactive. The reason
for this is that as the size of the data center goes up, the
probability that all cores are simultaneously busy goes down.
Thus, an incoming request has higher chances of finding
an idle core, thereby lowering T95 and increasing PPW
for Reactive and SoftReactive. By contrast, for the over-
provisioned AlwaysOn, T95 is always good whereas Pavg
is always high, regardless of the data center size. Thus, the
PPW under AlwaysOn does not change much with the data
center size. The net effect is an increase in NPPW for
Reactive and SoftReactive.

The improvement in NPPW under Reactive and SoftRe-
active as the data center size increases cannot go on forever.
The reason is that there is a natural lower bound on T95,
namely the T95 provided by AlwaysOn. Once we reach this
lower bound on T95, NPPW cannot improve further. Our
simulations indicate that for our traces, by the time we reach
140 servers, we have almost achieved this NPPW . We also

ran simulations for 1,400 servers and found that NPPW
does not increase by more than 10% when compared to the
NPPW under 140 servers.

We also find that the NPPW for Reactive converges
to that of SoftReactive as the size of the data center
increases. This is again because of the fact that there is a
natural upper bound on NPPW .

VII. CONCLUSION

In this paper we examine the effectiveness of sleep states
which are realistically feasible to implement in today’s
servers (with setup times ranging from 20s to 200s). Evalu-
ation is done on a 24-server multi-tier testbed using real
traces and a hundred different hypothetical sleep states.
We find that for a large range of sleep states, a simple
policy, Reactive, that reacts to current load by putting
servers to sleep, can significantly increase Performance-per-
Watt (PPW ) over an optimistic static provisioning policy,
AlwaysOn. In particular, for most traces, if the power used
in sleep (Psleep) is less than half the idle power (Pidle),
Reactive can increase PPW by 10-100% over AlwaysOn.
However, for very bursty traces, even the best sleep state
with Psleep = 0W and Tsetup = 20s is ineffective.

We next introduce a sophisticated dynamic power man-



agement policy, SoftReactive, that builds on Reactive by be-
ing more conservative when scaling down capacity. We find
that by simply taking more care in putting servers to sleep,
we can harness the full potential of sleep states. In particular,
under SoftReactive, there is a set of sleep states for which
SoftReactive is superior to AlwaysOn (NPPW > 1) for
all traces. This set of sleep states includes at least all sleep
states with Tsetup ≤ 60s and Psleep ≤ 28W .

Finally, we examine the effect of data center size on the
effectiveness of sleep states via simulation. We find that
the effectiveness of sleep states for large data centers is
even more pronounced. In particular, we find that NPPW
under Reactive and SoftReactive increases by about 50% as
the data center size grows from 14 servers to 140 servers.
Further, we find that the NPPW under Reactive converges
to that under SoftReactive. Thus, larger data centers can
exploit the benefits of sleep states even with a simple
dynamic power management policy.
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