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New computing and communications paradigms will result in traffic loads in information
server systems that fluctuate over much broader ranges of time scales than current sys-
tems. In addition, these fluctuation time scales may only be indirectly known or even be
unknown. However, we should still be able to accurately design and manage such systems.
This paper addresses this issue: we consider an M/M/1 queueing system operating in
a random environment (denoted M/M/1(R)) that alternates between HIGH and LOW
phases, where the load in the HIGH phase is higher than in the LOW phase. Previous work
on the performance characteristics of M/M/1(R) systems established fundamental prop-
erties of the shape of performance curves. In this paper, we extend monotonicity results to
include convexity and concavity properties, provide a partial answer to an open problem
on stochastic ordering, develop new computational techniques, and include boundary cases
and various degenerate M/M/1(R) systems. The basis of our results are novel representa-
tions for the mean number in system and the probability of the system being empty. We
then apply these results to analyze practical aspects of system operation and design; in
particular, we derive the optimal service rate to minimize mean system cost and provide a
bias analysis of the use of customer-level sampling to estimate time-stationary quantities.

Keywords: cubic polynomial, M/M/ 1 single-server queue, monotonicity, random environment,
sampling, time varying load

1. INTRODUCTION

With the explosion of new computing and communications paradigms such as big data,
fog computing, Internet-of-Things, machine-to-machine communication, and mobile edge
computing and caches, system traffic loads will fluctuate over a much broader range of time
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2 R. Vesilo et al.

Figure 1. Illustration of the M/M/1(R) model.

Figure 2. Markov chain for the M/M/1(R) model.

scales than extant systems. At times, the load may vary extremely rapidly, while on other
occasions, the fluctuations may be slow, with many possible rates in between. In some cases,
the fluctuation time scales may only be known indirectly, while in other cases, they may
not even be known at all. Under such circumstances, many performance analysis tools will
struggle to maintain accuracy—in particular, performance estimates using anM/M/1 queue
model operating under the average arrival and service rates may be grossly in error—yet
we still need to be able to accurately design and operate systems for these circumstances.

The most common model of a single-server system under time-varying load conditions
is an extension of the classic M/M/1 queue to an M/M/1 queue “operating in a random
environment,” denoted M/M/1(R), illustrated in Figure 1. The M/M/1(R) system consists
of a single-server queue with an infinite waiting area in which arriving customers, belonging
to a single class, are served in first-come first-served (FCFS) order. The system alternates
between two phases: LOW and HIGH. Times spent in the LOW and HIGH phases are
assumed to be mutually independent exponentially distributed random variables with rate
parameters αL and αH , respectively. The arrival rates of customers are λL and λH , in the
LOW and HIGH phases, respectively; the service rates are μL and μH , respectively. The
load quantities are defined by ρL = λL/μL and ρH = λH/μH . The load in the HIGH phase,
ρH , is assumed to be larger than the load in the LOW phase, ρL, that is, ρL ≤ ρH , but no
particular relationship between λL and λH or between μL and μH is assumed. The Markov
Chain associated with our M/M/1(R) model is given in Figure 2.

There has been considerable research on performance measures for the M/M/1(R) sys-
tem. The paper Yechiali and Naor [34] was one of the earliest to address an M/M/1(R)
system, using a semi-infinite two-dimensional continuous-time Markov chain; this and sub-
sequent papers have produced accurate results for quantities such as the mean number in
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SCALING PROPERTIES OF QUEUES WITH TIME-VARYING LOAD PROCESSES 3

system1 (and hence, via Little’s Law, mean response time) and the probability of the system
is empty. However, there are only a few papers that provide qualitative insight into how
the performance of the M/M/1(R) system varies as a function of its primitives, which is a
fundamental concern to us here.

One such paper, Gupta et al. [17], introduced a scaling parameter (a function of αH

and αL) to vary the rate of switching between phases and examined the shape of the perfor-
mance curves as a function of this rate. It found that the response time varies monotonically
between the two extreme cases of switching rate zero and switching rate infinity. Further-
more, the effect of the rate of fluctuation on the mean response time is determined by the
relative “slack” in each phase (μL − λL and μH − λH). It also proved that the number in
system at the end of a HIGH phase is stochastically larger than the number at the end of
a LOW phase and the number in a stationary “average” system. It left as an open problem
possible stochastic monotonicity of the number in system at the end of a HIGH phase as
the phase switching rate increases.

