
Distributed, Robust Auto-Scaling Policies for Power
Management in Compute Intensive Server Farms

Anshul Gandhi, Mor Harchol-Balter, Ram Raghunathan
Carnegie Mellon University

Michael A. Kozuch
Intel Labs Pittsburgh

Abstract—Server farms today often over-provision resources
to handle peak demand, resulting in an excessive waste of power.
Ideally, server farm capacity should be dynamically adjusted
based on the incoming demand. However, the unpredictable and
time-varying nature of customer demands makes it very difficult
to efficiently scale capacity in server farms. The problem is
further exacerbated by the large setup time needed to increase
capacity, which can adversely impact response times as well as
utilize additional power.

In this paper, we present the design and implementation of
a class of Distributed and Robust Auto-Scaling policies (DRAS
policies), for power management in compute intensive server
farms. Results indicate that the DRAS policies dynamically adjust
server farm capacity without requiring any prediction of the
future load, or any feedback control. Implementation results
on a 21 server test-bed show that the DRAS policies provide
near-optimal response time while lowering power consumption
by about 30% when compared to static provisioning policies that
employ a fixed number of servers.

I. INTRODUCTION

Motivation: While energy costs of data centers continue to
double every 5 years [21], unfortunately, most of this energy
is wasted. Servers are only busy 10-30% of the time on
average [3, 5], but they are often left on, while idle, utilizing
60% or more of peak power. Ideally, servers should be turned
off when they are not in use. However, turning servers back
on incurs a high setup time (time to go from off to on), which
is prohibitive for response times, and can waste yet additional
power. For example, the Intel E5520 servers running in our lab
have a setup time of about 250 seconds, during which time
they consume about 213 Watts of power. Given this high setup
cost, it is not at all obvious whether one should ever turn idle
servers off. As setup costs continue to drop, turning servers off
looks more desirable, although even under lower setup costs
it is still not clear whether turning servers off makes sense.
The power management problem: We ask: At any point in
time, how many servers should be on and how many should be
off? Our goal is to minimize both the average response time,
Tavg , and the average power consumption, Pavg . Response
time for a job is defined as the time from when the job
arrives into the system to the time when it departs the system.
The problem of power management is particularly difficult
in situations where we don’t know the load in advance,
which is the situation we assume throughout this paper. In
the unpredictable load scenario, leaving all servers on all the
time is not a good option, because it requires provisioning for
(at least) the peak load and wasting a lot of power [3, 15].
Prior work: There are two common approaches to handling
time-varying loads. The first is to try to predict the future load,

based on the past arrival rate, and adapt capacity based on this
predicted load, see, e.g., [8, 9, 15]. The second approach is to
use control-theoretic techniques to reactively adapt to the load,
see, e.g., [10, 16, 19, 20, 22]. While both these approaches are
common in research, they have two practical disadvantages.
First, they can be very complex, requiring lots of frequent
calculation. Second, it is tough to be predictive or reactive
with good accuracy when setup times are high.
Our solution: We explore a broad class of distributed and
robust auto-scaling policies, which we refer to as DRAS
policies, that dynamically adjust the number of servers without
requiring any prediction of the future load, or any feedback
control. Each of our DRAS policies comprises three important
design decisions. (i) When should idle servers be turned off?
(see Section III) An obvious solution is turn off a server as
soon as it goes idle. However, we find that it is beneficial to
delay turning servers off for some time, twait > 0. (ii) How
should incoming jobs be routed to servers? (see Section IV)
Given that some servers will be idle because of the non-zero
twait, when a job arrives, it is not obvious to which idle server
the job should be routed. For example, one might route the job
to a random idle server, or to a server that was most recently
busy or least recently busy? It turns out that the right routing
policy is vital to the robustness of the DRAS policies. (iii)
When should servers be turned on? (see Section V) When a
job arrives and finds no idle servers, it is natural to turn on a
new server. However, if a burst of jobs arrives into the system,
this will result in a lot of servers being turned on, some of
which might not be needed later. We find that it helps to delay
turning on a server until enough jobs, f , accumulate. In order
to assess the impact of each of the three design decisions, we
compare the Tavg and Pavg of DRAS against those of a straw
man approach that is quite popular in the real-world [3, 5, 15],
ON/IDLE. Under ON/IDLE, a fixed number of servers are
always kept on. We optimistically assume that ON/IDLE has
clairvoyant knowledge of the peak demand that it is going to
face, and furthermore, we assume that ON/IDLE is “smart”,
and provisions for the peak demand using the well accepted
“square-root staffing” rule1 from [13]. While ON/IDLE results
in near-optimal response times, its Pavg can be very high.
Figure 1, which summarizes our implementation results, shows
that DRAS can reduce average power consumption by about
30% in exchange for a 4% increase in response time. The 30%

