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Abstract. Redundancy is an important strategy for reducing response time inmulti-server
distributed queueing systems. This strategy has been used in a variety of settings, but
only recently have researchers begun analytical studies. The idea behind redundancy is
that customers can greatly reduce response time by waiting in multiple queues at the
same time, thereby experiencing the minimum time across queues. Redundancy has been
shown to produce significant response time improvements in applications ranging from
organ transplant waitlists to Google’s BigTable service. However, despite the growing
body of theoretical and empirical work on the benefits of redundancy, there is little work
addressing the questions of how many copies one needs to make to achieve a response
time benefit, and the magnitude of the potential gains.

In this paper we propose a theoretical model and dispatching policy to evaluate these
questions. Our system consists of k servers, each with its own queue. We introduce the
Redundancy-d policy, under which each incoming job makes copies at a constant number
of servers, d, chosen at random. Under the assumption that a job’s service times are
exponential and independent across servers, we derive the first exact expressions for mean
response time in Redundancy-d systems with any finite number of servers, as well as
expressions for the distribution of response time which are exact as the number of servers
approaches infinity. Using our analysis, we show that mean response time decreases as d
increases, and that the biggest marginal response time improvement comes from having
each job wait in only d� 2 queues.
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1. Introduction
In 2009, a unique aspect of Steve Jobs’s liver transplant
made headlines: Even though Jobs lived in California,
his transplant was performed in Tennessee. Typically,
a patient waiting for a deceased donor organ in the
United States puts his name on the waitlist for the
geographic region in which he lives. Jobs did what is
known as multiple listing: His name appeared on the
waitlist in California and Tennessee, thereby reduc-
ing the time he had to wait to receive a transplant
when a liver became available sooner in Tennessee than
in California. Multiple listing is becoming an increas-
ingly common strategy to reduce the waiting time for
deceased donor organ transplants: It allows patients to
experience the minimum waiting time across several
waitlists (Merion et al. 2004). Because of the signifi-
cant delay reduction that multiple listing offers, ser-
vices such as OrganJet have begun to facilitate multiple
listing on a broad scale (Ata et al. 2012).

The benefits of multiple listing, also called redun-
dancy, are not unique to organ transplant waitlists.
In computer systems, redundancy is defined as cre-
ating multiple copies of the same job and dispatch-
ing these to different servers, waiting for only the
first copy to complete. In the context of computer sys-
tems, redundancy is useful because server speeds are
unpredictable since they depend on external condi-
tions such as garbage collection, network interrupts,
or background work. In fact, it has been shown that
the same job can take 12 to 27 times longer to run
on one server than another (Ananthanarayanan et al.
2013, Xu et al. 2013). In applications such as web page
downloads and Google search queries, empirical com-
puter systems work has demonstrated the benefit of
using redundancy to minimize the mean and the tail
of response time (e.g., Ananthanarayanan et al. 2013,
2010; Dean and Barroso 2013; Vulimiri et al. 2013).
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Redundancy is useful in systems that have signifi-
cant and unpredictable server variability. However, it
is often difficult to know how much redundancy is
needed to achieve an appreciable benefit. How much
faster does a search query complete if it is run on two
servers rather than one?Does a patient receive a kidney
transplant sooner if she multiple lists in three regions
rather than two? What about five? Ten?

In this paper, we study these questions by intro-
ducing and analyzing a dispatching policy called
Redundancy-d (see Figure 1). We consider a theoret-
ical model consisting of k servers, each with its own
queue. Under the Redundancy-d policy, each arriv-
ing job joins the queue at d of these servers, chosen
uniformly at random. Here d is a constant that does
not depend on k, and typically is small relative to k.
Each server provides exponential service times with
rate µ and works on the jobs in its queue in first-come
first-served order. A job may be in service at multiple
servers at the same time; here we assume that its ser-
vice times are i.i.d. across servers. A job is complete as
soon as the first copy finishes service, at which time all
remaining copies instantaneously disappear from the
system regardless of whether they are in the queue or
in service.
Our primary contribution is providing, to our knowl-

edge, the first analysis of response time under
the Redundancy-d policy. Our analysis follows two
approaches. First, we derive an exact closed-form
expression for mean response time by modeling the
system as a Markov chain with a very detailed state
space that tracks the location of all copies of all jobs
in the system. The difficulty in finding mean response
time for this system lies in aggregating the stationary
probabilities for our detailed states, which is necessary
to find the distribution of the number of jobs in the
system. We present a novel state aggregation approach
to accomplish this. We then use generating functions
to derive mean response time under Redundancy-d
(Section 4).

Figure 1. The Redundancy-d Policy

k�
d

1 2 3 k

Notes. The system consists of k servers, each providing exponential
service times with rate µ. Jobs arrive to the system as a Poisson
process with rate kλ. Under the Redundancy-d policy, each job sends
copies to d servers chosen uniformly at random. A job is considered
complete as soon as the first of its copies completes service.

Next we turn to analysis of the distribution of re-
sponse time. For this we need a different approach.
We consider the system in the limit as the number
of servers k approaches infinity. We make the fur-
ther assumption that in this asymptotic regime, the
work in different queues is independent; such indepen-
dence has been shown to hold under related policies,
for example, Join-the-Shortest-Queue (JSQ) dispatch-
ing (Mitzenmacher 2001, Vvedenskaya et al. 1996, Ying
et al. 2015). Under these assumptions, we formulate
a system of differential equations that describes the
evolution of the system. Finding the right differential
equations is not straightforward because the system
has a very complicated departure process: Each ser-
vice completion results in the removal of d copies from
different servers. We use our differential equations to
derive an asymptotically exact expression for the dis-
tribution of response time (Section 5).

We then use our analytical results to investigate the
effect of d on response time under Redundancy-d (Sec-
tion 6). This problem is reminiscent of the power-of-d
results that exist in the literature for JSQ dispatching
(with no redundancy) (Mitzenmacher 2001). While the
trends we observe might be expected, our exact analy-
sis allows us to quantify the magnitude of these trends
for the first time. As d increases, mean response time
decreases, and the biggest improvement comes from
adding just a single extra copy of each job (d � 2).
For example, at high load, setting d � 2 reduces mean
response time by a factor of six. Our results support
the empirical observation that the improvement is even
more pronounced in the tail: At high load, setting d� 2
reduces tail response time by a factor of eight. We fur-
ther show that when d is high, mean response time
drops in proportion to 1/d. Leveraging the fact that the
largest benefit comes from having a single extra replica
(d � 2), we introduce the idea of “fractional d” redun-
dancy, in which each job makes on average between
one and two copies. We find that even with fewer than
two copies on average, redundancy still provides a sig-
nificant response time improvement.

Note that service centers in practice, including those
listed above, contain elements our model cannot yet
incorporate, for example, dependent service times at
different queues, reneging, and nonexponential ser-
vice times. Nevertheless, we believe that by develop-
ing an analytical model that incorporates redundancy
and admits closed-form solutions we provide high
level insights into the effects of redundancy, and a
building block for future extensions that may better
modelmore complex redundancy systems. In addition,
some relaxation of our model’s assumptions is possi-
ble numerically. While our model assumes exponen-
tially distributed service times, the analytical approach
we present in Section 5 applies much more generally.
We develop a numerical extension to our analytical
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approach, which allows us to study the effect of d on
response time under nonexponential service time dis-
tributions (Section 6.2).
The remainder of this paper is organized as follows.

In Section 2 we review prior work on related redun-
dancy systems. In Section 3 we introduce our theoret-
ical model and discuss how it is related to practical
applications. Sections 4 and 5 present our analytical
results for the mean and distribution of response time,
respectively. In Section 6 we use our analysis to inves-
tigate the impact of the choice of d on response time.
In Section 7 we present concluding remarks..

