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ABSTRACT

An increasingly prevalent technique for improving response
time in queueing systems is the use of redundancy. In a
system with redundant requests, each job that arrives to
the system is copied and dispatched to multiple servers. As
soon as the first copy completes service, the job is considered
complete, and all remaining copies are deleted. A great deal
of empirical work has demonstrated that redundancy can
significantly reduce response time in systems ranging from
Google’s BigTable service to kidney transplant waitlists.
‘We propose a theoretical model of redundancy, the Redun-
dancy-d system, in which each job sends redundant copies
to d servers chosen uniformly at random. We derive the first
exact expressions for mean response time in Redundancy-d
systems with any finite number of servers. We also find
asymptotically exact expressions for the distribution of re-
sponse time as the number of servers approaches infinity.

1. INTRODUCTION

Redundancy — the idea of dispatching multiple copies of
the same job and waiting for the first copy to complete ser-
vice — is an important strategy for reducing response times
in applications ranging from Google’s BigTable service to
kidney transplant waitlists.

Redundancy provides significant response time improve-
ments because it exploits two sources of variability. First,
queueing times across servers can be highly variable due to
load from different applications. Redundant requests wait
in the queue at multiple servers, so they experience the
minimum queueing time across these servers. Second, the
same job might see highly variable service times at different
servers. For example, in computer systems applications such
as web queries, external factors such as network interference,
disk seek time, and background tasks can cause a query to
be slowed down unpredictably. This slowdown dominates
the computation time required for the query, which is in-
herently quite small. This causes the query’s actual service
time to be very long relative to its inherent size. For exam-
ple, a web query can be slowed down by up to a factor of 27
due to unpredictable background load [5]. Sending redun-
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Figure 1: The Redundancy-d system consists of k
servers, each providing independent exponential ser-
vice times with rate . Jobs arrive to the system as a
Poisson process with rate k). Each job sends copies
to d servers chosen uniformly at random. A job is
complete when its first copy completes service.

dant requests enables a job to receive the minimum service
time across servers.

While it is clear that redundancy can lead to a significant
reduction in response time, it is often difficult to determine
how much redundancy is needed to obtain such improve-
ments. Is sending only two copies enough to achieve most
of the potential benefit? What is the additional benefit of
increasing the number of copies?

We study these questions using a theoretical model called
the Redundancy-d system (see Figure 1). The Redundancy-
d system consists of k servers; each arriving job makes d
copies of itself and dispatches these copies to d different
servers chosen uniformly at random. The job is considered
complete as soon as the first copy completes service.

Our primary contribution is providing the first exact anal-
ysis of response time in the Redundancy-d system. First, we
derive exact closed-form expressions for mean response time
as a function of the number of servers k and the number of
copies per job, d, by modeling the system as a Markov chain.
Second, we consider the system in the limit as the number
of servers k approaches infinity. Under a standard asymp-
totic independence assumption, we derive an asymptotically
exact expression for the distribution of response time. Our



exact analysis allows us to quantify the magnitude of the
benefit from increasing d.

2. ANALYSIS

Let p= % denote the system load. This is the total arrival
rate to the system (k) divided by the maximum service rate
of the system (ku). The system is stable as long as p < 1.

2.1 Markov Chain Approach

We begin by deriving an exact expression for mean re-
sponse time in the Redundancy-d system as a function of k,
d, A, and pu.

THEOREM 1. The mean response time in the Redundancy-
d system with k servers is

=Y (1)

i=d e
“<d 1>

Our approach to proving Theorem 1 involves modeling
the system as a Markov chain. We define a job’s class as
the set of d particular servers to which the job sends copies.
There are (s) possible classes; all classes are equally likely
since each job chooses its servers uniformly at random. Fol-
lowing [2], our system state is a list of all jobs in the system
in the order in which they arrived, where we track the class
of each job. We obtain the limiting distribution of the state
space as an immediate consequence of Theorem 1 in [2].

THEOREM 2. In the Redundancy-d system, the limiting
probability of being in state (¢m, Cm—1,..., C1) 1S
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where c; is the class of the job in position j in the queue,
S; 1is the set of all servers working on jobs 1,...,5 (|S;| is
the number of servers in this set), and C is a normalizing
constant.
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One might think that E[T] follows immediately from the
limiting distribution of the state space. Unfortunately, this
is not the case because to find mean response time we must
first find 7, = Pr{m jobs in system}. This requires sum-
ming over all ( ) possible classes for each queue position j,
1 < j < m. This is not straightforward because the limiting
probabilities depend on the order of all jobs in the system
as well as their classes.

The key observation that helps us aggregate states is that
we do not actually need to keep track of the specific class
in each position in the queue. Instead, it is sufficient to
track the number of servers that are busy working on the
first j jobs in the queue. We leverage this observation by
collapsing our state space so that instead of (ﬁ) possible
classes for each position in the queue, we now have at most
k — d possible numbers of servers busy. We define P(i,m)
to be the limiting probability that there are m jobs in the
system and ¢ busy servers, up to a normalizing constant C
that ensures that the limiting probabilities sum to 1. To
find 7, we need to find P(i,m) for alld < < k.

At a high level, our approach takes the following steps:

1. Write recurrences for P(i,m), the limiting probability
that there are ¢ busy servers and m jobs in the system.

2. Derive the normalizing constant, C.

3. Use generating functions to obtain closed-form expres-
sions for E[N] = Y.°°_ m,, and E[T] = E[N]

m=0

The details of the proof can be found in [3].