1Under the square-root staffing rule, the number of servers is held fixed at
d +

√
d, where d represents the number of servers needed to just meet the

peak demand.



Fig. 1: Impact of the three design decisions in DRAS based
on implementation results in Figure 8.

power savings can be attributed to using the right policy for
turning servers off, which contributes 14% to power savings,
and using the right policy for turning servers on, which
contributes an additional 16% to power savings. While the
right routing policy does not provide significant power savings,
we find that it is vital for making DRAS robust.

II. MODEL

Figure 2 illustrates our server farm model. We assume a
homogenous server farm, with CPU bound jobs, where each
server only serves one job at a time, and the remaining jobs
wait in a central queue. Each server can be in one of the
following states: busy, idle, setup, or off. The associated power
values are Pbusy , Pidle, Psetup and Poff . The setup time,
which we defined as the time to go from off to on (busy or
idle), is denoted by tsetup, and is assumed to be a constant.
Remaining details about turning servers off, routing jobs to
servers, and turning servers on can be found in Sections III,
IV and V respectively. For most of the results in this paper,
we use a scaled NLANR [1] demand trace (shown later in
Figure 8). We also evaluated our policies (see Table I) against
other traces, such as other NLANR traces and the 1998 Soccer
World Cup website trace [2], and observed similar results.
A. Implementation details

In order to experimentally evaluate the power management
of compute intensive server farms via the DRAS policies, we
built an implementation test bed. Experimental results based
on this test bed are presented in Section VI (specifically,
Figure 8 and Table I). Our test bed consists of 21 servers
from the Open Cirrus cluster [4] at Intel Labs Pittsburgh.
Each server has two 2.27 GHz quad-core Intel Xeon E5520
processors, with 16 GB of memory. We monitor the power
consumption of individual servers by reading the power values
off of the power distribution unit (PDU). We use SNMP [17] to
remotely turn these servers on and off. The workload used in
all our experiments is Intel’s LINPACK [12] workload, which
is CPU bound. Unless otherwise specified, we set LINPACK’s

Fig. 2: Illustration of our server farm model.

job size to be 13 seconds. One of the servers is employed as
the front-end load generator and load balancer. Each new job
generates an HTTP request using the httperf [18] web server.
The request is then routed to one of the 20 application servers,
which then executes the LINPACK benchmark.
B. Simulation details

Ideally, we would like to explore the individual design
decisions involved in the DRAS policies via implementa-
tion. However, each evaluation would require 24 hours of
experimentation time (see Figure 8). Thus, in Sections III,
IV and V, we resort to careful simulations to explore the
design decisions, and then validate all our findings using our
implementation test bed in Section VI. Our discrete event
simulator, written in C++, uses the above described model of
a compute intensive server farm. Using the simulator, we can
experiment with various arrival traces, job size distributions,
setup times, as well as arbitrarily large server farms. We
use the following server characteristics for our simulation:
Pbusy = Psetup = 213W , Pidle = 140W and Poff = 9W
(when the server is off, some components are kept powered on,
such as the NIC). These values are based on measurements we
obtained for our Intel Xeon E5520 servers running the CPU-
bound LINPACK [12] workload. While for our test bed we
measured tsetup = 250s, we also run simulations with lower
tsetup values, such as 25s and 2.5s.

