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We provide a stochastic analysis of hard disk performance, including a closed form solution for
the average access time of a memory request. The model we use covers a wide range of types
and applications of disks, and in particular it captures modern innovations like zone bit recording.
The derivation is based on an analytical technique we call “shuffling”, which greatly simplifies
the analysis relative to previous work and provides a simple, easy-to-use formula for the average
access time. Our analysis can predict performance of single disks for a wide range of disk types
and workloads. Furthermore, it can predict the performance benefits of several optimizations,
including short-stroking and mirroring, which are common in disk arrays.

1. Introduction

Hard disks have been the dominant form of secondary storage for decades. Though they are
now joined by solid-state devices, they continue to be the most popular secondary storage
medium in the world because of their relatively low cost; hence, it is critical to be able
to accurately predict their performance characteristics. This is especially true because the
workloads of disks, as well as their underlying technology, are evolving rapidly; even an
excellent empirical understanding of disk performance today can quickly become dated. The
difficulty of creating or reconfiguring hardware, as well as testing it under a range of realistic
conditions, means that we must have tools to predict performance without using the disks
themselves; creating the hardware is the last step. Hence, the community relies heavily on
simulation and analytical modeling.

Analytical models are particularly desirable for their simplicity and their ability to
provide insight. In engineering memory systems, analysis can be used to guide the initial
design and to predict how the system will behave in new situations. Formulas can often
be used to explain “why” a system behaves the way it does. Simulations are more general,
because they do not need to simplify a model to the point of being analytically tractable,
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Figure 1: Illustration of a hard disk with a single platter. The disk rotates at a fixed rate and has a head
which hovers over the tracks. λ is the arrival rate of memory requests.

but they can be complicated to implement and expensive to run, and they often provide less
in the way of insight.

In this paper we present a stochastic model of a modern hard disk and derive a closed-
form expression for the average time required to complete amemory request.We also provide
several proofs-of-concept that this formula can be used to understand a number of features
of modern disks, including their use in disk arrays. We first provide some background on
disk technology and an overview of the existing literature on disks, especially theoretical
treatments and how they relate to our work. Section 2 presents our mathematical model of a
disk. In Section 3we derive closed-form expressions for the average time to process amemory
request under several request scheduling policies. We numerically verify the correctness of
our formula, as well as validating our underlying model against real trace data, in Section 4.
Section 5 discusses zone bit recording, an ubiquitous feature in modern disks, and shows that
our model approximates it excellently. In Section 6, we move from single disks to disk arrays;
we show that our model can quantify the benefits of short stroking, alternative memory
layouts, and mirroring.

1.1. Background on Hard Disks

Physically, a disk is a circular platter with a magnetic surface, and memory arranged along
tracks at different radii from the center. A “read/write head” hovers over the surface, reading
or modifying the memory along a track as the disk rotates. Some disks havemultiple platters,
each with its own head; however, these heads move in sync, so for modeling purposes this is
equivalent to one platter with a single head. Figure 1 shows a diagram of a disk with a single
platter. Arriving memory requests are stored in a queue prior to servicing.

The most popular metric for disk performance is the average “access time,” where the
access time of a request is the time between its arrival in the system and its completion. The
access time can be broken into three parts.
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(1) Wait time: the time until the head is over the track to process the request.

(2) Rotational latency: the time spent waiting for the first bit of the requested memory to
rotate under the head.

(3) Transfer time: the time to actually read/write the requested data.

A common term in the literature is “seek time”, which typically refers to the time needed
to the reposition of the head between servicing two requests. Hence, the seek time for a job
would be the last part of the wait time, and “seeking” is used as a synonym for moving the
read/write head.

The algorithm used to schedule memory requests is a critical component of disk
performance. One of the most popular scheduling algorithms is SCAN. In SCAN, also known
as “elevator scan”, the head moves between the inner and outermost tracks, processing all
requests at intermediate tracks along the way. A related algorithm is C-SCAN [1], which
only processes requests while moving from the innermost track to the outermost track; when
it reaches the outermost track, it moves directly back to the inner track, ignoring any requests
along the way. C-SCAN is often preferred over SCAN because it is thought to be more fair to
requests for memory at extremal radii [2]. Both algorithms are valued for their simplicity and
relatively short access time, and they have a rich history in the literature and in applications,
including being supported in every version of the popular DiskSim simulation program
[3]. Other algorithms which have been used include Shortest Seek Time First (SSTF), which
chooses the next request to minimize seek time, and Shortest Positioning Time First (SPTF),
which also incorporates rotational latency. SSTF and SPTF have lower average access time
than SCAN and C-SCAN. However, they also have high variance in access time and are
biased against requests at the extremal tracks; these downsides are often felt to outweigh
their advantages [4, 5]. All of these algorithms are superior to First Come First Serve (FCFS),
which has also been studied.

