
Tight Bounds on Expected Time to Add Correctly and Add Mostly

Correctly

Peter Gemmell

�

Mor Harchol

y

October 7, 1993

Abstract

We consider the problem of adding two n-bit numbers which are chosen independently and

uniformly at random where the adder is a circuit of AND, OR, and NOT gates of fan-in two.

The fastest currently known worst-case adder has running time logn +O(

p

logn) [Khr].

We �rst present a circuit which adds at least 1� � fraction of pairs of numbers correctly and

has running time log log (

n

�

) +O(

p

log log (

n

�

)).

We then prove that this running time is optimal.

Next we present a circuit which always produces the correct answer. We show this circuit

adds two n-bit numbers from the uniform distribution in expected

1

2

logn+ O(

p

logn) time, a

speed up factor of two over the best possible running time of a worst-case adder.

We prove that this expected running time is optimal.

�

Computer Science Division, UC Berkeley, CA 94720. Supported by NSF grant number CCR-9201092.

y

Computer Science Division, UC Berkeley, CA 94720. Supported by National Physical Science Consortium (NPSC)

Fellowship. Also supported by NSF grant number CCR-9201092

0

1 Introduction

We consider the problem of adding two n-bit numbers which are chosen independently and uniformly

at random where the adder is circuit of AND, OR, and NOT gates of unit gate delay for each gate,

fan-in of 2, and unbounded fan-out.

The fastest currently known worst-case adder is due to Khrapchenko and has running time logn+

O(

p

log n) [Khr]. This nearly matches the obvious log(n) lower bound for worst-case running time.

In Section 2, we present a circuit, which we call a Near Adder, which adds at least 1� � fraction of

pairs of n-bit numbers correctly and has running time log log (

n

�

) +O(

q

log log (

n

�

)). Because most

additions do not involve long propagations of carries, we can achieve considerable savings in time

over worst-case adders.

In Section 3, we prove that our Near Adder's running time is optimal.

In Section 4, we describe a model of for circuits, which always produces correct outputs, in which

the circuit may have di�erent running times for di�erent inputs, and where the circuit must produce

a signaling bit which indicates that it has �nished. We then present a Fast Adder, which is a circuit

corresponding to the above model, for adding two n-bit numbers. We show the Fast Adder circuit

adds two n-bit numbers from the uniform distribution in expected

1

2

logn+O(

p

logn) time, a speed

up factor of two over the best possible running time of a worst-case adder. The Fast Adder circuit

combines a version of the Near Adder with a Checker which quickly deduces whether the Near

Adder has done the addition correctly.

1

If the Checker determines that the addition may have been

incorrect, the addition is redone using the slow-but-sure conventional adder.

In Section 5, we prove that the expected running time of the Fast Adder circuit is optimal, namely

that no circuit producing the sum of two n-bit integers chosen independently from the uniform

distribution and a bit signaling that the answer is correct has better expected running time.

2 Near Adder Circuit for Adding Most Numbers Correctly Quickly

In this section we show how to convert a conventional adder of two n-bit numbers into a much

faster, but sometimes unreliable adder, which we call a Near Adder. The Near Adder circuit is

fast, yet incorrect on a small (�) fraction of the inputs. Near Adders take advantage of the property

that, for most inputs, each of the output bits depends only on a small number of adjacent input

bits.

De�nition 1 Throughout this paper when adding a

1

a

2

: : :a

n

to b

1

b

2

: : : b

n

, when we refer to a

propagate pair we mean a pair of bits (a

i

; b

i

) such that either a

i

= 1 and b

i

= 0, or a

i

= 0 and

b

i

= 1.

1

Note that our Checker is not a checker in the [Blum], [Blum,Kannan] sense, but really operates more like a mask

for certain \problem inputs". (See Section 4.1).

1

Theorem 2 For all � > 0, there exists a Near Adder that has depth log log(

n

�

)+O(

q

log log(

n

�

))+1

and that is correct on all but � fraction of pairs of n bit inputs.

Proof:

The structure of the Near Adder we propose is shown in Figure 1. Given two n-bit numbers,

the Near Adder divides them into

n

d

blocks of size d-bits each. The Near Adder then uses the

conventional adder to add consecutive 2d-bit blocks in parallel as shown in Figure 1. When adding

each of these 2d-bit blocks, the Near Adder assumes the carry-in to the 2d-bit block is zero. The

Near Adder returns the most signi�cant d bits of each of these 2d-bit summands (the unshaded

parts) as the sum of the two n-bit numbers.