2. Prior Work
While redundancy is becoming an increasingly com-
mon strategy for reducing response time in queueing
systems, the theoretical work analyzing its perfor-
mance is limited. In this section we discuss how the
Redundancy-d policy, which we propose and analyze,
is related to several models existing in the literature.
The (n , k) fork-join system has n servers to which

each arriving job sends copies of itself. The job is
considered complete when k 6 n of these copies are
complete. Unlike Redundancy-d, in the (n , k) fork-join
system each job sends copies to all servers and may
need multiple copies to complete. The (n , k) fork-join
system was first proposed in Joshi et al. (2012), and
bounds and approximations were derived in Joshi et al.
(2012, 2014), Shah et al. (2012).
In Shah et al. (2013), a variation on the (n , k) fork-join

systemwas proposed in which each job sends copies to
r 6 n of the servers and is complete when k 6 r of these
copies finish service. Shah et al. (2012) and (2013) study
the optimal value of r with respect tominimizingmean
response time in central-queue and distributed-queue
models. The Redundancy-d policy can be seen as a
distributed-queue (n , 1) fork-join system with r � d.
However, neither Shah et al. (2012) nor (2013) provides
any analysis quantifyingmean response time as a func-
tion of r. To our knowledge, our paper provides the
first analysis of response time in such a system.

The scenario in which only one copy of a job needs
to complete has been studied in several other papers.
For example, Koole and Righter (2009) studies optimal
allocation of jobs to servers in a system where jobs are
allowed to run onmultiple servers at the same time but
only one copy needs to complete. The authors find that
for service time distributions with decreasing failure
rate it is optimal to send redundant copies of each job
to all servers. While Koole and Righter (2009) makes
it clear that more redundancy is better, they do not
analyze the performance of redundancy as a function
of the degree of redundancy.

In Vulimiri et al. (2013), approximations for response
time are derived for a system where each job sends
copies to multiple randomly chosen servers, but unlike

under Redundancy-d, extra copies are not cancelled
upon completion of the first copy. This no-cancellation
assumption greatly simplifies the analysis because, as
the number of servers increases, one can view each
server as being an independent M/M/1 queue. When
extra copies are cancelled, we can no longer view the
system as independent M/M/1s.
The closest work to the present work is Gardner

et al. (2015), which considers a general redundancy
system where each job has a class that specifies the
subset of servers to which it sends copies. The sys-
tem is modeled as a Markov chain in which the state
tracks the classes of all jobs in the system in order
of arrival; Gardner et al. (2015) derives the limiting
distribution on this state space. While we show in
Section 4 that Redundancy-d can be modeled in this
fashion, Gardner et al. (2015) only finds response time
in a few simple two- or three-server systems. More
important, it is unclear from Gardner et al. (2015) how
to use the combinatorially complex limiting distribu-
tion to find response time more generally, including
under Redundancy-d. We provide this analysis in the
present work (see Section 4).

3. Model
We consider a k-server system, shown in Figure 1. Jobs
arrive to the system as a Poisson process with rate kλ.
Under Redundancy-d, upon arrival each job sends a
copy of itself to d servers chosen uniformly at random
without replacement. Each server provides exponen-
tial service times with rate µ and works on the jobs in
its queue in first-come first-served order. A job’s ser-
vice times are i.i.d. across servers; the job may be in
service at multiple servers at the same time, in which
case it experiences the minimum service time among
all servers at which it is in service. A job is consid-
ered complete as soon as its first copy completes, at
which time all remaining copies disappear from the
system regardless of whether they are in service or in
the queue.

In the case of the organ transplant waitlist applica-
tion, the i.i.d. exponentially distributed service times
in our model represent the time for a deceased donor
organ to become available, and response time is the
time from when a patient joins the waitlist until she
receives an organ. It is reasonable to imagine that
organs become available in different regions according
to independent processes (as deaths occur). A person
waiting at the head of the queue in two regions waits
for the minimum “service time” across these regions.

We define the system load to be ρ � λ/µ. This is
the total arrival rate to the system (kλ) divided by the
maximum service rate of the system (kµ). The system
is stable as long as ρ < 1 (see Section 4).
Our goal is to analyze response time, T, under

Redundancy-d as a function of the arrival rate λ, the
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service rate µ, the number of servers k, and the degree
of redundancy d, to help us understand the role redun-
dancy can play in reducing response time.

4. Markov Chain Analysis
The purpose of this section is to prove Theorem 1,
which gives a simple expression for the mean response
time under Redundancy-d in a system with k servers.
Theorem 1. The mean response time under Redundancy-d
in a system with k servers is

E[T]�
k∑

i�d

(
kµ

(k−1
d−1

)( i−1
d−1

) − kλ
)−1

. (1)

The remainder of this section is devoted to proving the
above result.

4.1. Alternative System View: Class-Based
Redundancy

We define a job’s class as the set of d particular servers
to which the job sends copies. There are

(k
d

)
possi-

ble classes; all classes are equally likely since each
job chooses its servers uniformly at random. Let λclass
denote the arrival rate of any class, where

λclass �
kλ(k

d

) .
Following Gardner et al. (2015), our system state is a

list of all jobs in the system in the order in which they
arrived, where we track the class of each job. We write
the state as (cm , cm−1 , . . . , c1), denoting that there are
m jobs in the system, c1 is the class of the oldest job in
the system (the first of the m jobs to arrive), and ci is
the class of the ith job in the system in order of arrival.
Since the state tracks all jobs in the system in order
of arrival, the state information implicitly tracks which
jobs are in service at which servers. For example, the
oldest job in the system, which has class c1, must be in
service at all d of its servers.
Once we have defined the notion of a job class and

written the system state as defined above, we obtain
the following result for the stationary distribution of
the state space:
Theorem 2. Under Redundancy-d, the stationary probabil-
ity of being in state (cm , cm−1 , . . . , c1) is

π(cm ,cm−1 ,...,c1) �C
m∏

j�1

λclass

|S j |µ
, (2)

where S j is the set of all servers working on jobs 1, . . . , j (|S j |
is the number of servers in this set) and

C�

k∏
i�d

(
1−

( i−1
d−1

)
λ(k−1

d−1

)
µ

)
is a normalizing constant representing the probability that
all servers are idle.

Proof. The general form of the stationary probabilities
given in (2) is an immediate consequence of Theorem 1
in Gardner et al. (2015). However, the normalizing con-
stant C is not derived there, and this is the heart of our
proof.

Let πm be the stationary probability that there are
m jobs in the system (note that πm results from
aggregating states (cm , . . . , c1) over all possible classes
c1 , . . . , cm). If we number our servers as 1 through k,
then combining the normalizing equation

∞∑
m�0

πm � 1,

with the form given in (2), we see that Pr{all servers
are idle} �C. We then derive C as follows:

C � Pr{all servers are idle}
� Pr{server k idle} ·Pr{server k−1 idle | server k idle}
· · ·Pr{server 1 idle | servers 2, . . . , k idle}

� Pr{server k idle} ·Pr{server k−1 idle | server k idle}
· · ·Pr{server d idle | servers d+1, . . . , k idle}, (3)

where the last line is due to the fact that if fewer than d
servers are busy then no jobs can be present.

First we will find Pr{server k idle}. Since the sys-
tem is symmetric in permuting the servers, each server,
including server k, has probability 1− ρ of being idle.

To find Pr{server k − l idle | servers k − l + 1,
. . . , k idle}, we consider a sequence of systems of
smaller and smaller size.We begin by rewriting the sta-
tionary probability given in (2) conditioning on servers
k − l + 1, . . . , k being idle:

Pr{system in state cm , . . . , c1 | servers k− l +1, . . . , k idle}

�


0 if n ∈ Sm for some k− l +16 n 6 k

C

Pl
·

m∏
j�1

λclass

|S j |µ
otherwise,

(4)

where Pl � Pr{servers k − l + 1, . . . , k are idle}. Now
consider a system that consists of only servers 1, . . . ,
k − l and only the

(k−l
d

)
classes of jobs that go to servers

1, . . . , k− l in the original system. The stationary proba-
bility of being in state cm , . . . , c1 in this system is exactly
that given in (4). That is, the stationary probability of
any state in our original system given that servers k −
l + 1, . . . , k are idle is the same as the stationary prob-
ability of the same state in the (k − l)-server system. In
particular, the time-average fraction of time any given
server is busy is the same in the two systems. In our
(k − l)-server system, the total arrival rate is

(k−l
d

)
· kλ

and the total service rate is (k − l)µ. Hence the time-
average fraction of time a given server is busy in the
(k − l)-server system is

ρk−l �

( (k−l
d

)(k
d

) · kλ) · ((k − l)µ)−1
�

(k−l
d

)(k
d

) · λ
µ
· k

k − l
.
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The probability that any server, and in particular server
k − l, is idle in this system, and hence in the original
k-server system given that servers k − l + 1, . . . , k are
idle, is 1− ρk−l .
Returning to (3), we have

C � Pr{server k idle} ·Pr{server k−1 idle | server k idle}
· · ·Pr{server d idle | servers d+1, . . . , k idle}

�

k−d∏
l�0
(1−ρk−l)

�

k−d∏
l�0

(
1−

(k−l
d

)(k
d

) · λ
µ
· k

k− l

)
�

k−d∏
l�0

(
1−

(k−l−1
d−1

)(k−1
d−1

) · λ
µ

)
�

k∏
i�d

(
1−

( i−1
d−1

)
λ(k−1

d−1

)
µ

)
. �

The form of the stationary probabilities given in (2)
is unusual. Although it looks like a product form, it
cannot be written as a product of per-class terms or as a
product of per-server terms. Example 1 illustrates this.