Prior to the 1990’s, every track on a disk contained the same amount of memory; the
outer tracks, being longer, had fewer bits per unit of track length. This wasted real estate on
the disk, but it was necessary because read/write heads could only read memory at a fixed
rate. Modern disks, however, use zone bit recording, where the tracks are divided into “zones”,
and the zones at the outer radii of the disk store more data in each track. This means that at
the outer radii of the disk:

(i) more bits are stored in each track,

(ii) the data transfer rate is higher, for a constant speed of rotation,

(iii) more bits are accessible with less seeking.

Thus a request of fixed size incurs less transfer time if placed on the outer tracks, and these
tracks contain a disproportionate amount of memory. This observation is the basis of many
modern data placement optimizations; however, previous analytical work did not take zone
bit recording into account.

Another important development is combining individual disks into high-performance
arrays, such as RAIDs. These arrays use many techniques to improve both performance
and fault tolerance. One innovation is mirroring, where identical data is duplicated over
several disks; while this is mostly done for fault tolerance, incoming requests are often split
between the disks, reducing the load on each. New ways have been developed to partition
memory among disks and tracks; the organ-pipe arrangement, for example, places memory
on tracks according to its access frequency so as to minimize seek time. Another technique
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is short stroking, where data is stored only in the outer tracks of disks (the inner tracks are
sometimes used for redundant bits). This puts memory where the access time is minimized
and gives fewer tracks for the head to scan over. In order to analyze RAIDs, it is useful
to have a model for individual disks. So far, theorists have used simplistic models such as
FIFO M/G/1 queues, where requests are processed in the order received and no seek time is
required.

1.2. Prior Work

Disks have been studied using many tools, including theoretical analysis, trace-based
simulation, andmodel-based simulation. Theoreticalwork initially focused on the access time
of single disks, but later branched out to a range of topics. Traces from real disks have been
used to study disk access patterns and to validate hypotheses from theory or model-based
simulation. A large proportion of the disk literature uses model-based simulations, which
can be very flexible and convenient.

The early theoretical works [4, 6–8] focused on SCAN and related algorithms. They
modeled disk tracks as queues, and assumed that memory requests arrived as a Poisson
process. These papers focused on the access time of requests; primarily the mean access
time, but also its variance and fairness. Some of these treatments [4, 8] gave approximate
answers or gave implicit solutions rather than closed-form formulas. Others [6, 7] included
subtle mathematical errors, which rendered them only approximations. Later works [9–11]
corrected these errors, but their derivations were very complicated and, more importantly,
answers had to be evaluated numerically by solving systems of equations. In fact, the time
required to solve these systems is polynomial in the number of tracks, which limits their
practicality for the dense disks used today. Coffman and Gilbert [10] included a closed form
for the fluid limit of his model, but the result is only valid when individual requests have
vanishingly small service requirements. The model we use is similar to those in early papers,
in particular Coffman et al. [6], but our analysis differs significantly.

Later theoretical work has expanded beyond access time under SCAN-like scheduling
policies to include a range of topics. Some papers [12–14] have addressed more modern
scheduling policies, though they have only done so in ways that are approximate or that give
loose asymptotic bounds. Others [15–18] have discussed zone bit recording, but mostly in the
context of other problems such as disk arrays or data placement. To our knowledge no paper
has explicitly addressed the effect of zone bit recording on average access time. Probably
the most extensive recent theoretical work is on disk arrays [17–24]. This includes analyses
of several types of RAIDs, as well as a number of optimizations they use, and focuses on
throughput, access time, and reliability. However, the literature standard is to model a disk
array as a queueing network, where individual disks are FIFO M/G/1 queues [17, 19, 25–
31]. Besides being only an approximation to real disk arrays, modeling disks with queues
obscures how disk internals, such as speed of seeking and the scheduling algorithm used,
impact the overall performance.

Papers based primarily on disk traces form a smaller portion of the literature. Much
of the trace-based literature [32–34] has focused on characterizing the access patterns of
memory systems, buildingmodels based on them, and comparing them to the (often implicit)
assumptions used in simulations and analytical models. In addition, many papers which are
based primarily on simulation or analysis validate their conclusions on a small set of real disk
traces.
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Because of their versatility, model-based simulations play a central role in the disk
literature. Many papers [1, 35–40] have attacked the old problem of comparing request
scheduling algorithms. There has also been extensive simulation-based study of more
modern techniques, including zone bit recording [16, 41, 42] and disk arrays [43, 44]. Other
papers [42, 45, 46] have examined less mainstream topics, such as power consumption and
algorithms specific to video file servers.

Many important aspects of disks have not been adequately addressed by theory. For
instance, we are not aware of any theoretical work which explicitly addresses the effects of
zone bit recording on average access time. The models used in analytical treatments of disk
arrays abstract away from all disk internals and obscure their impact on performance. Even
the statistics of access time without zone bit recording have not been provided in a form
that is readily usable. This paper is a partial solution to these problems. We use a similar
model to the first papers, in particular Coffman et al. [6]. Our analysis is straightforward,
and provides a closed form solution rather than a system of equations; on the other hand, we
do not calculate moments of the access time beyond its mean. Though zone bit recording is
not strictly covered by our analysis, we show that for practical purposes it can be excellently
approximated. Finally, we show that our model can quantify the benefits of a number of
modern disk optimizations, including those used in disk arrays.