The running-time of the Near Adder is the time it takes for the conventional adder to add two

2d-bit numbers. Using Khrapchenko's [Khr] circuit, this time is log(d) + 1 +O(

p

log(d)).

The Near Adder produces an incorrect output if for any of the d-bit input blocks (excluding the

�rst and last blocks), the block consists exclusively of propagate pairs, and the carry-in to the block

is a 1. The problem here is that the carry-in is propagated through at least d bits, so that it goes

past the shaded part of the 2d-bit summand and into the output of the Near Adder.

Pr[Error in Near Adder]

� (no. d-bit blocks) � (Pr[carry-in 1]) � (Pr[All pairs in block are propagate pairs])

= (

n

d

) � (

1

2

) � (

1

2

d

)

In order for to achieve the depth and error bounds described in theorem (1), we assign the block

size to be d = log(

n

�

).

3 Lower Bound on Time To Add Most Numbers Correctly

In this section we determine a lower bound on the depth, d, of a circuit which adds 2 n-bit numbers

with con�dence 1� �.

Theorem 3 For any circuit which adds two n-bit numbers with con�dence 1� �, the depth d must

be at least lg lg(

n

2�

)� 1 .

Proof:

Let d be the depth of any circuit which adds two n-bit numbers with con�dence 1� �. Assume the

2 n-bit inputs are independently and uniformly distributed.

We divide the n-bit numbers into

n

2

d

+1

blocks, each of size 2

d

+ 1. We also divide the output

bits into blocks of size 2

d

+ 1. Denote by block

1

the rightmost (least signi�cant) input block and

2

denote by b

1

the most signi�cant output bit of this block. Denote by block

i

the 2

d+1

input bit pairs

associated with the ith rightmost (least signi�cant) block and denote by b

i

the most signi�cant

output bit of the ith block. Let cb

i

equal the correct value of the most signi�cant output bit of the

ith block.

Let E

i

be the event that b

i

is not equal to cb

i

.

The proof has three main parts:

1. We construct a set S, jSj �

n

(2

d

+1)

2

, such that 8i; j 2 S; j < i, output bit b

j

is not connected

to any input bit from block

i

.

To do this, we start by putting 1, the index for the least signi�cant block, in S. Then we

throw out block

1

and all the blocks on which b

1

depends. Next, we put in S the index of the

least signi�cant remaining block. Then we throw out this block and all the blocks on which

the most signi�cant output bit of that block depends. We repeat this process until there are

no blocks remaining. Because we throw out at most 2

d

+1 blocks for every block we place in

S, we have jSj �

n

(2

d

+1)

2

.

2. We observe that block

i

is independent of event E

j

, 8j < i, where i; j 2 S.

This follows from the following argument: Let j < i and i; j 2 S. Let all input bits be set

arbitrarily. Now look at b

j

and cb

j

for this setting. Either we have b

j

= cb

j

, or we have

b

j

6= cb

j

. Now altering the bits in block

i

can't a�ect cb

j

by de�nition of addition. Altering

the bits in block

i

can't a�ect b

j

because, by de�nition of S, b

j

is not connected to block

i

.

3. We show that 8i 2 S, Pr[E

i

j

T

j<i;j2S

E

j

] �

1

2

2

d

+1

.

Because the circuit is restricted to having depth d and because the block size is 2

d

+ 1, we

know that there is at least one pair of input bits in block

i

such that neither of these input

bits a�ects the value of the output bit b

i

. Let p

i

denote the leftmost such pair. If p

i

is the

kth pair of bits in block

i

(looking from left to right), then there will be an error if the �rst

k � 1 pairs (looking from left to right) are all propagates and either the kth pair is (1; 1) or

(0; 0). (If b

i

= 1, the pair (0; 0) implies cb

i

= 1; if b

i

= 0, the pair (1; 1) implies cb

i

= 0).

So Pr[E

i

] �

1

2

k+1

�

1

2

2

d

+1

. Since by (2) above, the setting of block

i

is independent of event

E

j

; 8j < i, we have Pr[E

i

j

T

j<i;j2S

E

j

] = Pr[E

i

] �

1

2

2

d

+1

.