While certainly an important contribution, Gupta et al. [17] leave a number of questions
about M/M/1(R) systems unanswered. We complement Gupta et al. [17] with the following
contributions:

1. We sharpen the monotonicity results of Gupta et al. [17] by showing that the mean
number in system at the end of a HIGH phase is a convex function of the scaling
parameter, while the mean number in system at the end of a LOW phase can be
concave, or convex, or a constant, depending on the load in the HIGH phase. We
also show that the time-stationary response time can be either a convex or a concave
function of the switching rate depending on the slack in the LOW and HIGH phases.

2. Gupta et al. [17] treat the cases of the HIGH phase being underloaded and overloaded
separately and do not consider the boundary case of ρH = 1 at all. We derive a unified
expression for all of these cases, providing a more holistic analysis.

3. We provide an answer to the open question posed by Gupta et al. [17] regarding
whether the number of customers in the system at the end of a HIGH phase is
stochastically monotonic with the switching rates. We show that this is not always
the case, but on a positive note, we provide sufficient conditions for it to be true.

4. Gupta et al. [17] are silent on how the analysis of theM/M/1(R) queue can be used in
system evaluation and design. We present two applications of our results to this end.
The first considers the problem of sampling—since neither the arrival nor departure
processes of an M/M/1(R) system are Poisson in general, sampling at customer
epochs will introduce bias. We obtain expressions for the degree of bias in sampling
and provide expressions to correct for biasing errors. The second application is on
the optimal design of an M/M/1(R) service system: Assuming service rate costs are
proportional to the service rate and holding time costs are proportional to time in
system, we show that the optimal service rate balances “slack” (as opposed to load)
across phases.

5. Gupta et al. [17] do not address either “degenerate” systems (such as an M/M/1
queue with interrupted arrivals, or service, or both) or “generalized” M/M/1(R)
systems (such as an M/M/c system operating in a random environment, or an
M/M/1 queue with disasters). We explicitly consider these systems, both focusing
and generalizing the M/M/1(R) analysis to these and other important models.

1 Results are in terms of roots of cubic equations; this will be discussed later.
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4 R. Vesilo et al.

As in Yechiali and Naor [34] and Gupta et al. [17], much of our analysis relies on the
solution of the equations for the z-transform of the number in system at the end of the
HIGH and LOW phases, which in general is a cubic polynomial. Our results are facilitated
by our broader investigation of the roots of this polynomial: Instead of focusing on one root
of the cubic as these works did, we exploit all the roots of the cubic, thereby obtaining
simpler expressions which we can leverage for our results. And, as the solution of this cubic
is crucial to our analysis, we also provide a new computational method for obtaining the
roots of the M/M/1(R) cubic polynomial.

An overview of the paper is as follows. Section 2 provides an overview of related work on
different techniques for analyzingM/M/1(R) systems. Section 3 presents the background on
generating function techniques needed to analyze the M/M/1(R) system. Section 4 presents
our new representations used to obtain the mean number in system and the probability of
an empty system that are the foundation of our results. Section 5 presents the results
on the sensitivity and convexity/concavity properties of performance measures. Section 6
presents the results that give a partial answer to the stochastic monotonicity of the number
in system at the end of a HIGH phase. Section 7 presents the two applications of our results:
the allocation of the service rate to minimize cost, and the analysis of sampling bias. Section
8 presents the new method of computing roots. Section 9 shows how degenerate M/M/1(R)
systems can be analyzed and shows how the techniques developed for theM/M/1(R) system
can be applied to the analysis of more sophisticated types of systems operating in a random
environment. The conclusion is given in Section 10.