2. Mathematical Model

We assume that the tracks are dense enough to form a continuum, which is reasonable as
modern disks have many thousands of tracks, and let rmin and rmax denote the radii of
the inner and outermost tracks of the disk. The disk rotates at a constant speed, and the
read/write head moves with speed σ cm per unit time when it is scanning. Under SCAN,
it maintains this speed in both directions. For C-SCAN, however, it is only scanning when
moving from the inner track to the outer track; we assume that jumping back to the inner
track takes a fixed time τ0.

Memory requests arrive as a Poisson process with rate λ, and each request is for a
contiguous piece of memory. We do not distinguish between reads and writes, because they
both reduce tomoving the read/write head over the requestedmemory. Each request consists
of a location on the disk, indicating where the requested memory begins, and the size of
the request measured in physical track length. While in reality a request may extend over
several tracks, we assume the tracks are so closely spaced that each request is effective for
memory at a single radius. We denote the radius for a request by the random variable R,
whose probability density is given by fR(·). The R values for different requests are i.i.d.

For analysis of C-SCAN and SCAN, we combine the rotational latency and transfer
time for a memory request into a single quantity, which we call a “job”. As soon as the head
arrives at a track for which there is a pending request, it immediately begins work on the
associated job and resumes motion when the job is finished. In this way the problem reduces
to the head moving along a 1-dimensional path and pausing to complete jobs it encounters
along the way. We denote the size of a job by the random variable S, and let its probability
density be fS(·). We assume that S is independent of R for a given request. We also assume
that separate requests are i.i.d.

Other effects can be captured by our model. For example, processing a request which
spans several adjacent tracks might require nonnegligible time to switch between tracks,
in addition to the rotational latency and transfer time; this amounts to just an additional
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Table 1: The symbols used in our mathematical model and derivation.

rmin Radius of the innermost track
rmax Radius of the outermost track
σ The speed of the read/write head
τ0 In C-SCAN, the time to backtrack from the outer to the inner track
λ Arrival rate of the requests
R r.v. denoting radius of the track specified by a memory request
fR(·) pdf for R
S r.v. denoting job size; rotational latency + transfer time for a request
fS(·) pdf for S
n The (large) number of jobs in a hypothetical request sequence
E[T] The average access time of a job
Tl The time access time of label l
Ml The part of Tl during which the head is moving
Pl The part of Tl during which the head is processing a job
NQ r.v. denoting the number of jobs in the system not being processed at a random time
ρ The load of the system
Se r.v. denoting the remaining time on a job being processed
fH(·) The pdf of the location of the head, given that it is not backtracking

contribution to the job size S, and our analysis holds if we modify fS(·) so that these other
time penalties are included in S. We can even partially account for non-Poisson arrival
sequences; if several requests for contiguous memory arrive in quick succession, they can
be treated as a single large request, and our analysis discusses when the last of these requests
will be completed.

The key assumptions we make are the Poisson arrival of requests, the independence
of different requests, and the independence of R and S for a given request (though the last of
these can be treated approximately); these assumptions are standard in the theoretical disk
literature. How well these assumptions are satisfied depends on the application; they are
probably very accurate for file servers hosting files to many users, but very poor for a disk
booting up an operating system.

Our analysis applies to general fR(·) and fS(·). However, for calculation we usually
assume fR(r) ∝ r, which normalizes to fR(r) = 2/(r2max − r2min)r. This reflects the fact that
under zone bit recording the capacity of a track increases with its radius; a random bit of
memory is more likely to be in an outer track than an inner track.

3. Derivation

For simplicity this section will focus C-SCAN;most of the analysis also applies to SCAN, and
the part where they differ (which is straightforward but more tedious for SCAN) is covered
in the appendix. For reference, Table 1 summarizes our notation. We denote the access time
of a random request by the r.v. T , and seek to calculate E[T].

A common tool in modeling disks is the M/G/1 First Come First Serve (FCFS) queue,
which is also a classic application of stochastic analysis. Although SCAN and C-SCAN do
not process jobs in the order of their arrival, we would still like to leverage this tool. To this
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end, we use a technique we call “shuffling” to break E[T] into two parts, one of which is
equivalent to an FCFS queue.

The notion of “average access time” is only meaningful when the system is ergodic,
so that an equilibrium distribution over its states exists. We assume the system is ergodic,
which is equivalent to assuming λE[S] < 1, and we seek to calculate E[T] for the equilibrium
distribution. Physically this means that jobs arrive slowly enough that, on average, they do
not pile up endlessly in the queue. Imagine running the disk for a very long time, during
which n jobs arrive and are processed, and assume the system begins and ends empty. If
n is large enough the average access time for this sequence will approach E[T], and in our
derivation we may assume that the system is at equilibrium. We will derive the average wait
time for the arrival sequence under the assumption that n is extremely large.