Example 1. Consider a system with k � 4 servers and
d � 2 copies per job. Suppose that there are currently
four jobs in the system. The first job has class A and its
copies are at servers 1 and 2. The second job has class
B and its copies are at servers 2 and 4. The third job has
class C and its copies are at servers 3 and 4. The fourth
job has class A (the same as the first job) and its copies
are at servers 1 and 2. Then the state of the system is
(A,C,B,A) and the stationary probability of being in
this state is

π(A,C,B,A) �

(
λclass

4µ

) (
λclass

4µ

) (
λclass

3µ

) (
λclass

2µ

)
,

where the rightmost term is the contribution of the first
A arrival and the leftmost term is the contribution of
the last A arrival, and where λclass � (2/3)λ. Note that
the stationary probability is not simply a product of
per-class terms or of per-server terms since the denom-
inators depend on the order of all jobs in the system.

Theorem 3. Under Redundancy-d, the system is stable
when ρ � λ/µ < 1.

Proof. Because the proof of Theorem 3 relies on the
state aggregation approach we present in Section 4.2,
we defer the proof to the end of the section. �

4.2. State Aggregation
One might think that E[T] immediately follows from
the limiting distribution on the state space given in
Theorem 2. Unfortunately, knowing the stationary dis-
tribution on the state space does not immediately yield
results for mean number in system and mean response

time. This is because to find mean response time, we
must first find

πm � Pr{m jobs in system}.

To do this, we need to sum π values over all
(k
d

)
possible

classes for each queue position j, 1 6 j 6 m. This is not
straightforward because the denominators in the sta-
tionary probabilities depend on the order of all jobs in
the system: π(cm ,...,c1) depends on the particular choices
of c1 , . . . , cm .
The key observation that helps us aggregate states is

that we need only track the denominator contributed
to the stationary probability by the job in each queue
position j, not the specific class c j of the job. This is
equivalent to tracking the number of servers that are
busy working on the first j jobs in the queue. We lever-
age this observation by collapsing our state space so
that instead of

(k
d

)
possible classes for each position in

the queue, we now have at most k −d possible denom-
inators. In addition, not all denominators are possible
for each position; for example, position 1 must con-
tribute denominator dµ, and if position j contributes
denominator iµ then position j + 1 must contribute
denominator >iµ.
We define P(i ,m) as the stationary probability that

there are m jobs in the system and i busy servers, disre-
garding a normalization constant. To find πm , we need
to compute P(i ,m) for all d 6 i 6 k.

At a high level, our approach takes the following
steps:

1. Write recurrences for P(i ,m), the (unnormalized)
stationary probability that there are i servers busy and
m jobs in the system (Section 4.2.1).
2. Define a generating function for our recurrences

and use this generating function to find E[N] and E[T]
(Section 4.2.2).

Throughout the remainder of this section we refer
to Figure 2, which provides a running example of our
approach in the case where k � 4 and d� 2.
4.2.1. Formulating Recurrences P(i ,m). In this sec-
tion we write recurrences for P(i ,m), the (unnormal-
ized) stationary probability that the system has i busy
servers and m jobs in the system.

Theorem 4. For m > 1, P(i ,m), the unnormalized station-
ary probability that there are m jobs in the system and i busy
servers, satisfies

P(i ,m)� λclass

µi
·

d∑
y�0

(
i− y
d− y

)
·
(
k−(i− y)

y

)
·P(i− y ,m−1).

(5)
For m � 1, we have the initial conditions

P(i , 1)�


(
k
d

)
λclass

µd
, i � d

0, d < i 6 k.

(6)
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Figure 2. Aggregating States in the k � 4, d� 2 System
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Notes. Horizontally we track the number of jobs in the system and vertically we track the number of busy servers. The value at node (i ,m)
gives the contribution of the job at position m to the limiting probability. An edge from node (i ,m) to node ( j,m + 1) has weight equal to the
number of classes the job in position m + 1 could be for there to be j servers busy working on the first m + 1 jobs when there were i servers
busy working on the first m jobs.

For m � 0, we have the initial conditions

P(i , 0)�
{

1, i � 0,
0, i > 0.

(7)

Proof. We first consider the case m � 1. Here there is
a single job in the system, so the system state is (c1).
Regardless of the specific class c1, there are always d
servers busy working on this job and the arrival rate of
class c1 is always λclass. So from Theorem 2 the station-
ary probability of this state is π(c1) �C · λclass/(µd). The
job could belong to any class, so there are

(k
d

)
states in

which m � 1. Hence the total probability that there is
one job in the system is

π1 �

(
k
d

)
·C · λclass

µd
�C · P(d, 1).

For any value of i ,d it is impossible to have i servers
working on only m � 1 job, so P(i , 1)� 0. This gives the
initial conditions in (6) (recall that we omit the normal-
izing constant).
When m � 2, the system state is (c2 , c1). The number

of busy servers can range from d (if both jobs are of the
same class and therefore share all d servers) to 2d (if
the two jobs do not share any servers). Hence we need
to find expressions for P(d, 2), P(d+1, 2), . . . , P(2d, 2).
To find P(d, 2), observe that the first job in the

system, which has class c1, contributes a factor of
λclass/(µd) to the stationary probability. There are

(k
d

)
ways of choosing class c1, so its total contribution to
P(d, 2) is

(k
d

)
(λclass/(µd)). This is exactly P(d, 1) (up to

the normalizing constant). The second job also con-
tributes a factor of λclass/(µd). There is only one way
to choose the second job’s class so that it shares
all d servers with the first job, i.e., c2 � c1. Hence we

find P(d, 2) � (λclass/(µd)) · P(d, 1). For example, when
k � 4 and d � 2 (see Figure 2), we find that P(2, 2) �
(λclass/(2µ)) · P(2, 1).
Similarly, to find P(d+1, 2), we first consider the con-

tribution of the first job to the stationary probability.
Again, the first job contributes a factor of(

k
d

)
λclass

µd
� P(d, 1) (8)

since class c1 has arrival rate λclass, d servers are busy
working on this job, and there are

(k
d

)
possible choices

for the specific class c1. The second job contributes a
factor of

λclass

µ(d+ 1) ·
©«
# ways to choose 2nd job
so it shares d− 1 servers

with first job

ª®¬
�

λclass

µ(d+ 1) ·
(

d
d− 1

)
·
(
k −d

1

)
, (9)

where the
( d
d−1

)
term gives the number of ways that the

second job can choose d − 1 servers in common with
the first job and the

(k−d
1

)
term gives the number of

ways for the second job to choose one server that is
different from all d of the first job’s servers. Combining
(8) and (9),

P(d+ 1, 2)� λclass

µ(d+ 1) ·
(

d
d− 1

)
·
(
k −d

1

)
· P(d, 1).