2. RELATED WORK

Analysis of time-varying M/M/1 queues and related models has been of long-standing
interest. We present a short review of work most relevant for this paper; for a more com-
prehensive coverage of the related literature, we refer the reader to Gupta et al. [17]. The
most relevant papers to the current paper are Yechiali and Naor [34] and Gupta et al.
[17] where the use of generating functions leading to a cubic polynomial is developed and
applied. Other papers that involve generating functions and transforms include Neuts [23]
and Çinlar [13] for queues with Poisson arrivals and semi-Markovian service times; Çinlar
[12] for queues with semi-Markovian arrivals and exponential service times; Arjas [6] where
a Wiener–Hopf factorization is obtained for MAP arrivals and general service; and Purdue
[26] for M/M/1 queues in a Markovian environment. Matrix analytic methods have proven
to be effective tools for analyzing time varying queues. The broad class of models include
those with Markovian Arrival Process (MAP), phase-type service, and Neuts processes.
Seminal papers include those by Neuts [24] and Ramaswami [27]; texts include Neuts [25]
and Latouche and Ramaswami [21].

Analysis of the M/M/1 with time varying load is closely tied with the transient analysis
of the M/M/1 queue. Early work on transient analysis either used generating functions to
obtain state probabilities in terms of incomplete Bessel functions (see [8]), or expressed the
transient probabilities as solutions to integral equations of the Volterra type (see [10] or
[14]). A comprehensive analysis of the transient M/M/1 queue is given in Abate and Whitt
[1], Abate and Whitt [3] and Abate and Whitt [2] using techniques that include transforms,
space-time scaling, reflected Brownian motion, and heavy traffic limits. The paper Abate
et al. [5] provides a decomposition of the M/M/1 probability transition functions. Numer-
ical methods for state probabilities in terms of Bessel functions are given by Sharma [28],
Conolly and Langaris [15], Sharma and Bunday [29] and Tarabia [31]. Other computational
techniques are given in Abate and Whitt [4] using numerical integration, in van de Coevering

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0269964821000048
Downloaded from https://www.cambridge.org/core. Carnegie Mellon University, on 15 Jun 2021 at 19:12:07, subject to the Cambridge Core terms of use, available

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0269964821000048
https://www.cambridge.org/core


SCALING PROPERTIES OF QUEUES WITH TIME-VARYING LOAD PROCESSES 5

[32] using trigonometric integrals, and in Bolot and Shankar [9] using optimal least-squares
approximations. The derivation of the Bessel function form of the state probabilities for the
M/M/1 using sample path techniques is given by Baccelli and Massey [7].

Queues with time-varying arrival rates are closely related to our work. However, we
assume a random environment whereas much of the time-varying arrival literature assumes
inhomogeneous but non-random environment processes. A wide ranging review of such
queues is given in Whitt [33] with additional reviews referenced therein. A specific recent
application in the healthcare area of queues with time-varying arrival rates is in Chan et al.
[11], which models patient inspections before discharge. An example illustrating the breadth
of techniques used to analyze time varying systems is Hampshire et al. [19], that uses fluid
and diffusion limits to analyze transient sojourn times in time-varying processor sharing
systems.

3. PROBLEM FORMULATION AND PRELIMINARY RESULTS

In this section, we present our model, and then derive some previously known quantities
(see [17,34], for example) that we will use in the balance of our paper.

The M/M/1(R) system consists of a single-server queue with an infinite waiting area in
which arriving customers, belonging to a single class, are served in FCFS order. The system
operates in an environment that alternates between two phases: LOW and HIGH. Times
spent in the LOW and HIGH phases are assumed to be mutually independent exponentially
distributed random variables with rate parameters αL and αH , respectively. The arrival
rates of customers are λL and λH , in the LOW and HIGH phases, respectively; the service
rates are μL and μH , respectively. The load quantities are defined by ρL = λL/μL and
ρH = λH/μH . The load in the HIGH phase, ρH , is assumed to be greater than or equal
to the load in the LOW phase, ρL, that is, ρL ≤ ρH (ties are broken arbitrarily), but no
particular relationship between λL and λH or between μL and μH is assumed. To avoid
trivial cases, it will be assumed that neither λL = λH = 0 nor μL = μH = 0 apply, and that
both αL > 0 and αH > 0. For consistent labeling of states, it is assumed that if the service
rate in one of the phases is zero, then that phase is defined to be the HIGH phase, even
if the arrival rate in that phase is zero. With this labeling, it can always be assumed that
μL > 0.