3.1. Shuffles and Invariance of Average Access Time

Shuffles are best understood with a heuristic. Imagine that when a job arrives there is a
physical label (like a sticky note) attached to it, and whenever a job is finished the label
associated with it leaves the system. In this case there is a one-to-one correspondence between
jobs and labels, and average time a label l spends in the system, which we will call it “access
time” Tl , is clearly the same as the average access time of a job. We will for the rest of the
derivation discuss the access time of labels, rather than of jobs. In a “shuffle” we allow the
labels in the system to be permuted among the jobs in the system, in any way and at any
point in time. When a job finishes its associated label is still discarded, but this may not be
the label it had when it entered the system. The access time of a given label will in general
be quite different depending on the shuffling protocol employed, but the average access time
across all labels will be invariant under shuffling. This can be seen by observing that every
instant of time contributes to

∑
l T

l in proportion to how many jobs are in the system at that
time, which is independent of how they are labeled.

3.2. Breakdown into Processing and Moving

The access time Tl for a label l can be broken down into its “processing time” Pl and its
“moving time”Ml:

Tl = Pl +Ml. (3.1)

By “processing time” we mean the part of the access time for the label during which the head
is processing some job (perhaps the job to which the label is associated at a point in time). By
“moving time” we mean the part of access time during which the head is moving. Let T , P
andM be random variables denoting Tl, Pl, andMl for a randomly chosen l. Averaging (3.1)
we see

E[T] = E[P] + E[M]. (3.2)

We mentioned above that
∑

l T
l is invariant under shuffling, because each instant

contributes to it based on how many jobs are in the system, regardless of their labels.
Similarly, each instant contributes to

∑
l P

l and
∑

l M
l based on how many jobs are in



8 International Journal of Stochastic Analysis

the system and whether or not the head is moving. Hence E[P] and E[M] are also invariant
under shuffling.

The key idea of our derivation is to pick a convenient shuffling protocol to calculate
E[P] and a different shuffling protocol to calculate E[M]. Adding these results will be the
average access time E[T].

Note that so far our derivation has not used the scheduling policy or any assumptions
about the request arrival sequence. These assumptions are only used in calculating E[P] and
E[M].

3.3. Calculating E[P]

The derivation of E[P] is identical for both SCAN and C-SCAN. To calculate E[P], shuffle
the labels so that they are processed in First Come First Serve order; the instant before the
head arrives at a job, switch the label on this job with whichever label has been in the system
the longest (if the job to be processed happens to already have the oldest label in the system,
do nothing) so that it gets processed next. Jobs in general are not processed in the order they
arrive, but this shuffling protocol ensures that at least the labels are. Then for a given label l,
Pl will have three components:

(1) the time to finish the job being processed when l arrives, if there is one;

(2) the time to process any additional labels that are waiting when l arrives;

(3) the time to process l itself.

We calculate these using the PASTA (Poisson arrivals see time averages) property of Poisson
arrivals.

To calculate component (1) of Pl, note that the head is processing a job a fraction λE[S]
of the time, so when l arrives there is a job to finish with probability λE[S]. We define ρ =
λE[S], which is often called the load of the system. If the head is processing a job when l
arrives, the amount of work left on the current job will be given by a random variable Se, the
equilibrium distribution of job size. It is a standard result that E[Se] = E[S2]/2E[S], so (1)
will just be ρE[Se] = λE[S2]/2.

Let the random variable NQ denote the number of jobs in the system, which are not
being processed, at a random time. Component (2) of Pl will just be E[NQ]E[S]. If we apply
Little’s Law to the set of labels not being processed, we see that E[NQ] = λ(E[T] − E[S]),
so

E[P] = ρE[Se] + E
[
NQ

]
E[S] + E[S] = ρE[Se] + ρE[T] +

(
1 − ρ

)
E[S]. (3.3)

In deriving component (2) we have used our assumption that R and S for a given
job are independent. NQ is associated with the radius of the head (in C-SCAN, e.g., NQ will
generally be larger when the head is near rmin), which is in turn associated with the locations
of the waiting jobs (the area right behind the head will tend to have relatively few jobs). So
if S and Rwere related there would be a very complicated dependency betweenNQ and the
sizes of the jobs that l would have to wait for.
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3.4. Calculating E[M]

We will present two derivations of E[M]. The first is more direct, but only applicable to C-
SCAN, whereas the second is more computationally intensive but generalizable to SCAN.

The simplest way to calculate E[M] is to condition on whether the head is busy
processing a job when a random job j arrives at a point R. The head spends τ0+(rmax−rmin)/σ
time moving between visits to R, so on average half of that time will remain giving

E
[
M | moving

]
=

τ0 + (rmax − rmin)/σ
2

. (3.4)

If the head is processing another job when j arrives, then because R and S are independent,
the head’s location H will be distributed identically to R; H and R will be i.i.d. points in the
interval. The moving time for the head to go from pointH to point R, then from R back toH ,
will be τ0 + (rmax − rmin)/σ. But since R andH are i.i.d the average time to go R → H will be
the same as the average to goH → R, meaning

E
[
M | processing] =

τ0 + (rmax − rmin)/σ
2

, (3.5)

the same as the previous case, so that

E[M] =
τ0 + (rmax − rmin)/σ

2
. (3.6)