In the case where k � 4 and d� 2, the graph in Figure 2
tells us that there are four ways in which the second job
can choose servers such that it shares one server with
the first job (that is,

( d
d−1

)
·
(k−d

1

)
�

(2
1

)
·
(4−2

1

)
� 4). Thus the

recurrence for P(3, 2) in the k � 4, d� 2 system is

P(3, 2)� λclass

3µ · 4 · P(2, 1).
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In general, when writing a recurrence for P(i ,m) we
consider all possible values of y, the number of new
servers busyworking on the mth job. Equivalently, i− y
servers must be busy working on the first m−1 servers.
Except in edge cases where there are already at least
k − d + 1 servers working on the first m − 1 jobs, the
value of y can range from 0 to d.

Given that i− y servers are busy working on the first
m − 1 jobs, the contribution of the first m − 1 jobs is
P(i − y ,m − 1). The mth job contributes

λclass

µi
· ©«

# ways to choose mth job
so it shares d− y servers

with first m − 1 jobs

ª®¬
�
λclass

µi
·
(

i − y
d− y

)
·
(
k − (i − y)

y

)
to P(i ,m), where the term

( i−y
d−y

)
gives the number of

ways to choose the d− y servers that the mth job shares
with the first m − 1 jobs from among the i − y servers
busy working on the first m − 1 jobs; the term

(k−(i−y)
y

)
gives the number of ways to choose y new servers from
the remaining k − (i − y) servers.
Finally, we condition on the number of new servers y

to obtain the general form of P(i ,m) given in (5). �

4.2.2. Finding Mean Response Time. Now that we
have a form for P(i ,m), we can imagine finding the
mean number in systemE[N] by summing over all pos-
sible numbers of busy servers and all possible numbers
of jobs in the system:

E[N]�
k∑

i�d

∞∑
m�1

mP(i ,m) ·C,

where C is our normalizing constant. Unfortunately,
computing these sums would require having an
explicit form for P(i ,m), which is difficult to compute.
Instead, we will find E[N] using generating functions.
We begin by rewriting our recurrences P(i ,m) in

a form that eliminates the dependency on k. Start-
ing with the expression given in (5), we substitute
λclass � kλ/

(k
d

)
and rearrange the combinatorial terms

to obtain:

P(i ,m)� kλ
µi

d∑
y�0

(d
y

) (k−d
i−d

)( k
i−y

) · P(i − y ,m − 1).

Our next step is to eliminate the
( k

i−y

)
term in the de-

nominator. Let Q(i ,m)� (1/
(k

i

)
) · P(i ,m). We then have

Q(i ,m) ·
(
k
i

)
� P(i ,m)

�
kλ
µi

d∑
y�0

(d
y

) (k−d
i−d

)( k
i−y

) · P(i − y ,m − 1)

�
kλ
µi

d∑
y�0

(d
y

) (k−d
i−d

)( k
i−y

) · ( k
i − y

)
Q(i − y ,m − 1)

�
kλ
µi
·
(
k −d
i −d

) d∑
y�0

(
d
y

)
Q(i − y ,m − 1).

Multiplying both sides by i/k, we get

Q(i ,m) ·
(
k − 1
i − 1

)
�
λ
µ
·
(
k −d
i −d

) d∑
y�0

(
d
y

)
Q(i − y ,m − 1).

Next, we eliminate the λ/µ term from the recur-
rence. Let R(i ,m)� (µ/λ)m ·Q(i ,m). Then we have

R(i ,m) ·
(
k − 1
i − 1

)
�

(
k −d
i −d

) d∑
y�0

(
d
y

)
R(i − y ,m − 1).

Finally, to eliminate the dependency on k, we let
S(i ,m)�

(k−1
d−1

)m ·R(i ,m) and obtain

S(i ,m)
(
k−1
i−1

)
�

(
k−1
d−1

) (
k−d
i−d

) d∑
y�0

(
d
y

)
S(i− y ,m−1)

S(i ,m) �
(

i−1
d−1

) d∑
y�0

(
d
y

)
S(i− y ,m−1).

Note that S(i ,m) relates to our original recurrence
P(i ,m) as follows:

P(i ,m)�
(k

i

)
(λ/µ)m(k−1
d−1

)m · S(i ,m). (10)

We will now define a generating function for S(i ,m):

Gi(x)�
∞∑

m�1
S(i ,m)xm .

Taking the derivative of this generating function, we
obtain

G′i(x) �
∞∑

m�1
m · S(i ,m)xm−1

xG′i(x) �
∞∑

m�1
m · S(i ,m)xm

k∑
i�d

(
k
i

)
xG′i(x) �

k∑
i�d

∞∑
m�1

(
k
i

)
m · S(i ,m)xm , (11)

where the second line results from multiplying both
sides of the equation by x and the third line results
from multiplying both sides of the equation by

(k
i

)
and

summing over all d 6 i 6 k. Evaluating (11) at x0 �

(λ/µ)/
(k−1
d−1

)
we have

k∑
i�d

(
k
i

)
x0G′i(x0)�

k∑
i�d

∞∑
m�1

m · P(i ,m)� E[N]
C

,
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which is exactly what we want, noting that we already
know C from Theorem 2.
All we need to do is find G′i(x). Observe that if we

evaluate Gi(x) at x0 � (λ/µ)/
(k−1
d−1

)
we get(

k
i

)
Gi(x0)�

(
k
i

) ∞∑
m�1

S(i ,m)xm
0 �

∞∑
m�1

P(i ,m)�
pi

C
, (12)

where pi is the stationary probability that i servers are
busy. Furthermore, since the stationary probabilities
have to sum to 1, we have the normalization equation

1
C

� 1+
k∑

i�d

pi

C
. (13)

We define the function C(x):

C(x)�
k∏

i�d

(
1−

(
i − 1
d− 1

)
x
)
.

Note that C(x0)�C at x0 � (λ/µ)/
(k−1
d−1

)
.

Combining (13) and (12), we have

1
C(x0)

� 1+
k∑

i�d

(
k
i

)
Gi(x0). (14)

Since λ/µ can range from 0 to 1, x0 can take on
any value from 0 to 1/

(k−1
d−1

)
, so (14) holds for all x ∈

(0, 1/
(k−1
d−1

)
). This allows us to differentiate both sides

of (14), to get

d
dx

1
C(x) �

k∑
i�d

(
k
i

)
G′i(x)

x
d

dx
1

C(x) �
k∑

i�d

(
k
i

)
xG′i(x). (15)

Note that when evaluated at x0 � (λ/µ)/
(k−1
d−1

)
, the right-

hand side of (15) is equal to E[N]/C.
So we have

E[N] � C(x0) · x0 ·
(

d
dx

1
C(x)

)����
x�x0

�

k∑
i�d
λ ·

(
µ

(k−1
d−1

)( i−1
d−1

) − λ)−1

, (16)

where the final equality results from taking the deriva-
tive of 1/C(x).
Finally, by Little’s Law we have E[T] � E[N]/(kλ),

which gives us the form for E[T] given in (1). This com-
pletes the proof of Theorem 1.
It is not immediately obvious why E[N] and E[T]

follow the forms derived above. In Appendix A of the
e-companion, we provide some intuition for the result.

4.3. Proof of Theorem 3
Theorem 3. Under Redundancy-d, the system is stable
when ρ � λ/µ < 1.
Proof. Consider the system as the number of jobs
m→∞. For any given number of busy servers i < k, the
probability of increasing the number of busy servers
when going from m to m + 1 jobs is greater than
1/

(k
d

)
> 0 and is independent of m. Hence as m→∞,

the probability that all k servers are busy approaches 1
no slower than the c.d.f. of a geometric random vari-
able with parameter 1/

(k
d

)
. Thus as m→∞, P(i ,m)→ 0

for all i < k, and so πm→ P(k ,m). Looking at the recur-
rence for P(k ,m) given in (5), since P(i ,m) → 0 for all
i < k, the tail terms of P(k ,m) are all of the form(k

d

)
λclass

kµ
P(k ,m − 1) �

(k
d

)
(kλ/

(k
d

)
)

kµ
P(k ,m − 1)

�
λ
µ

P(k ,m − 1).