3.1. Generating Functions

The state probabilities for the M/M/1(R) system can be obtained using the generating
function method, which was used by Yechiali and Naor [34] to originally analyze this system.
We begin with the generating function of the number in system of a transientM/M/1 queue,
with arrival rate λ and service rate μ, at a random time. Let N(t) be the number in the
system at time t and define pn(t) = Pr(N(t) = n). Following Bailey [8] defines the generating
function: Π(z, t) =

∑∞
n=0 z

npn(t). Using standard techniques, Π(z, t) can be found to satisfy
the equation:

∂

∂t
Π(z, t) = Π(z, t)

[
−(λ+ μ) + λz +

μ

z

]
− μ

(
1
z
− 1

)
p0(t). (1)

The Laplace Transform of Π(z, t) (denoted by Π̂(z, s)) is given by

Π̂(z, s) =
μ(1 − z)p̂0(s) − zΠ(z, 0)
λz2 − (s+ λ+ μ)z + μ

, (2)
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6 R. Vesilo et al.

where p̂0(s) is the Laplace transform of p0(t).
Now consider the number of customers in system, N(T ), in a transient M/M/1 system

at a random time T , where T has an exponential probability distribution with rate α. Define
the probability distribution of N(T ) by pα,n ≡ Pr(N(T ) = n). It is straightforward to show
that the generating function of N(T ), denoted by Π̂α(z) ≡ E(zN(T )) =

∑∞
n=0 z

npα,n, is
given by

Π̂α(z) = αΠ̂(z, α) =
αzΠ(z, 0) − μ(1 − z)π0

αz − μ(1 − z) + λz(1 − z)
, (3)

in which Π(z, 0) is the probability generating function of the number in the system at time
0 and π0 ≡ P (N(T ) = 0) is the probability that the system is empty at time T .

We now apply (3) to theM/M/1(R) system. Let NL(t) denote the number in the system
t time units after the beginning of a generic LOW phase, given that the phase has not
transitioned during these t time units. We define NH(t), respectively. In particular, NL(0)
and NH(0) denote the number in the system at the very beginning of the generic LOW and
HIGH phases, respectively. Let TL and TH denote generic random variables for the duration
of the LOW and HIGH phases, respectively. The generating functions for NL ≡ NL(TL) and
NH ≡ NH(TH) are given by the generating function, (3), for a transient M/M/1 system
with the appropriate substitution of primitive parameters for each phase. Also, from the
continuity of distribution functions at state transitions, it follows that NL(0) d= NH(TH)
and NH(0) d= NL(TL). Hence, after defining Π̂L ≡ Π̂αL

and Π̂H ≡ Π̂αH
, we obtain

Π̂L(z) =
zαLΠ̂H(z) − μL(1 − z)π0L

αLz − μL(1 − z) + λLz(1 − z)
, (4)

Π̂H(z) =
zαHΠ̂L(z) − μH(1 − z)π0H

αHz − μH(1 − z) + λHz(1 − z)
, (5)

where π0L ≡ P (NL(TL) = 0) and π0H ≡ P (NH(TH) = 0) are the probabilities of the system
being empty at the end of a LOW phase and a HIGH phase, respectively. Solving for Π̂H(z)
and Π̂L(z) gives

Π̂L(z) =
(μLαHπ0L + αLμHπ0H)z − μLπ0L(1 − z)(μH − λHz)

D0(z)
, (6)

Π̂H(z) =
(μHαLπ0H + αHμLπ0L)z − μHπ0H(1 − z)(μL − λLz)

D0(z)
, (7)

where

D0(z) = (αH(μL − λLz) + αL(μH − λHz))z − (1 − z)(μL − λLz)(μH − λHz)

= λLλHz
3 − z2(αHλL + αLλH + λLλH + μLλH + μHλL)

+ z(αHμL + αLμH + μLλH + μHλL + μLμH) − μLμH . (8)