The more general derivation is analogous to the one in [6]. We use the trivial shuffle;
a label is always associated with the job it enters the system with. Let us take a random label
l; the idea is to calculate Ml conditioned on the radius for l’s job and the state of the head
when it arrives, then average appropriately. Let rl denote the radius of l’s job. If the head is
backtracking when l arrives thenMl will be the time to finish backtracking (on average τ0/2)
plus (rl − rmin)/σ. If the head is not backtracking let its radius be rh. If rh < rl thenMl will be
(rl − rh)/σ. Finally, if rh > rl thenMl will be (1/σ)(rmax − rh + rl − rmin) + τ0. We then need only
calculate the probability that the head is backtracking when l arrives and, in case the head is
not backtracking, the distribution of rh.

The average time between visits of the head to any one radius will be a constant τ ,
which we call the cycle time. Because a fraction ρ of the time is spent processing jobs, we
have

τ =
τ0 + (rmax − rmin)/σ

1 − ρ
, (3.7)

and the head will be backtracking when l arrives with probability τ0/τ .
To calculate fH(·), let dr be small enough that, at any point in time, we can assume

there is at most one job whose associated radius is in (r, r + dr). Now fH(r)dr will be
proportional to the average amount of time the head spends in the interval (r, r + dr)
during one cycle. This will be the travel time to traverse the interval plus the time to
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process the job which might have arrived since the head was last there. Hence fH(r)dr ∝
(1/σ)dr + λτfR(r)drE[S] = (1/σ)dr + ρτfR(r)dr, which normalizes to

fH(r) =
1

τ − τ0

(
1
σ
+ ρτfR(r)

)

. (3.8)

Now recalling that when l arrives the head can be at a larger radius, at a smaller radius,
or backtracking, we see that

E[M] =
τ0
τ

(
τ0
2

+
1
σ

∫ rmax

rmin

(rl − rmin)fR(rl)drl

)

+
τ − τ0
τ

∫ rmax

rh=rmin

∫ rh

rl=rmin

1
σ
(rh − rl)fH(rh)fR(rl)drldrh

+
τ − τ0
τ

∫ rmax

rh=rmin

∫ rmax

rl=rh

(
1
σ
(rmax − rh + rl − rmin) + τ0

)

fH(rh)fR(rl)drldrh.

(3.9)

After much calculation, this reduces to (3.7).
The derivation of E[M] for SCAN, which is a straightforward variant of the one for

C-SCAN, is summarized in the appendix.

3.5. The Final Answer

Adding E[M] and E[P] we see

E[T] = E[M] + E[P]

= E[M] + ρE[Se] + ρE[T] +
(
1 − ρ

)
E[S],

(
1 − ρ

)
E[T] = E[M] + ρE[Se] +

(
1 − ρ

)
E[S].

(3.10)

So the total average wait time for C-SCAN will be

E[T] =
E[M]
1 − ρ

+
ρ

1 − ρ
E[Se] + E[S]

=
τ0 + (rmax − rmin)/σ

2
(
1 − ρ

) +
ρ

(
1 − ρ

)
E
[
S2]

2E[S]
+ E[S].

(3.11)

4. Validation

We validated this work in two ways. First, we empirically tested the correctness of our
formulas by simulating our model under a wide range of parameters (different values of λ, σ
and rmax, and different functional forms and parameter values for fR and fS) and comparing
the empirical access time to the theoretical predictions. In all cases, when run long enough,
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Figure 2: Predicted average access time compared to simulated access time. Request stream and disk
behavior are generated according to model assumptions. Note that the curves for theoretic and simulated
results are not visibly discernible for either SCAN or C-SCAN. In each case the radii were uniformly
distributed between 0 and 1, σ was 3 cm/sec, every job had a fixed size of 5 sec, and 2 million requests
were simulated. Similar agreement was seen across a range of parameters and distribution choices.

simulation agreed with theory to many decimal places; a typical example of this agreement
is shown in Figure 2.

Secondly, we wished to test how well the underlying assumptions of our model were
satisfied by real disks. Or more specifically, we wished to see whether real-world deviations
from the model caused the performance to be substantially different from our predictions.
We obtained trace data from a web server and simulated the performance of our modeled
disk (i.e., the head still moved at its idealized constant speed) when receiving this real-
world request sequence. The sizes and locations of the memory requests were taken from
the trace; arrival times were randomized according to a Poisson process, so that we could
explore a range of load scenarios by varying the arrival rate. For predicting the access time
we assumed fR(r) ∝ r; this is reasonable when one is aware of zone bit recording but has no
more detailed knowledge of memory layout. Comparing our predictions to the simulation
results tested the following assumptions: (1) R is independent for separate requests, (2) S
is independent for separate requests, (3) R and S are independent for a given request, and
(4) fR(r) ∝ r. The results are shown in Figure 3. Across all points tested for both algorithms,
theoretical and simulation results differed by less than 15%, and generally agreement was
much closer. This even includes loads greater than .85, which is quite high for most systems.
The fact that our formulas gave an accurate prediction indicates that either these assumptions
are approximately satisfied by the system, or our formula is robust to violations of these
assumptions.