The probability of union of the events E

i

lower bounds the total error � and this yields a lower

bound on the depth:

� � Pr[Error in Output]

� Pr[

[

i2S

E

i

]

= 1� Pr[

\

i2S

E

i

]

� 1� (1�

1

2

2

d

+1

)

n

(2

d

+1)

2

3

= 1� (1�

1

2

2

d

+1

)

2

2

d

+1

�

n

(2

d

+1)

2

�

1

2

2

d

+1

� 1� e

�

n

(2

d

+1)

2

�

1

2

2

d

+1

(by (1�

1

k

)

k

� e

�1

)

� 1� e

�

n

2

2

d+1

(true for d � 3)

So,

� � 1 � �e

�

n

2

2

d+1

1� � � e

�

n

2

2

d+1

ln (

1

1� �

) �

n

2

2

d+1

n

ln (

1

1��

)

� 2

2

d+1

d � lg lg (

n

ln (

1

1��

)

)� 1

d � lg lg(

n

2�

)� 1 (true for � �

1

2

)

4 Fast Adder Circuit For Adding Correctly in Fast Expected

Time

We consider a model of circuits with variable-running times. We will call such circuits VRTC

(Variable Running Time Correct) circuits because they may have di�erent running times on di�erent

inputs, but are guaranteed to produce the correct answer. The model for these circuits is as follows:

De�nition 4 An VRTC circuit C for a function f takes f 's inputs as its inputs and has the

outputs for f as well as one extra bit called a signal bit. The signal bit is set to 0 initially; at some

time after the inputs are introduced, it must be set to 1. When the signal bit is set to 1, the output

bits must be correct.

We assume that the circuit C may incorporate a clock of some kind (perhaps a chain of gates each

of unit delay) so that it may select bits from di�erent subcircuits to output at di�erent times.

We will derive upper and lower bounds on the expected running time of VRTC circuits for adding

two n-bit numbers (by running time we mean time until the signal bit is set to 1). In this section

we give an upper bound, by describing a VRTC circuit which we call the Fast Adder, which has

expected running time

1

2

log(n) + O(

p

logn). In Section 5 we prove a lower bound of

1

2

log(n)� 1

on the expected running time of any VRTC addition circuit.

The Fast Adder circuit consists of two subcircuits which are run in parallel. The �rst subcircuit is

the Near Adder described in section 2. The second subcircuit is a Checker which will determine if

4

the output of the Near Adder is correct. If the Checker circuit determines the output of the Near

Adder to be correct, the Fast Adder outputs the output of the Near Adder. If, on the other hand,

the Checker circuit determines the output of the Near Adder to be incorrect, the Fast Adder uses

the third subcircuit, Khrapchenko's [Khr] worst-case adder, to determine the output of the Fast

Adder. In subsection 4.1 below, we describe the Checker, and in subsection 4.2 we analyze the

expected running time of the Fast Adder. Note that it is important to set parameters in the Fast

Adder such that the running time of the Checker is low, and such that the probability of error in

the Near Adder is very low.

4.1 The Design of a Checker for our Near Adder

Our Checker is very di�erent from the class of checkers described in [Blum,Kannan], [Blum]. It

merely checks if the input is of a particular nice form, and it's output does not depend on the

Near Adder's result at all. The Checker will always output FAIL if the input is of a form that

will cause the Near Adder to add incorrectly. However, the Checker may output FAIL even if the

computation of the Near Adder is correct.

Recall that the input to the Near Adder is divided into

n

d

d-bit blocks. The Checker is based on

the following observation: If any input block consists of all propagate pairs and the carry-in to that

block is a 1, then the Near Adder output will be incorrect (This is actually true for any block except

the �rst and last). Therefore, ideally, the checker should check if any input block consists only of

propagate pairs. For the sake of speed, our Checker will only examine c (arbitrarily chosen) pairs

in each block. If for any block all c pairs examined were propagate pairs, the Checker will output

FAIL. Also, the Checker ignores the carry-in altogether.

Our Checker is illustrated in Figure 2. It takes as its inputs the two n-bit operands. It then uses

XOR gates (denoted by X), to check if pairs of bits are propagate pair. An AND gate is then used

to check if all c pairs within a block are propagate pairs. The Checker outputs FAIL if for any

block all c pairs examined were propagate pairs.

Pr [Checker detects a possible error] �

n

d

�

1

2

c

The running time for the checker is constant to do all the XOR operations in parallel plus log c to

do all the AND operations plus log(

n

d

) to do the NOR operation.

Running time for checker = 1 + log c+ logn� log d

Note that the computation of the Checker in no way interferes with the computation of the Near

Adder, and therefore the computation of the Checker may be overlapped with the computation of

the Near Adder.