Eq. (8) is formally a cubic polynomial, but depending on the parameter choices, it may
reduce into a quadratic or even a linear polynomial. This occurs, for example, if λH = 0
or λL = 0, in which case the leading coefficient becomes zero; if μH = 0, in which case the
constant term becomes zero; or if the variable z factors out from the numerator and the
denominator. For the remainder of this section, we consider only the non-degenerate case of
μL, μH , λL, λH > 0 with unequal load in the phases, that is, ρH > ρL (various degenerate
cases are examined in Section 9.1).
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SCALING PROPERTIES OF QUEUES WITH TIME-VARYING LOAD PROCESSES 7

The performance of theM/M/1(R) system depends on the rate of fluctuation of the ran-
dom environment process. We use the scaling parameter, κ ∈ (0,∞), to succinctly quantify
this rate of fluctuation, defined by

κ ≡ αL

μL
+
αH

μH
. (9)

To show more explicitly the dependence on load in the LOW and HIGH phases, Eqs.
(6) and (7) can be expressed in terms of the following parameters. Define λ̃L ≡ λL/αL,
λ̃H ≡ λH/αH , μ̃L ≡ μL/αL, and μ̃H ≡ μH/αH . Define the quantities τ ≡ μ̃H/μ̃L and

ρav ≡ λ̃L + λ̃H

μ̃L + μ̃H
. (10)

These quantities are all well-defined under the assumptions stated above. Interpreta-
tion of these quantities will be given shortly. Under these definitions, κ = (1 + τ)/μ̃H . The
equations for Π̂L(z) and Π̂H(z) in (6) and (7), respectively, can now be expressed as:

Π̂L(z) =
(π0L + τπ0H)z − (1 − z)μ̃Hπ0L(1 − zρH)

μ̃HD(z)
, (11)

Π̂H(z) =
(π0L + τπ0H)z − (1 − z)μ̃Hπ0H(1 − zρL)

μ̃HD(z)
, (12)

where

D(z) = κz(1 − ρavz) − (z − 1)(ρHz − 1)(1 − ρLz) (13)

= ρLρHz
3 − (κρav + ρL + ρH + ρLρH)z2 + (κ+ 1 + ρL + ρH)z − 1. (14)

We can interpret λ̃L (λ̃H) and μ̃L (μ̃H) as the mean number of arrivals and the mean
number of potential service completions in a LOW (HIGH) phase, respectively. The quantity
τ represents the ratio of the average number of potential customer completions in a HIGH
phase to that in a LOW phase. For the M/M/1(R) system, the average number of arrivals
and the average number of potential completions in a LOW-HIGH cycle are given by λav =
λL/αL + λH/αH and μav = μL/αL + μH/αH , respectively, and so the quantity ρav equals
the long-term system load, λav/μav. Using the strong law of large numbers, the system
stability condition is ρav < 1 (the details are not given here). The relationship between ρav,
ρL, and ρH is given by:

(1 + τ)ρav = ρL + τρH . (15)

Observe that, given ρL, ρH , and ρav, we can solve for τ using:

τ =
ρav − ρL

ρH − ρav
. (16)

Thus, τ is a measure of the load imbalance between phases: if τ = 1, then ρav − ρL =
ρH − ρav; for any given αL, αH > 0, ρL ≥ 0, and ρH > 0, we can make ρav assume any value
between ρL to ρH by varying τ from 0 to ∞ (by varying the service rate ratio μH/μL).

Using ρav, we can define an “average M/M/1 system”—a conventional M/M/1 system
with input rate λav, service rate μav, and load ρav. The mean number in system for this
M/M/1 system is ρav/(1 − ρav) ≡ ENav.

We define scaling in such a way so as to be able to compare the performance of the
M/M/1(R) system against the performance of the average M/M/1 system as the rate of
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8 R. Vesilo et al.

the environment process changes. In general, there are six degrees of freedom, corresponding
to the primitives λL, λH , μL, μH , αL, and αH . For a given scenario, we keep λL, λH , μL,
and μH constant, leaving two degrees of freedom, corresponding to αL and αH . Solving for
αL and αH in (9) and (10) gives

αL =
μL(ρav − ρL)κ

ρH − ρL
and αH =

μH(ρH − ρav)κ
ρH − ρL

.