The trace data (available at http://www.leosingleton.com/gt/disktraces/) was col-
lected by Singleton et al. and used in [47]. The trace was collected using a Linux 2.6 web
server with an ext3 journaling filesystem. The data consists of a sequence of locations
(measured by starting block number) and the amount of memory blocks requested. We
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Figure 3: Predicted average access time compared to simulated access time using a real-world request
stream. Size and location of memory requests were taken from a web server trace, and interarrival times
were randomized to simulate Poisson arrivals under a range of system loads.

mapped block numbers to locations on a disk, assuming blocks are indexed starting from the
outermost track. Consecutive requests for adjacent memory were treated as a single request;
we discussed this technique in Section 2 as a way to adapt our derivation to non-Poisson
arrival sequences.

5. Access Time under Zone Bit Recording

In disks with zone bit recording (ZBR) the transfer rate is highest for the outer tracks,
meaning that S tends to be smaller for the outer tracks. However, the derivation in Section 3
assumes that job size is independent of track, so the derivation does not strictly apply to disks
with ZBR. In this section we discuss how ZBR can be approximated using a variant of our
model. We also discuss the average access time conditioned on R, a subject not discussed
above, and how it can be approximated.

The most natural way to model ZBR is to assume that the length of track accessed
by a memory request is independent of R, but the transfer time is proportional to 1/R (the
statistics of the rotational latency would not change). In this more general case we let S(r)
be a random variable denoting the size of a job whose track is at radius r; S is the size of a
job not conditioned on its radius. Our entire derivation, except the calculation of E[P], can
be easily modified to work for general S(r), and we will show that E[P] can in practice be
exceptionally well approximated. There are two things which we would like to approximate:
the average access time of the system, E[T] and the average access time for jobs conditioned
on R, E[T | R = r].

As in Section 3, we only include the analysis for C-SCAN; SCAN is a straightforward
extension.
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5.1. Incorporating S(r)

We keep the definitions of M and P from Section 3. In addition, we define M(r) and P(r) to
be M and P conditioned on R = r. The average wait time of a job at radius r will then be
E[T(r)] = E[M(r)] + E[P(r)].

In calculating E[T] = E[M] + E[P], E[M] can be calculated exactly, and E[P] can be
very well approximated. The only change to our derivation of E[M] is that the equilibrium
density of the location of the head, fH(r), must be modified. Using the argument from
Section 3.4

fH(r)dr ∝ 1
σ
dr + λτE[S(r)]fR(r)dr (5.1)

which normalizes to

fH(r) =
1

τ − τ0

(
1
σ
+ λτfR(r)E[S(r)]

)

. (5.2)

The problem is our derivation of E[P]; we assumed that the number NQ of labels in
the system was independent of the sizes of the jobs waiting to be processed. But in the ZBR
setting these quantities are not independent, because they both correlate with the location of
the head. Our approach is to ignore any such correlation and simply plug fS(·) (the weighted
sum of the distributions across all radii) into our formulas above.

To validate this approximation to E[T] we simulated our mathematical model, but
using a variety of dependencies between R and S, and comparing it to the behavior predicted
by our approximation. Figure 4(a) shows the results. For calculating the overall average
access time our approximation works exceptionally well in all cases we tried: so well in fact
that we suspect our formula may still be exact in this more general case, though we have not
been able to prove it.

In calculating E[T(r)], M(r) can still be calculated exactly. We use the modified fH(·)
and condition on the location rh of the head when a tagged job arrives:

E[M(r)] =
τ0
τ

(
τ0
2

+
(r − rmin)

σ

)

+
τ − τ0
τ

∫ rmax

rh=rmin

1
σ
(rh − r)fH(rh)drh

+
τ − τ0
τ

∫ rmax

rh=rmin

(
1
σ
(rmax − rh + r − rmin) + τ0

)

fH(rh)drh.

(5.3)

However, we do not have a rigorous approach to P(r). Instead, we approximate E[P(r)]
by the approximate E[P] discussed above, uniformly for all r. Figure 4(b) compares this
approximation to simulation, and shows that this approach yields a reasonable estimate
of the real performance. Our approximation is an overestimate for some tracks and an
underestimate for others; these appear to balance out making our approximation to the
overall E[T] quite accurate.
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Figure 4: Our approximations to zone bit recording. (a): our approximation to the overall average
access time under SCAN and C-SCAN. The difference between prediction and simulation is not visually
discernible for either SCAN or C-SCAN. (b): our approximation to E[T(r)] compared to simulation results
under C-SCAN. Agreement is reasonable, but not as impressive as for the overall average access time. For
both plots rmin = 2 cm, rmax = 10 cm, σ = .33 cm/ms, and the disk spins at 7200 RPM.