When λ < µ, this term is less than 1 and so the P(k ,m)’s
form a geometric sequence. Hence the series ∑∞

m�0 πm
converges if and only if λ/µ < 1. Since the series con-
verges, there is some constantC such that the πm’s sum
to 1. �

5. Large System Limit Analysis
In Section 4 we derived exact expressions for mean
response time under Redundancy-d for any specific k
and d using a Markov chain approach. Even though
the Markov chain approach gives us the full distribu-
tion of the number of jobs in the system, we cannot
apply Distributional Little’s Law to find the distribu-
tion of response time because jobs need not leave the
system in the order in which they arrived. In this sec-
tion, we provide an alternative approach to analyzing
Redundancy-d that yields a closed-form expression for
the distribution of response time. Our result is exact in
the limiting regime inwhich k→∞, under the assump-
tion that the queues are asymptotically independent.

To understand what we mean by asymptotic inde-
pendence, we first define a job’s “nonredundant re-
sponse time” on a server i as the response time that
the job would experience if it arrived to the system
and sent only one copy to a randomly chosen server i.
The queues are d-wise asymptotically independent
if knowing a job’s nonredundant response time on
servers i1 , . . . , id−1 does not tell us anything about
the job’s nonredundant response time on server id.
Assumption 1 formalizes this notion of asymptotic
independence.
Assumption 1. Under Redundancy-d, as k → ∞, the
queues are d-wise asymptotically independent. That is,
Pr{Tid > t |Ti1

, . . . ,Tid−1
} � Pr{Tid > t} for all id ,

i1 , . . . , id−1, where Ti is a job’s nonredundant response time
at server i.
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Theorem 6. Under Assumption 1, as k→∞, the response
time under Redundancy-d with d > 1 has tail distribution

Pr{T > t} � F̄T(t)�
(

1
ρ+ (1− ρ)e tµ(d−1)

)d/(d−1)

, (17)

where ρ � λ/µ.
Conjecture 1. Assumption 1 holds.

Remark. The analogue of Conjecture 1 has been
proved in a wide range of settings: Asymptotic inde-
pendence of queues was shown under the JSQ-d
policy in Vvedenskaya et al. (1996) for exponential
service times, and extended to general service times
in Bramson et al. (2012). In Ying et al. (2015), a simi-
lar result was shown for a variety of dispatching poli-
cies in a system with batch arrivals. Unfortunately, the
proofs presented in the abovework do not extend to the
Redundancy-d policy, thus we consign proving Con-
jecture 1 to future work. In Section 5.2 we compare our
analytical results to simulation and see that the results
converge, supporting Conjecture 1.

We now turn to the proof of Theorem 6.

Proof (Theorem 6). We consider a tagged arrival to the
system, which we assume without loss of generality
arrived at time 0 to a stationary system.Wewant to find

F̄T(t)� Pr{tagged arrival is not complete by time t}.

Denote by Ti the nonredundant response time of a
job on server i, i.e., the time from when a job arrives
at server i to when it would complete on server i if
it had no other copies; note that Ti might be longer
than response time T since T is the min of T1 , . . . ,Td.
Throughout this section, T will always represent the
response time in a systemusing the Redundancy-d pol-
icy, whereas Ti represents the nonredundant response
time at server i.
We can express T in terms of Ti as follows:

F̄T(t)� Pr{T > t} � Pr{T1 > t & T2 > t & · · ·& Td > t}
� Pr{T1 > t} ·Pr{T2 > t} · · ·Pr{Td > t}
� (Pr{Ti > t})d

� F̄Ti
(t)d , (18)

where the second line is due to the asymptotic inde-
pendence assumption. Thus, to find F̄T(t), we need to
understand F̄Ti

(t).
To understand F̄Ti

(t), note that there are two ways in
which a tagged arrival could have not completed ser-
vice at server i by time t (assuming the tagged job has
no other copies). First, the tagged job could have size
larger than t at server i. Second, even if the tagged job
has size Si < t, it will not complete at server i by time t
if it does not enter service at server i by time t − Si , that

is, if its nonredundant time in queue at server i, TQ
i ,

exceeds t − Si . We thus have

F̄Ti
(t) � Pr{Ti > t}

� Pr{Si > t}+Pr{0 < Si < t ∧TQ
i > t − Si}

� F̄S(t)+
∫ t

0
fS(x) · F̄TQ

i
(t − x) dx

� e−µt +

∫ t

0
µe−µx · F̄TQ

i
(t − x) dx

� e−µt +

∫ t

0
µe−µ(t−y) · F̄TQ

i
(y) dy ,

(19)

where the integral is due to conditioning on the
value of Si .

Next we need to understand F̄TQ
i
(t), the probability

that the tagged job has not entered service at server i by
time t (assuming the tagged job has no other copies).
To do this, we look back in time to the most recent
arrival to server i before the tagged job arrived. Call
this most recent arrival job A. Suppose job A arrived at
time t −Y < 0. The tagged job will not enter service by
time t if and only if either

1. There is still some other job ahead of job A at ser-
ver i. This is equivalent to saying that for job A, TQ

i >Y,
recalling that TQ

i is the time that job A would spend in
the queue at server i if it had no other copies.

2. Job A is in service at server i at time t. That is,
job A has not departed from server i or from any of its
other d− 1 servers by time t.

We thus have

Pr
{
tagged job not in service by time t

}
�Pr

{
job A cannot have entered service at
server i by time t

}
+Pr


job A is in service at server i
by time t but has not departed
any server by time t


�Pr{TQ

i >Y}+Pr{TQ
i <Y∧T >Y}

� F̄TQ
i
(Y)+Pr{TQ

i <Y∧T1 >Y∧ · · · ∧Td >Y}
� F̄TQ

i
(Y)+Pr{TQ

i <Y∧Ti >Y} · F̄Ti
(Y)d−1

� F̄TQ
i
(Y)+ (F̄Ti

(Y)− F̄TQ
i
(Y))F̄Ti

(Y)d−1 ,

where again we assume that the d queues are inde-
pendent.

Now to find F̄TQ
i
(t), we integrate over all possible

values of Y such that job A could have arrived at time
t − Y, noting that the interarrival times to a particular
queue are exponentially distributed with rate λd:

F̄TQ
i
(t) �

∫ ∞

t
λdeλd(t−y)

· (F̄TQ
i
(y)+ (F̄Ti

(y) − F̄TQ
i
(y))F̄Ti

(y)d−1) dy.
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Note that F̄Ti
(t) and F̄TQ

i
(t) are recursively defined in

terms of each other.
We thus have a system of two differential equations:

F̄Ti
(t) � e−µt

+

∫ t

0
µe−µ(t−y) · F̄TQ

i
(y) dy (20)

F̄TQ
i
(t) �

∫ ∞

t
λdeλd(t−y)

· (F̄TQ
i
(y)+ (F̄Ti

(y) − F̄TQ
i
(y))F̄Ti

(y)d−1) dy. (21)

To solve the system, we begin by taking the derivative
of (20), using the general Leibniz’s rule to differentiate
the function of two variables under the integral:

F̄′Ti
(t) � −µe−µt

+

∫ t

y�0

d
dt
(µe−µ(t−y)F̄TQ

i
(y)) dy

+ µe−µ(t−t)F̄TQ
i
(t) · d

dt
t − µe−µ(t−0)F̄TQ

i
(0) · d

dt
0

� −µe−µt
+

∫ t

0
−µ2e−µ(t−y)F̄TQ

i
(y) dy + µF̄TQ

i
(t)

� −µ
(
e−µt

+

∫ t

0
µe−µ(t−y)F̄TQ

i
(y) dy − F̄TQ

i
(t)

)
� µ(F̄TQ

i
(t) − F̄Ti

(t)), (22)

where the last line results from substituting (20). Tak-
ing the derivative of (21) in a similar manner,

F̄′
TQ

i

(t) � λdF̄Ti
(t)d−1(F̄TQ

i
(t) − F̄Ti

(t))

�
λd
µ

F̄Ti
(t)d−1 · F̄′Ti

(t), (23)

where the last line results from substituting (22). Tak-
ing the derivative of (22), we find

F̄′′Ti
(t) � µ(F̄′

TQ
i

(t) − F̄′Ti
(t))

� λdF̄Ti
(t)d−1 · F̄′Ti

(t) − µF̄′Ti
(t)+ η, (24)

where the last line results from substituting (23) and η
is a constant which is equal to 0 (see Appendix B of the
e-companion). Integrating (24), we get

F̄′Ti
(t)� λF̄Ti

(t)d − µF̄Ti
(t).