III. WHEN TO TURN SERVERS OFF?

The first design decision we address for our DRAS policies
is when should idle servers be turned off. In particular, should
idle servers be immediately turned off to save power? Or
should we leave them idle for some time, say twait seconds,
in anticipation of new arrivals? We assume that an incoming
job that does not find any idle server upon arrival, turns on
an off server. The job then waits in the central queue, and
once it reaches the head of the queue, it is routed to one of
the idle servers, at random. If there is no idle server, the job
waits until a server becomes idle, or until a server is turned on
(whichever happens first). In Section IV, we relax the random
routing assumption, and explore other routing policies and
their impact on Tavg and Pavg . Then, in Section V, we relax
the assumption that every arrival turns on a server if it does
not find an idle server, and explore other alternatives for when
to turn servers on.

Figure 3 shows our simulation results for average response
time (Tavg) and average power consumption (Pavg) as a
function of twait for different setup times (tsetup), on a 20
server system using the NLANR [1] demand trace (shown
later in Figure 8) We find that it is best to wait for some
time before turning idle servers off. Each server independently



Fig. 3: Waiting for some time before turning idle servers off
can reduce response times (top graph) by as much as 83%
and power consumption (bottom graph) by as much as 40%.

sets a twait timer when it goes idle (no central control is
needed). In particular, for tsetup = 250s, the best twait setting
reduces response time by as much as 83% (from 80s when
twait = 0 to 13.5s under the optimal twait) and reduces power
consumption by as much as 40% (from 3000W to 1800W )
when compared to the case where twait = 0. The reason
behind this is that if we immediately turn idle servers off,
then new arrivals won’t find an idle server. Thus, new arrivals
will have to spend a lot of time waiting for a busy server to
become idle or for a server to turn on (the latter is proportional
to tsetup). Note that the best twait setting increases with tsetup.
This result was also observed in [11], where the authors used
analytical modeling to determine whether idle servers should
be immediately turned off or not.

The idea of leaving a server purposely idle for some time
before shutting it off has been used before in the mobile
computing community (see [6, 7, 14]), however, only for a
single device. For a multi-server system such as the one we
consider, we find that the right twait setting is greatly affected
by the routing policy used to dispatch jobs to servers, as
discussed in the next section.

IV. HOW TO ROUTE JOBS TO SERVERS?

In the last section, we saw that leaving servers idle for
some time (twait) was beneficial to response time and power.
Given that an arrival finds some idle servers, it is not obvious
which idle server the arrival should go to. One possibility
is to send the arrival to a random idle server (RANDOM),
as we did in the previous section. We now introduce two
other routing policies. Under the Most-Recently-Busy (MRB)
routing, the job at the head of the queue is routed to the
idle server that was most recently busy. That is, the server
that has been idle for the shortest amount of time. We also
consider the Least-Recently-Busy (LRB) policy which sends
the job at the head of the queue to the idle server that has
been idle for the longest amount of time. It is not clear which
routing policy is the best, and further, how the routing policy
impacts response time and power. Figure 4 compares Tavg

Fig. 4: MRB is insensitive for large twait. RANDOM and LRB
are very sensitive to twait.

Fig. 5: Robustness of MRB under a 10 times faster time scale.