5.2. Error Bounds

It is possible to loosely bound the errors of our approximation for the overall average access
time. Recall that in Section 3.3 we saw E[P] = ρE[Se] + E[NQ]E[S]. In the case of general
S(r) we bound this contribution by the extrema of E[S(r)] over all r. This yields

ρE[Se] + E
[
NQ

]
min

r
E[S(r)] ≤ E[P] ≤ ρE[Se] + E

[
NQ

]
max

r
E[S(r)] (5.4)

which implies

E[M] + ρE[Se]
1 − λmin

r
E[S(r)]

≤ E[T] ≤ E[M] + ρE[Se]
1 − λmax

r
E[S(r)]

. (5.5)

The quality of the bounds depends only on maxrE[S(r)] and minrE[S(r)], rather than on
higher moments.

6. Applications to Disk Arrays

This section argues that, though our analysis is based on a single disk, it is still useful for
understanding disk arrays. As a proof of concept, this section shows how our formulas can be
used to quantify the benefits of the following optimizations: mirroring, specialized memory
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layouts, and short stroking. In order to be as realistic as possible, we assume that the disks
use zone bit recording and apply the approximation from the previous section.

Mirroring is the practice of storing identical data on multiple disks. While mirroring
is done partly for redundancy, which is outside the scope of this paper, it also brings
performance benefits. Under mirroring, while a write request still goes to all disks, a read
request can be serviced by any single disk. Assuming perfect load balancing, the effect of
mirroring is captured in our model by simply reducing the request arrival rate λ, where
the amount of reduction is dependent on the read-write ratio in the workload under
consideration. Mirroring is an especially simple example of how our closed form formula can
be applied to evaluate performance quickly. Memory layout and short stroking are somewhat
more involved.

6.1. Alternate Memory Layouts

In Section 2 we discussed using fR(r) ∝ r to reflect the fact that, when using zone bit
recording, the storage capacity of a track is roughly proportional to its radius. However, fR(·)
is the density of incoming requests, not of memory itself. On a single disk a logical unit of
memory can be placed on any of the tracks (or several adjacent tracks if it is large); if the
choice of track is based on its access frequency, fR(·) can be quite different. In a disk array,
memory can also be placed on any of several disks. This flexibility has allowed for many
optimizations of memory layout.

One memory placement optimization, which can be used for single disks or disk
arrays, is the organ-pipe arrangement. It is intended for use with the SCAN algorithm, in
which case it can reduce the average seek time. The organ-pipe arrangement places the most
accessed memory near the middle tracks, and it can be modeled by using an fR(·) which
peaks at (rmax + rmin)/2. We show such an experiment in Figure 5; use of the organ-pipe
arrangement does reduce average access time, but only by a small amount, even at high load.
This is as we would expect, because at high load E[T] is dominated by E[P] rather than
E[M].

For an example which uses a disk array, imagine that an array has two disks with
different seek speeds and has its memory split equally between them. Imagine also that the
array serves a request stream of rate λ. If the memory is partitioned randomly each disk
will receive requests with rate λ/2, and the total average access time is found by averaging
E[T] for the two disks. But if the more frequently accessed memory is placed on the higher
performance disk, the arrival rates to the two disks will be γλ and (1 − γ)λ for some γ , and
the total average access time will be a weighted average of E[T] for the disks.

6.2. Short Stroking

In short stroking, data is stored only in the outer tracks of a disk and the head only scans
over these tracks. This is done in order to take advantage of the decreased transfer time and
reduce the interval over which the head must scan. There is also the benefit of fewer requests
going to any one disk, since it contains less memory than it would otherwise.

To quantify these benefits, imagine we have one disk worth of data and requests
arriving as a Poisson process with rate λ. The data can be stored on a single disk of type
D, using its full capacity, or on two identical disks of type D′. A D′ disk can be made from
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Figure 5: Performance of SCAN scheduling for the organ-pipe arrangement of data and random allocation
of memory among tracks. The benefits of the organ-pipe arrangements are mild but consistent. For the
plot rmin = 2 cm, rmax = 10 cm, σ = .33 cm/ms, the disk spins at 7200 RPM, and each request is for 50 cm
of physical track length. For fR(·) under organ-pipe we use a quadratic which peeks at (rmin + rmax)/2 and
vanishes at the extremal tracks.

aD disk by storing memory only in its outer tracks; they are identical in all parameters except
rmin. In order that two D′ disks have as much memory as a single D disk:

r ′min =

√
1
2
r2max +

1
2
r2min.

(6.1)

Assuming that each request is only for data on one disk, each D′ will receive requests at
rate λ/2. The average access time for requests in the striped system will be given by (3.11),
except with λ → λ/2, rmin → r ′min, and the statistics of S are modified to condition on a job’s
radius being > r ′min. Figure 6(a) shows the predicted benefits of short stroking as a function of
load.

There are several ways that short stroking improves access time: faster reads/writes,
fewer tracks to scan over, and less load on each disk. The technique above shows how much
benefit is given by all of these factors together, but we can actually quantify how much
each of them individually contributes to the improved performance. If we do not change
the distribution of S in going from the D disk to the D′ disks, the performance of the striped
system will not include the benefit of having faster reads/writes. Similarly, dividing σ by
(rmax − rmin)/(rmax − r ′min) in the striped system will remove the benefit of having fewer
tracks to seek over. If we use the original value of λ in the striped system, this removes the
benefit of reduced load on each disk. Figure 6(b) shows an example of this breakdown of
benefits.