Now we have a single differential equation for F̄Ti
(t),

which we solve to get

F̄Ti
(t)�

(
µ

λ+ αe tµ(d−1)

)1/(d−1)

,

where α is a constant. Note that solving this differential
equation is the only place where we needed d > 1. We
know that F̄Ti

(0) � 1, so we can solve for α, yielding
α � µ− λ. So we have

F̄Ti
(t)�

(
µ

λ+ (µ− λ)e tµ(d−1)

)1/(d−1)

.

Finally, we need F̄T(t), which from (18) is

F̄T(t)� F̄Ti
(t)d �

(
µ

λ+ (µ− λ)e tµ(d−1)

)d/(d−1)

.

An alternative way of writing this is

F̄T(t)�
(

1
ρ+ (1− ρ)e tµ(d−1)

)d/(d−1)

.

Once we have the c.c.d.f. of response time, we can
integrate this over all values of t to find mean response
time E[T]. In Theorem 7, we see that E[T] can be
expressed in terms of the hypergeometric function.
When d� 2, E[T] has a simple closed form.

Theorem 7. The mean response time under Redundancy-d
in the infinite-server system is

E[T]� 2F1(1, 1; 1+d/(d− 1); − ρ/(1− ρ))
µd(ρ− 1) , (25)

where

2F1(a , b; c; z)�
∞∑

n�0

a(n)b(n)

c(n)
zn

n!

is the hypergeometric function and

x(n) �

{
1 n � 0
x(x + 1) · · · (x + n − 1) n > 0

is the rising Pochammer symbol.
In the case d� 2, this is equivalent to

E[Td�2]�
µ ln(µ/(µ− λ)) − λ

λ2 . (26)

Proof. This follows directly from Theorem 6 by inte-
grating F̄T(t) given in (18) over all values of t. �

It is worth comparing the expression in (26) to the
mean response time under JSQ-2, in which each arriv-
ing job polls two servers and joins only that queue
which is the shorter of the two. From Mitzenmacher
(2001) and Vvedenskaya et al. (1996) it is known that
when µ � 1 and λ→ 1 the mean response time under
JSQ-2 is given by

E[T]� ln(1/(1− λ))
λ ln(2λ) +O(1). (27)

Thus for d� 2 as λ→ µ� 1 the mean response times in
both systems contain the term ln(1/(1− λ)).

5.1. Insights
Theorem 6 tells us the distribution of response time
under Redundancy-d in the infinite-server system.
Here we discuss the characteristics of system behavior
that follow from the form of this distribution.
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Theorem 8. The response time under Redundancy-d in the
infinite-server system has increasing failure rate.

Proof. We first find the failure rate

rT(t) �
fT(t)
F̄T(t)

�
(1− ρ)µde tµ(d−1)

(1− ρ)e tµ(d−1) + ρ
.

Now we find the derivative of rT(t) as follows:

r′T(t)�
d(d− 1)ρ(1− ρ)µ2e tµ(d−1)

(ρ+ (1− ρ)e tµ(d−1))2 ,

which is positive since the denominator is positive
and all terms in the numerator are positive. Hence
the response time distribution has increasing failure
rate. �
The intuition behind this result is that as time passes,

a job is likely to be in service at more and more servers,
so its probability of completing (“failing”) increases.

Theorem 9 also tells us that although the response
time distribution has increasing failure rate, as t→∞
the failure rate approaches µd. This is because once
a job has been in the system for a very long time, it
is in service at all d of its servers. At this point, the
remaining time to completion is simply the minimum
of d exponentials with rate µ, which is an exponential
with rate µd.
Theorem 9. As t→∞, the failure rate of the response time
distribution under Redundancy-d approaches µd.

Proof. From Theorem 8, we have that

rT(t)�
(1− ρ)µde tµ(d−1)

(1− ρ)e tµ(d−1) + ρ
.

Taking the limit as t→∞, we find

lim
t→∞

rT(t) � lim
t→∞

(1− ρ)µde tµ(d−1)

(1− ρ)e tµ(d−1) + ρ

� lim
t→∞

µd
1+ ρ/((1− ρ)e tµ(d−1)) � µd. �

Theorem 9 addresses what happens to a job’s
remaining response time given that it has been in the
system for a long time. In Theorem 10, we look at the
effect of d on the response time distribution.
Theorem 10. As d→∞, mean response time scales as 1/d.
Proof. Theorem 6 tells us that

F̄T(t)�
(

1
ρ+ (1− ρ)e tµ(d−1)

)d/(d−1)

.

As d→∞, the exponent approaches 1, hence

lim
d→∞

F̄T(t)�
1

ρ+ (1− ρ)e tµ(d−1) .

Integrating over all t to find mean response time,
we find

E[T]�
ln(1/(1− ρ))

dµρ
. �

Theorem 10 tells us that as d becomes large, we see a
diminishing marginal improvement from further increas-
ing d. This makes sense: When a job is only running on
one server, adding an additional server can make a big
difference. But when a job is already running on many
servers, one extra server adds little service capacity rel-
ative to what the job already is experiencing. This is
important because it suggests that the biggest improve-
ment in response time will come from moving from
d�1 to d�2, that is, creating just one extra copy of each
job. We further explore this phenomenon in Section 6.

5.2. Convergence
We now turn to the question of convergence: How high
does k have to be for the asymptotic analysis to provide
a good approximation for a finite k-server system?

In Figure 3 we consider the convergence of the mean
response time in a finite k-server system to that in the
infinite system in the case of ρ � 0.95 and d � 10. We
see that when k is very low, the mean response time
given by our asymptotic analysis is up to a factor of five
smaller than the exact mean response time given by
our analysis in Section 4. However as k increases mean
response time quickly drops and ultimately converges
to the asymptotic result. This supports the asymp-
totic independence assumption we make when prov-
ing Theorem 6.

Table 1 shows the number of servers k required
for the mean response time in the finite system to be
within 5% (left) andwithin 1% (right) of that in the infi-
nite system for different values of ρ and d. We consider
d � 2, 4, 6, and 10; as we see in Section 6, higher values

Figure 3. Convergence of the Finite System to the Infinite
System

k

0 200 400 600 800 1,000

E
[T

]

0

0.5

1.0

1.5

2.0

Exact
Asymptotic

Notes. Here ρ � 0.95 and d � 10. As k increases, E[T] in the finite
system (solid line) drops steeply to meet that in the infinite system
(dashed line).
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Table 1. Number of Servers k at Which The Mean Response
Time in The Finite-k System Is Within 5% (Left) and
1% (Right) of The Asymptotic Mean Response Time

ρ

0.2 0.5 0.9 0.95 0.2 0.5 0.9 0.95

d

2 3 7 41 73 10 31 192 346
4 7 18 105 190 23 78 496 904
6 10 28 168 305 36 125 794 1450

10 17 49 293 534 63 216 1,387 2,538

of d do not yield appreciable response time improve-
ments.
From Table 1 we see that the number of servers

required for convergence increases in ρ and d. When
load is low, only tens of servers are required for con-
vergence at all values of d considered. But even at very
high load (ρ � 0.95) and d � 10, about 530 servers are
sufficient for convergence within 5% and about 2,500
servers for convergence within 1%. This indicates that
mean response time in the limiting system approxi-
mates that in the finite system very well for many sys-
tem sizes of practical interest. For example, typical data
centers consist of hundreds or thousands of servers.
Thus far we have only considered convergence of the

mean response time; we now turn to convergence of
the response time distribution. Since our exact analysis
of the finite system only gives mean response time, we
use simulation to compare the response time distribu-
tion in the finite k-server system with our asymptotic
expression.We consider one cell in Table 1, i.e., the case
of d�4, ρ�0.5. As shown in Table 1, 18 servers (respec-
tively, 78 servers) suffice for convergence in the mean
to 5% (respectively, 1%). Figure 4 shows convergence of
the response time distribution for (a) k �18 servers, and
(b) k � 78 servers, where the biggest difference between
the empirical and analytical c.d.f.s is only 0.002. While
we show only one value of d and ρ here, similar results

Figure 4. (Color online) Convergence of the Distribution of Response Time

t

F
T

(t
)

0

0.2

0.4

0.6

0.8

1.0

F
T

(t
)

0

0.2

0.4

0.6

0.8

1.0

Simulated, k = 18
Asymptotic analysis

Simulated, k = 78
Asymptotic analysis

t
0 0.5 1.0 1.5 2.0 0 0.5 1.0 1.5 2.0

(a) k = 18 (b) k = 78

Notes. Here λ � 0.5, d � 4, and (a) k � 18 and (b) k � 78. The dashed line shows the c.d.f. of response time in the limiting system (Theorem 6,
Section 5), and the solid line shows the simulated c.d.f. in the finite system (95% confidence intervals are within the line).

hold for all other parameter choices tested; the val-
ues of k corresponding to convergence of the mean to
within 1% in Table 1 are typically high enough for the
response time c.d.f. in the finite system to appear vir-
tually the same as that in the infinite system. Thus the
distributional results obtained for the limiting system
can also be used to understand finite systems.