Fig. 6: Robustness of MRB for the case where the job size
distribution is as observed in the NLANR trace.
and Pavg for the MRB, RANDOM and the LRB policies.
We find that the routing policy does not significantly affect
response time. For power consumption, each policy, when run
at its optimal twait setting, results in approximately the same
power consumption. However, different policies have different
optimal twait settings (120s for MRB, 80s for RANDOM
and 40s for LRB), and some policies (like LRB) are more
sensitive to twait, whereas MRB is largely insensitive beyond
a twait of 120s. The lowering of the optimal twait setting as
we go from MRB to LRB can be reasoned as follows. Under
MRB routing, servers that have been idle for a long time are
very likely to complete their twait timeout and be turned off,
without being interrupted for servicing a job. However, under
the LRB routing, an idle server can only turn off if no new
jobs arrive for at least twait seconds. Now, if the twait setting
is large, the LRB routing policy will waste a lot of power by
not allowing idle servers to turn off, and thus, LRB favors a
lower twait setting.

Observe that operating at the optimal twait setting is crucial
for power savings under the RANDOM and LRB routing
policies. Any deviation from the optimal twait setting can



Fig. 7: Dampening helps reduce Pavg at the expense of a slight
increase in Tavg .

result in a significant increase in power consumption. On the
other hand, MRB routing is largely insensitive to the twait

setting, as long as twait > 120s. This suggests that the MRB
routing is quite robust. We find that MRB is robust even under
different time scales. For example, consider Figure 5, where
the arrival rate is scaled up by a factor of 10, and the job
sizes are correspondingly scaled down by a factor of 10, to
maintain the same load. While the routing policies again do
not affect response time significantly (not shown here), we
find that the power consumption is affected. In particular, for
the RANDOM and LRB policies, the optimal twait is now
around 20s, which is different from what we had in Figure 4.
Also, operating at the optimal twait setting is again crucial
for power savings under the RANDOM and LRB routing
policies. However, the MRB policy is again largely insensitive
to the twait setting, as long as twait > 120s. We find similar
results when we use a different job size distribution as well.
For example, consider Figure 6, where we use the job size
distribution observed in the NLANR trace as opposed to a
constant job size. Again, the MRB policy is largely insensitive
to the twait setting, as long as twait > 120s. Thus, if the arrival
rate or job size distribution is not known beforehand (which is
commonly the case), it is much better to use the robust MRB
routing policy. We arrived at a similar conclusion when we
evaluated the other traces mentioned in Section II-B as well.

V. WHEN TO TURN SERVERS ON?

The third design decision we address for our DRAS policies
is when servers should be turned on. In the previous sections,
we assumed that each arrival into the system that does not
find an idle server will turn on an off server. However, if a
burst of jobs arrives into the system and finds no idle server,
then a lot of servers will be turned on, resulting in a huge
power draw, with most of these servers not being needed later.
Thus, it might help to delay turning a server on until enough
jobs have accumulated in the queue. We refer to this idea as
“dampening”, and use f to denote the number of jobs that need
to accumulate before a server is turned on. Note that once a
server has been turned on (after f jobs have accumulated),

Trace Job ON/IDLE DRAS
Size Tavg Pavg Tavg Pavg

WC’98 [2] 13s 13s 2034W 13.8s 1486W
WC’98 [2] 5s 5s 1988W 5.4s 1648W
nlanr1 [1] 13s 13.1s 2040W 13.6s 1256W
nlanr2 [1] 13s 13.1s 2124W 13.5s 1621W
nlanr3 [1] 5s 5.1s 1696W 6s 953W

TABLE I: Additional implementation results.

another server will not be turned on until an additional f jobs
have accumulated. Figure 7 shows the effect of f on Tavg

and Pavg for the different routing policies, which were run
at their respective optimal twait settings. We see that for all
routing policies, dampening helps reduce Pavg at the expense
of a slight increase in Tavg . In particular, for MRB, setting
f = 4 reduces power consumption by 16% at the expense
of only a 4% increase in response time, for our workload.
Also, for MRB, when f = 1, there were 394 instances of
servers being turned on during the entire 24 hour trace, out of
which 243 servers (62%) were turned off without serving any
jobs. However, when f = 4, there were only 131 instances
of servers being turned on, out of which only 36 servers
(27%) were turned off without serving any jobs. Thus, with
dampening, fewer servers are turned on needlessly.