Our original disk D could have been striped over any number n of disks; Figure 7
shows the performance as a function of n, and the diminishing returns are evident. We show
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Figure 6: (a) The benefits of short stroking. (b) The benefits of short stroking, decomposed into compo-
nents: (a) reduced arrival rate into each disk; (b) less seek time since fewer tracks are used; (c) faster
data access at larger radii. For this plot rmin = 2 cm, rmax = 10 cm, σ = .33 cm/ms, and the disk spins
at 7200 RPM disk. Each request is for 50 cm of physical track length, and the scheduling policy is C-
SCAN.
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Figure 7: The benefit of short stroking versus the number of disks used, shown for perfect balancing of
requests between disks and for the case that all requestedmemory is on one disk. For this plot, rmin = 2 cm,
rmax = 10 cm, σ = .33 cm/ms, and the disk rotates at 7200 RPM. Each request is for 1 cm of memory and the
scheduling policy is C-SCAN.
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performance both for perfect load balancing, where each disk receives requests at a rate λ/n,
and worst-case load balancing, where all the memory which actually gets accessed is placed
on one disk. In designing disk arrays, this point of diminishing returns can be compared to
the marginal cost of adding additional disks.

7. Conclusion and Future Work

This paper fills the longstanding need for an analytical model of disk performance which
is versatile, but simple enough to be easily applied. We show that it accurately predicts
the performance of individual disks and can be used to quantify the benefits of various
optimization techniques, without the need for simulations or numerical methods. This makes
it valuable in designing disks and as a tool for predicting the performance of existing disks in
novel situations. For example, it can quantify the benefits of increasing the speed of seeking,
predict how performance will change when the average file size on a disk changes, and even
identify the point of diminishing returns for striping in a disk array.

The next step is to leverage our model to attain a greater understanding of disk
arrays, building on the preliminary results of Section 6. In particular, we desire a multidisk
model in which the activities of the heads can be correlated; for example, if the disks were
mirrored, incoming requests could be assigned to whichever head was closest. The problem
of correlated heads is a significant mathematical challenge and will require techniques
beyond the current treatment. Another avenue is to use our techniques to solve problems
outside of disk scheduling. “Shuffling” applies to any system with one continuous degree of
freedom, so long as the system is adjusted along a fixed path and “jobs” can only be processed
when it is at a particular fixed value.

Disks will continue to play a prominent role in computer hardware for the foreseeable
future, and this work presents a useful tool for their design and implementation.

Appendix

Derivation for SCAN

In SCANwe still have E[T] = E[P] +E[M], and the derivation of E[P] still applies; it is only
in calculating E[M] that SCAN and C-SCAN differ.

In C-SCAN the average time between visits to any track is a well-defined cycle time
τ . But for SCAN it depends on which direction the head was moving when it last visited the
track and on which track is being observed. We define the more general functions:

τo(r)= the average time for the head to return to radius r after it passes it going outward,

τi(r) = the average time for the head to return to radius r after it passes it going inward.
(A.1)

The average time for the head to return to the same location and direction of motion must be a
constant τ∗ = (2(rmax − rmin)/σ)/(1 − ρ). We calculate τo(r) by observing that in one sweep
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from r to rmax and back, the average amount of work done must be equal to the total amount
of work that arrives with a radius > r during τ∗. Hence

τo(r) = 2
(
rmax − r

σ

)

+ (λτ∗)E[S]
∫ rmax

r

fR(x)dx, (A.2)

and similarly for τi(r).
The fH(·) from our C-SCANderivationmust also be changed. Instead we define fo

H(r)
such that fo

H(r)dr is the probability that the head is in (r, r + dr) and moving outward, and
similarly fi

H(r). Then

fo
H(r)dr ∝ 1

σ
dr + (λτi(r))E[S]fR(r)dr,

fi
H(r)dr ∝ 1

σ
dr + (λτo(r))E[S]fR(r)dr,

(A.3)

andwe normalize by setting
∫
fo
H(r)dr+

∫
fi
H(r)dr = 1. Finally, we must condition on whether

rl is more or less than rh and on the direction of travel of the head:

E[M] =
∫ rmax

rmin

∫ rl

rmin

1
σ
(rl − rh)fo

H(rh)fR(rl)drh drl

+
∫ rmax

rmin

∫ rmax

rl

1
σ
(2rmax − rl − rh)fo

H(rh)fR(rl)drh drl

+
∫ rmax

rmin

∫ rl

rmin

1
σ
(rl + rh − 2rmin)fi

H(rh)fR(rl)drh drl

+
∫ rmax

rmin

∫ rmax

rl

1
σ
(rh − rl)fi

H(rh)fR(rl)drh drl.

(A.4)

While perhaps daunting, this formula can easily be evaluated using Mathematica or other
symbolic math software.
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