2.2 Large System Limit Approach

In Section 2.1 we derived exact expressions for mean re-
sponse time in the Redundancy-d system using a Markov
chain approach. Unfortunately, this approach does not give
us the distribution of response time. Even though we obtain
the full distribution of the number of jobs in the system, we
cannot apply Distributional Little’s Law because jobs do not
necessarily leave the system in the order in which they ar-
rive. In this section we consider an alternative approach to
analyzing the Redundancy-d system that yields closed-form
expressions for the distribution of response time, which are
exact under an asymptotic independence assumption as the
number of servers k — oo.

THEOREM 3. Ask — oo, the response time in the Redun-
dancy-d system with d > 1 has c.c.d.f.

d
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assuming queues are d-wise asymptotically independent.

Theorem 3 relies on the assumption that the queues are
asymptotically independent. To understand what we mean
by asymptotic independence, first define a job’s non-redundant
response time on a server i, T;, to be the response time that
the job would experience if it arrived to the Redundancy-
d system and sent only one copy to a randomly chosen
server i. The queues are d-wise asymptotically independent
if knowing a job’s non-redundant response time on servers
i1,...,td—1 does not tell us anything about the job’s non-
redundant response time on server iq. The analogue of this
assumption has been proved in a wide range of settings [4,
6, 1]. Unfortunately, the proofs presented in the above work
do not extend easily to the Redundancy-d system. We con-
jecture that the asymptotic independence assumption holds
in the Redundancy-d system and leave the proof of this con-
jecture open for future work.

To prove Theorem 3, we consider a tagged arrival to the
Redundancy-d system, which we assume without loss of gen-
erality arrived at time 0 to a system that is stationary. Our
goal is to find the probability that this tagged job is still in
the system at time ¢ > 0. This is simply the probability that
the job’s non-redundant response time exceeds ¢ on all d of
its servers; using our asymptotic independence assumption,
this is Pr{T; > t}9.

To understand the probability that a job’s non-redundant
response time on server i exceeds ¢, observe that there are
two ways in which the tagged arrival could have not com-
pleted service at server i by time t. First, the tagged job
could have size larger than ¢ at server ¢. Second, even if the
tagged job has size S; < t, it will not complete at server %
by time t if it does not enter service by time ¢t — .S;, that is,
if its non-redundant queueing time at server i, TZ.Q7 exceeds
t—S;. This argument allows us to write an integral equation
for Fr, (t) in terms of F ¢ (t):
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Figure 2: Mean response time E[T] as a function of d
under low (p = 0.2, solid red line), medium (p = 0.5,
dashed green line), and high (p = 0.9, dot-dashed
blue line) load.

Next we need to understand F ¢ (t), the probability that

the tagged job has not entered service at server ¢ by time ¢
(assuming the tagged job has no other copies). To do this,
we look back in time to the most recent arrival to server 7
before the tagged job arrived. Call this most recent arrival
job A. Suppose job A arrived at time t —Y < 0. The tagged
job will not enter service by time t if and only if either

1. Job A cannot have entered service at server ¢ by time ¢
because there is still some other job ahead of it. This is
equivalent to saying that for job A, TZ.Q > Y, recalling
that T is the time that job A would spend in the
queue at server 1 if it had no other copies.

2. Job A is in service at server i at time ¢. That is, job A
has not departed from server ¢ or from any of its other
d — 1 servers by time t.

This reasoning yields the following equation for F, . (T):

FTQ (t) — / )\dekd(t—y) (FTiQ (y)+

4 t

(Pr,(y) = Fpa(u) Pr, (s)* ") dy.

7

Solving the system of two integral equations yields the
closed-form expression for the probability that response time
exceeds t given in Theorem 3.

3. RESULTS

Our exact analysis allows us to quantify the response time
benefit obtained from increasing d. We assume that & is
large and thus leverage our asymptotic results from Sec-
tion 2.2. Throughout this section we assume the service
rate at every server is p = 1.

Figure 2 shows mean response time E[T] in the Redundancy-

d system as a function of d for low, medium, and high load.
Mean response time decreases as d increases, with this ben-
efit being greatest under higher loads. This is because re-
dundancy reduces mean response time by taking advantage
of two sources of system variability: queueing time variabil-
ity and service time variability. When load is low, queueing

Figure 3: Probability that response time 7' < t when
d = 2 under low (p = 0.2, solid red line), medium
(p = 0.5, dashed green line), high (p = 0.9, dot-dashed
blue line), and very high (p = 0.99, dotted purple
line) load.

times are low so the primary benefit of redundancy comes
from a job receiving the minimum service time on d servers.
When load is high, queueing times are typically higher so
there is more opportunity to reduce response time by re-
ducing queueing time as well as service time. At all loads,
the most significant improvement occurs between d = 1 and
d = 2. This improvement ranges from a factor of 2 at p = 0.2
to a factor of 6 at p = 0.9. From Theorem 3, we see that as
d becomes large, mean response time scales in proportion to
é7 indicating that there is decreasing marginal benefit from
further increasing d.

Thus far we have discussed only the mean response time;
however our asymptotic analysis provides the full response
time distribution. Figure 3 shows that the response time
improvement is even bigger at the tail of response time than
at the mean; the 95th percentile of response time decreases
by up to a factor of 8 when p = 0.9.
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