6. Power of d Choices
In this section, we study the effect of increasing d on
response time under Redundancy-d. We assume that k
is large enough to allow us to leverage our asymptotic
analysis from Section 5. Throughout this section we
assume the service rate at every server is µ � 1.

Figure 5 compares mean response time as a function
of d under Redundancy-d to that under JSQ-d (Mitzen-
macher 2001, Vvedenskaya et al. 1996) dispatching pol-
icy when the system load, defined as ρ� λ/µ, is ρ� 0.5
and ρ � 0.9. Under JSQ-d, each arrival polls d servers
chosen uniformly at random and joins the queue at the
server with the fewest jobs in the queue. Note that jobs
only join one queue under JSQ-d; there is no redun-
dancy. The Redundancy-d results are from our asymp-
totic analysis (Section 5); JSQ-d is simulated with
k � 1,000.
As under JSQ-d, we see that under Redundancy-d

increasing d yields a substantial response time im-
provement relative to d � 1 (no redundancy): both
JSQ-d and Redundancy-d take advantage of queue
length variability by allowing a job to wait in the short-
est of d queues. But redundancy provides an addi-
tional benefit as well: the same job can be in service
at multiple servers at the same time, in which case
it experiences the minimum service time across these
servers. This allows Redundancy-d to provide much
lower response times than JSQ-d.

Mean response time under Redundancy-d exhibits
these same trends under other loads: Figure 6(a) shows
mean response time under Redundancy-d as a function
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Figure 5. (Color online) Comparing Redundancy-d and JSQ-d

d
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E
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]
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E
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6

8
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d

1 2 3 4 5

JSQ-d
Redundancy-d

(a) � = 0.5 (b) � = 0.9

Notes. Here load is (a) ρ � 0.5 and (b) ρ � 0.9. Under both Redundancy-d (dashed line) and JSQ-d (solid line) as d increases E[T] decreases;
this improvement is much greater under Redundancy-d. For JSQ-d (simulated), 95% confidence intervals are within the line.

of d for low, medium, and high load (again we assume
that k is large and thus show results from our asymp-
totic analysis). At all loads, as d increases, mean
response time decreases, with this benefit being great-
est under higher loads. When load is low, queueing
times are low so the primary benefit of redundancy
comes from a job receiving the minimum service time
on d servers. Queueing times increase at higher load
so redundancy can now reduce queueing time as well
as service time.
At all loads, themost significant improvement occurs

between d�1 and d�2. This improvement ranges from
a factor of two at ρ� 0.2 to a factor of six at ρ� 0.9. As d
grows large, Lemma 10 tells us that mean response
time scales as 1/d. This is shown in Figure 6(b), which
compares our analytical result for E[T] to the tail form
given in Lemma 10 when ρ � 0.9. We see that E[T]
quickly converges to the predicted tail shape; by d � 6
the lines are nearly indistinguishable.
Thus far we have discussed only the mean response

time; however our asymptotic analysis provides the full
response time distribution. Figure 7 shows the c.d.f.

Figure 6. (Color online) Effect of d on Mean Response Time

d
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(a) Mean improvement (b) 1–
d

shape

Notes. (a) Mean response time, E[T], under Redundancy-d as a function of d under low (ρ � 0.2, solid line), medium (ρ � 0.5, dashed line), and
high (ρ � 0.9, dot-dashed line) load. At all loads increasing d reduces E[T]. The improvement in E[T] is greatest at high load. (b) As d grows
large, E[T] scales in proportion to 1/d, in accordance with Lemma 10

of response time under Redundancy-d with d � 2 at
low, medium, high, and very high load. When load is
high, not only is FT(t)� Pr{T < t} lower, but the shape
of the c.d.f. is actually convex at low values of t. This
convexity is due to the probability of queueing: When
load is high, an arrival is likely to experience a nonzero
queueing time at all d of its servers. Thus the proba-
bility that the job completes service by time t does not
substantially increase until t is sufficiently high, mak-
ing it more likely that the job has entered service at
one or more servers. By contrast, when load is low, an
arrival is likely to begin service immediately on at least
one server, so its probability of completing service by
time t resembles the probability that the service time
on a single server is less than t.

In Figure 8 we show the c.d.f. of response time at
high load (ρ � 0.9) as d increases from 2 to 6. When
d� 2, the c.d.f. is convex at low t (this is the same curve
as shown in Figure 7). As d increases, the c.d.f. is still
convex at low t but this is much less pronounced. At
high d, the c.d.f. approaches that of an exponential dis-
tribution because sendingmore copiesmeans that a job
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Figure 7. (Color online) Pr{T 6 t} under Redundancy-d
when d� 2 under Four Different Loads
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Figure 8. (Color online) Pr{T 6 t} under Redundancy-d
when ρ � 0.9 and d� 2, 4 or 6

t
0 1 2 3 4 5

d = 6
d = 4
d = 2

F
T

(t
)

0

0.2

0.4

0.6

0.8

1.0

is more likely to enter service immediately on at least
one server. The convexity has disappeared, illustrating
the dramatic effect redundancy can have on queueing
time, and thus on system time. Examining the tail of
response time, we see from Figure 8 that T95 � 3.58
when d � 2; this is eight times smaller than T95 when
d� 1 (which corresponds to an M/M/1 system).

6.1. Fractional d
In Section 6 we saw that the largest improvement in
mean response time occurred between d� 1 (no redun-
dancy) and d � 2. Given the magnitude of this gap,
we now explore the response time benefits offered by
sending on average fewer than two copies of each job.
We define the fractional Redundancy-d policy as

shown in Figure 9. When a job arrives to the system,
with probability p it is nonredundant and joins the
queue at a single server chosen uniformly at random.
With probability 1 − p the job joins the queue at two
servers chosen uniformly at random. In this system, we
define d to be the weighted average number of copies
sent per job:

d� p · 1+ (1− p) · 2 � 2− p.

Figure 9. The Fractional Redundancy-d policy
k� 1 – p

1 2

p

� � � �

Note. With probability p an arriving job sends a request to a single
server chosen uniformly at random, and with probability 1 − p an
arriving job sends redundant requests to two servers chosen uni-
formly at random.

To analyze mean response time under fractional
Redundancy-d, we follow the Markov chain approach
presented in Section 4, which extends easily to the
fractional d case (unfortunately the asymptotic analy-
sis in Section 5 does not extend to fractional d). We
obtain an exact closed-form expression for E[T], given
in Theorem 11.

Theorem 11. The mean response time under fractional
Redundancy-d is

1
k

k∑
i�1

(i − 1)+ (k − i)p
(k − 1)µ− ((i − 1)+ (k − i)p)λ . (28)

Proof. At a high level, we begin by writing a system of
recurrence equations for the limiting probability that
there are i servers busy and m jobs in the system. We
then use generating functions to find E[N]. The deriva-
tion under fractional Redundancy-d follows the same
approach as in the proof of Theorem 1 (see Section 4),
hence we omit the details of the proof. �

Figure 10 showsmean response time, E[T], as a func-
tion of d for 1 6 d 6 2 for low, medium, and high load
when k � 1,000.