VI. IMPLEMENTATION RESULTS

We now present our implementation results for DRAS
based on our 20-server test bed described in Section II-A.
As discussed in Section I, we compare against a clairvoyant
and “smart” static provisioning policy, ON/IDLE. Figure 8
shows the 24-hour long time-series results, along with Tavg

and Pavg numbers, for (a) DRAS with the random routing
and best twait, (b) DRAS with MRB routing and best twait,
and (c) DRAS with MRB routing, best twait and the best
dampening. Each plot shows the measured load (arrival rate
times the job size) or incoming work (solid line), number
of servers busy or idle (dots) and the number of servers
busy or idle or in setup (crosses). The “smart” ON/IDLE
policy (not shown here) provides excellent response times
(Tavg = 13.1s), but wastes a lot of power (Pavg = 2098W ) by
over provisioning server capacity, especially during periods of
low load. On the other hand, the DRAS policies provide near-
optimal response times (Tavg < 14s) and great power-savings
when compared to ON/IDLE. This is because the DRAS
policies automatically adjust the server capacity (servers busy
or idle) based on the incoming load. For example, we see that
all the DRAS policies shown in Figure 8 lower the server
capacity around the 12 hour mark, when the load decreases,
and increase server capacity around the 18 hour mark, when
the load increases. DRAS with the best dampening (best turn
on) provides additional power savings by reducing the number
of servers in setup (the difference between the crosses and the
dots in the plots). Overall, DRAS provides nearly 30% power
savings at the expense of a 4% increase in response time. We
also evaluated DRAS (with the best settings) for other arrival
traces and/or job sizes, as shown in Table I, and found similar
improvements, with power savings in the range of 17%-
44% at the expense of a 3%-17% increase in response time.



(a) DRAS with best turn off. Tavg = 13.4s,
Pavg = 1876W .

(b) DRAS with best turn off and routing.
Tavg = 13.2s, Pavg = 1873W .

(c) DRAS with best turn off, routing and turn
on. Tavg = 13.5s, Pavg = 1532W .

Fig. 8: Implementation results showing DRAS.

Fig. 9: Simulation results for ON/IDLE vs. DRAS under
different server farm sizes.

Thus, our implementation results successfully demonstrate the
superiority of DRAS over ON/IDLE. While our experimental
test bed is limited to 20 servers, we can simulate much larger
server farms. Figure 9 compares ON/IDLE against DRAS for
various server farm sizes in simulation using the trace shown
in Figure 8. We find that even for larger server farms (200
or 2000 servers), DRAS provides significant power savings
without compromising much on response times.

VII. CONCLUSION

In this paper we presented the design and implementation
of the DRAS policies, a class of distributed and robust auto-
scaling policies, for power management in compute intensive
server farms. The DRAS policies can provide near-optimal
response times while lowering power consumption by 30%
when compared to existing server farm policies. Via simula-
tions and implementation on a 20 server test bed, we show that
the DRAS policies dynamically adjust server farm capacity
without requiring any prediction of the future load or any
feedback control, and are robust to variations in job size
distribution and time scale. While we only experimented with
the off state in this paper, we plan to experiment with the
various sleep states that might soon be available in commercial
servers as part of future work. We also plan to extend our
current work to address power management problems in multi-
tier web server farms, involving a mix of CPU and I/O bound
jobs, and time-sharing servers.

REFERENCES

[1] National Laboratory for Applied Network Research. Anonymized access
logs. Available at ftp://ftp.ircache.net/Traces/.

[2] The internet traffic archives: WorldCup98. Available at
http://ita.ee.lbl.gov/html/contrib/WorldCup.html.

[3] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A. Konwin-
ski, G. Lee, D. A. Patterson, A. Rabkin, I. Stoica, and M. Zaharia. Above
the clouds: A berkeley view of cloud computing. Technical Report
UCB/EECS-2009-28, University of California, Berkeley, Feb 2009.