4.2 Combining the Near Adder and Checker into the Fast Adder

The Fast Adder Circuit consists of �rst running the Checker and Near Adder circuits in parallel.

If the Checker outputs PASS, then the Near Adder computation must be correct, so the signal bit

5

goes on. If the Checker outputs FAIL, then the conventional adder is run on the input, and the

signal bit doesn't go on until the conventional adder computation is complete.

Theorem 5 The expected running time of the Fast Adder Circuit is

1

2

log(n) +O(

p

log(n)).

Proof:

The total expected running time for the Fast Adder is :

max(Time

NearAdder

; T ime

Checker

) + Time

convadder

� Pr[Checker outputs FAIL]

k

max

�

log d+O(

p

log d); 1 + log c+ logn � log d

�

+

�

logn +O(

p

log n)

�

� (

n

d

�

1

2

c

)

By setting the block size, d, to be

p

n and the number of bits checked per block, c, to be log(n),

we get the expected time to compute the sum of two n bit numbers to be

1

2

log(n)+O(

p

log(n)).

5 Lower Bound on Expected Time to Add Correctly

In this section we prove:

Theorem 6 Any fan-in 2 VRTC circuit adder for 2 n-bit numbers, which are independently chosen

from the uniform distribution must have expected running time �

1

2

log n� 1.

Proof:

Given any VRTC addition circuit, let T denote its expected running time. Suppose that T <

1

2

logn� 1. Then there exists a setting of the input bits which causes the signal bit of the adder to

go on after <

1

2

log n time.

Divide the summands and output into blocks of size 2

T

+ 1. Let b

i

be the most signi�cant bit in

the i

th

block. Observe that there are more than

p

n blocks.

Since at most 2

T

<

p

n bits can inuence the signal bit of the adder by time T , there is at least

one block, block

i

, such that no bit in that block inuences the signal bit by time T .

Also, since at most 2

T

bits can inuence b

i

(the most signi�cant output bit in block

i

), there is at

least one pair, p

i

, of input bits in block

i

which doesn't inuence b

i

.

Now we know from the assumption that there exists a setting of the input bits which causes the

signal bit to go on after T time. Let's change just block

i

of this setting such that all pairs of bits

within block

i

are propagates, except for p

i

. Note, altering block

i

doesn't change the signal bit.

Even without setting p

i

, the signal bit is still on, and b

i

is set to some value. By setting p

i

we can

switch the value of b

i

. That is, there is a setting of p

i

which causes b

i

to be wrong. In this case,

the signal bit is still on, but b

i

is incorrect.

Therefore, we must have that T �

1

2

log(n)� 1.

6

References

[Blum] M. Blum. Designing Programs to Check their Work. Submitted to the CACM for publica-

tion.

[Blum,Kannan] M. Blum, S. Kannan. Unbounded Programs that Check their Work. 21st Sympo-

sium on the Theory of Computation, Seattle, 1989.

[Khrapchenko] V.M. Khrapchenko. Asymptotic Estimation of Addition Time of a Parallel Adder.

Systems Theory Research vol. 19, pp. 107-125, 1967.

7

d

+

n

z }| {

9

>

>

>

>

>

>

=

>

>

>

>

>

>

;

INPUT

2d

�
�

�

0

�

�
�

�

�
�

�

�
���

��

2d

�
�

�

0

�

�
�

�

�
�

�

�
���

��

2d

�
�

�

0

�

�
�

�

�
�

�

�
���

��

2d

�
�

�

0

�

�
�

�

�
�

�

�
���

��

2d

�
�

�

0

�

�
�

�

�
�

�

�
���

��

2d

�
�

�

0

�

�
�

�

�
�

�

�
���

��

2d

�
�

�

0

n

z }| {

9

=

;

OUTPUT

Figure 1: Near Adder

8

d

+

n

z }| {

9

>

>

>

>

>

>

=

>

>

>

>

>

>

;

INPUT

X X X X X X X X X X X X X X X X

And And And And And And And And

Nor

?

E

E

E

E
E

E

E

E

E
E

E

E

E

E
E

E

E

E

E
E

E

E

E

E
E

E

E

E

E
E

E

E

E

E
E

E

E

E

E
E

�

�

�

�
�

�

�

�

�
�

�

�

�

�
�

�

�

�

�
�

�

�

�

�
�

�

�

�

�
�

�

�

�

�
�

�

�

�

�
�

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@R

@

@

@
@R

J

J

J
Ĵ ? ?

�

�

�

�
�	

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�	

Figure 2: Checker for Near Adder

9