Note that Figure 10 is the same setting as Figure 6,
but zooms in on the range from d � 1 to d � 2. As d in-
creases, mean response time decreases convexly; intro-
ducing even a small amount of redundancy to the
system provides a substantial improvement. This is
particularly pronounced at high load; at ρ � 0.9 setting
d � 1.5 (i.e., half of the jobs are nonredundant) corre-
sponds to a response time improvement of 69% relative
to having no redundancy. Even at low load, E[T] is 29%
lower when d� 1.5 than when d� 1.
Once again, very little redundancy is required to

achieve significant performance gains. This result is
encouraging for systems where there may be costs to
redundancy because it suggests that one can achieve
response time benefits with only a limited amount of
redundancy.
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Figure 10. (Color online) Mean Response Time under
Fractional Redundancy-d
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Notes. Lines shown include low (ρ� 0.2, solid line), medium (ρ� 0.5,
dashed line), and high (ρ � 0.9, dot-dashed line) load.

6.2. Nonexponential Service Times
Thus far, we have assumed that service times are expo-
nentially distributed. This assumption was necessary
to obtain the closed-form results for mean response
time given in Theorem 1 and for the distribution of
response time given in Theorem 6. However, in real
systems service times may not be exponential. For
example, in computer systems network congestion can
cause web query round trip times to be highly variable
(Xu et al. 2013). In this section we use our differential
equations approach from Section 5 to study, numeri-
cally, what happens when service times are more or
less variable than an exponential.
Returning to Section 5, our argument allows us

to write Equations (19) and (21) regardless of the
particular service time distribution S. In the case where
S∼Exp(µ)we solve the system in closed form. For non-
exponential service times, while we are unable to find
a closed-form solution, we can solve our differential
equations numerically.

Figure 11 shows mean response time as a function
of d when service times aremore and less variable than
an exponential and λ � 0.5. When service times are
highly variable, increasing the value of d reduces mean
response time even more than when service times
are exponential. For example, when C2 � 10, mean
response time decreases by a factor of 17 (compared
to a factor of 2.6 for exponentially distributed service
times). The improvement is bigger under more highly
variable service times for two reasons. First, when d� 1
(i.e., there is no redundancy) queueing times can be
extremely high when service times are highly variable,
andwaiting inmultiple queues keeps shorter jobs from
waiting behind very long jobs. Second, a job that runs
on multiple servers benefits from seeing the minimum
service time across servers, and taking the minimum
of multiple service times leads to a larger improvement
when the service times are more variable.

Figure 11. (Color online) Mean Response Time under
Redundancy-d with General Service Time Distributions
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Notes. Here λ � 0.5 and we assume k is large. Lines shown include
S ∼ H2 with C2 � 10 (dot-dashed line), S ∼ Exp (dashed line), and
S ∼ Erlang with C2 � 0.1 (solid line). For all distributions E[S]� 1.

The trend is very different when service times have
low variability. Unlike for higher variability job size
distributions, going from d � 1 to d � 2 yields only a
small improvement in mean response time, and as d
becomes higher mean response time actually increases.
This is because queueing times are already quite low
when service times have low variability; rather than
benefiting from running on multiple servers, adding
multiple copies of similarly-sized jobs congests the sys-
tem. Thus the “power-of-d” crucially depends not only
on load but also on service time variability.

7. Discussion and Conclusion
Redundancy is an important new technique used in
queueing systems to reduce response time. A natural
dispatching policy for systems with redundancy is to
create d copies of each job, sending them to d different
servers chosen uniformly at random. In this paper we
provide, to our knowledge, the first exact analysis of
response time under this Redundancy-d policy.

We first model the system as a Markov chain that
tracks a very detailed state space. While the limiting
distribution on this state space follows from Gardner
et al. (2015), aggregating the state space to get the dis-
tribution of the number of jobs in the system is combi-
natorially challenging. Our key insight is that we can
derive πm , the probability that there are m jobs in the
system, by further conditioning on the probability that
there are m jobs in the system and i servers busy work-
ing on these jobs. Expressing πm in this manner yields
a recursive structure that we leverage to find the dis-
tribution of the number of jobs in the system and the
mean response time in systems with any number of
servers k and any number of copies per job d.

In our second analytical approach, we consider the
system in the limit as the number of servers approaches
infinity. In such a setting we capture the system’s
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behavior under Redundancy-d via a system of differ-
ential equations that track the amount of work seen
by a tagged arrival. We use these differential equations
to derive asymptotic expressions for the distribution
of response time that are exact under an asymptotic
independence assumption.
Our analysis allows us to answer questions about the

benefits of redundancy that have important implica-
tions for real systems. For example, in Section 6 we saw
that being redundant in only two places is enough to
give most of the response time benefit of redundancy.
For organ transplant patients, this suggests that mul-
tiple listing in only a small number of regions may
suffice. In Section 6.1 we saw that much of the response
time benefit of redundancy can be achieved when
only a fraction of jobs are redundant. Many patients
may be unable to multiple list because they cannot
travel to alternative regions to receive a transplant,
perhaps because of financial limitations. Our “frac-
tional-d” result suggests that the system as a whole
benefits even if only a small proportion of patientsmul-
tiple list. This gives rise to questions about fairness: Is
the response time benefit experienced disproportion-
ately by the redundant patients, or can patients who
do not multiple list also benefit from others multiple
listing? We leave such questions open for future work.
The observation that a little redundancy goes a long

way is also important in computer systems, particu-
larly when there may be some cost to creating multiple
copies of jobs. For example, sending the same request
to multiple servers might add network overhead or
load, or cancelling the extra copies once the first copy
completes might take some amount of time. While we
do not explicitly model these costs, knowing that the
most significant benefit comes from adding atmost one
extra copy per job means that we can reduce response
time without incurring too many of the corresponding
costs. Our ongoing work builds on our analysis of the
Redundancy-d policy by relaxing some of our model-
ing assumptions (Gardner et al. 2016). In many com-
puter systems applications, the tail of response time
is actually a much more critical metric than the mean.
To our knowledge, our work provides the first analyt-
ical results showing how the tail of response time is
influenced by redundancy in large systems.
Although Redundancy-d appears somewhat similar

to dispatching policies such as JSQ-d, our analysis of
Redundancy-d is different. Dispatching policies such
as JSQ-d and similar policies have only been studied
in the limit as the number of servers approaches infin-
ity using differential equations that typically track the
fraction of queues with at least i jobs (Mitzenmacher
2001, Vvedenskaya et al. 1996, Ying et al. 2015). This is
very different from our analysis, in which we track the
amount of work in a queue as seen by a tagged arrival.
Simply tracking the number of jobs in a queue is not

powerful enough to analyze the Redundancy-d system
because the departure process is much more compli-
cated: It includes not only departures due to service
completions at that server but also departures due to
completions of jobs’ copies at other servers. We hope
that our approach in which we track the remaining
work in a queue will open the door to analyzing more
complicated “power of d” dispatching policies.

One important assumption in our asymptotic anal-
ysis is that the queues are asymptotically indepen-
dent. That is, knowing a job’s “nonredundant” sojourn
time at one server does not provide any information
about what that same job’s “nonredundant” sojourn
time would be at a different server. This type of
asymptotic independence is a common precondition
for analysis of many related queueing systems. Unfor-
tunately, the techniques typically used to prove asymp-
totic independence do not easily generalize to the
Redundancy-d policy, again because the departure
process under Redundancy-d is very complicated. We
leave the asymptotic independence assumption as a
strongly supported conjecture; proving it remains open
for future work.

Our analysis represents a first step towards solving
several related queueing problems. For example, in an
(n , k) system redundant copies of jobs are sent tomulti-
ple queues chosen at random, but more than one copy
needs to complete (Joshi et al. 2012, 2014). It is appeal-
ing to consider whether the analysis presented in this
paper, which applies to the case where only a single
copy needs to complete, can be extended to the gen-
eral (n , k) system. Redundancy is also closely related
to fork-join systems, in which jobs send copies to all
k servers and need all k copies to complete, and to
coupled processor systems, in which multiple servers
can simultaneously work on the same job. The fork-
join and coupled processor problems are classically
hard queueing problems; we hope that the analysis
presented in this paper will inspire new approaches to
these problems as well.
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