[4] A. I. Avetisyan, R. Campbell, I. Gupta, M. T. Heath, S. Y. Ko, G. R.
Ganger, M. A. Kozuch, D. O’Hallaron, M. Kunze, T. T. Kwan, K. Lai,
M. Lyons, D. S. Milojicic, H. Y. Lee, Y. C. Soh, N. K. Ming, J. Y. Luke,
and H. Namgoong. Open Cirrus: A Global Cloud Computing Testbed.
IEEE Computer, April 2010.

[5] L. A. Barroso and U. Holzle. The case for energy-proportional
computing. Computer, 40(12):33–37, 2007.

[6] L. Benini, A. Bogliolo, and G. De Micheli. System-level Dynamic
Power Management. In IEEE Alessandro Volta Memorial Workshop on
Low-Power Design, pages 23 – 31, 1999.

[7] F. Chen, S. Jiang, W. Shi, and W. Yu. FlexFetch: A History-Aware
Scheme for I/O Energy Saving in Mobile Computing. In IEEE
International Conference on Parallel Processing (ICPP), 2007.

[8] G. Chen, W. He, J. Liu, S. Nath, L. Rigas, L. Xiao, and F. Zhao. Energy-
aware server provisioning and load dispatching for connection-intensive
internet services. In NSDI’08, Berkeley, CA, USA, 2008.

[9] Y. Chen, A. Das, W. Qin, A. Sivasubramaniam, Q. Wang, and N. Gau-
tam. Managing Server Energy and Operational Costs in Hosting Centers.
In Sigmetrics 05, Banff, Canada, 2005.

[10] X. Fan, W.D. Weber, and L.A. Barroso. Power provisioning for a
warehouse-sized computer. In ISCA ’07, San Diego, CA, USA, 2007.

[11] A. Gandhi, V. Gupta, M. Harchol-Balter, and M.A. Kozuch. Optimality
analysis of energy-performance trade-off for server farm management.
In PERFORMANCE 2010, Namur, Belgium, 2010.

[12] Intel Corp. Intel Math Kernel Library 10.0 - LINPACK.
http://www.intel.com/cd/software/products/asmo-na/eng/266857.htm.

[13] O.B. Jennings, A. Mandelbaum, W. A. Massey, and W. Whitt. Server
staffing to meet time-varying demand. Management Science, 42:1383–
1394, 1996.

[14] J. Kim and T. S. Rosing. Power-aware resource management techniques
for low-power embedded systems. In S. H. Son, I. Lee, and J. Y-T
Leung, editors, Handbook of Real-Time and Embedded Systems. Taylor-
Francis Group LLC, 2006.

[15] A. Krioukov, P. Mohan, S. Alspaugh, L. Keys, D. Culler, and R. Katz.
Napsac: Design and implementation of a power-proportional web cluster.
In First ACM SIGCOMM Workshop on Green Networking, August 2010.

[16] J.C.B. Leite, D.M. Kusic, and D. Mossé. Stochastic approximation
control of power and tardiness in a three-tier web-hosting cluster. In
ICAC ’10, Washington, DC, USA, 2010.

[17] D. R. Mauro and K. J. Schmidt. Essential SNMP. O’Reilly.
[18] D. Mosberger and T. Jin. httperf—A Tool for Measuring Web Server Per-

formance. ACM Sigmetrics: Performance Evaluation Review, 26(3):31–
37, 1998.

[19] R. Nathuji, A. Kansal, and A. Ghaffarkhah. Q-clouds: Managing
performance interference effects for qos-aware clouds. In EuroSys ’10,
Paris, France, 2010.

[20] B. Urgaonkar and A. Chandra. Dynamic provisioning of multi-tier
internet applications. In ICAC ’05, 2005.

[21] U.S. Environmental Protection Agency. EPA Report on server and data
center energy efficiency. 2007.

[22] X. Wang and M. Chen. Cluster-level feedback power control for
performance optimization. In HPCA ’08, Salt Lake City, UT, USA,
2008.