To vary αL and αH , we keep ρav constant and change κ. Keeping ρav constant implies
that τ is also a constant, meaning that for given μL and μH , the ratio αL/αH remains fixed.
We collectively refer to these assumptions as our scaling assumptions.

D(z) has a root r1 such that 0 < r1 ≤ 1. (This can be shown by means of Rouché’s
Theorem but techniques using analytic geometry can also be used.) The other two roots
of D(z) are both greater than 1. Denote these two roots by r2 and r3, with r2 < r3. The
intervals within which the roots are located can be readily shown to be given by:

ρH < 1 : r1 ∈ (0, 1), r2 ∈ (1/ρH , 1/ρav), r3 > 1/ρL, (17)

ρH ≥ 1 : r1 ∈ (0, 1/ρH), r2 ∈ (1, 1/ρav), r3 > 1/ρL. (18)

3.2. State Probabilities

Denote the state probabilities for NL and NH by pnL ≡ Pr(NL = n) and pnH ≡ Pr(NH =
n), respectively. Since Π̂L(z) and Π̂H(z) are generating functions of proper probability
functions both are analytic functions on the unit disk, |z| < 1. Thus, any poles must be
greater than one and must also be roots of D(z), that is, the poles are at r2 and r3.
Consider Π̂L(z) first. Taking a partial fraction expansion of its generating function, and
noting that the order of the numerator is less than the order of the denominator, D(z),
gives

Π̂L(z) =
aL

1 − z/r2
+

bL
1 − z/r3

,

for some constants aL and bL. Since the probability generating function of a discrete
random variable with probability mass function Pr(X = n) = aξn is a/(1 − zξ), the state
probabilities for NL can be obtained as

pnL = aLρ
n
2 + bLρ

n
3 , (19)

where ρ2 ≡ 1/r2 and ρ3 ≡ 1/r3. Note that, ρ3 < ρ2 < 1. Solving for aL and bL gives

aL =
(1 − ρ2)[(1 − ρ3) − π0L]

(ρ2 − ρ3)
, bL =

(1 − ρ3)[(1 − ρ2) − π0L]
(ρ3 − ρ2)

. (20)

Similarly, the state probabilities for NH are given by:

pnH = aHρ
n
2 + bHρ

n
3 , (21)

where

aH =
(1 − ρ2)[(1 − ρ3) − π0H ]

(ρ2 − ρ3)
, bH =

(1 − ρ3)[(1 − ρ2) − π0H ]
(ρ3 − ρ2)

. (22)
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SCALING PROPERTIES OF QUEUES WITH TIME-VARYING LOAD PROCESSES 9

4. NEW REPRESENTATION FOR PERFORMANCE MEASURES

In this section, we begin by deriving novel expressions for the phase-dependent performance
quantities ENL, ENH , π0L, and π0H , in Theorem 4.1. Since the sequences {ρn

2} and {ρn
3}

(n = 0, 1, 2, . . .) are geometric, the expectations of NL and NH are given by:

ENL =
aLρ2

(1 − ρ2)2
+

bLρ3

(1 − ρ3)2
, (23)

ENH =
aHρ2

(1 − ρ2)2
+

bHρ3

(1 − ρ3)2
. (24)

Substituting the expressions for aL and bL given by (20), and for aH and bH given by
(22), respectively, into these equations gives

ENL = [(1 − ρ2ρ3) − π0L]ψ, (25)

ENH = [(1 − ρ2ρ3) − π0H ]ψ, (26)

where

ψ ≡ 1
(1 − ρ2)(1 − ρ3)

. (27)

The main theorem for this section (Theorem 4.1) derives expressions for ENL, ENH ,
π0L, and π0H that are cast in terms of expressions for the difference ENH − ENL, ψ and
the difference π0L − π0H .

Theorem 4.1: For a stable M/M/1(R) system:

ENL =
ρav

1 − ρav
− τ(1 − ρH)(ENH − ENL)

(1 + τ)(1 − ρav)
, (28)

ENH =
ρav

1 − ρav
+

(1 − ρL)(ENH − ENL)
(1 + τ)(1 − ρav)

, (29)

and

π0L = 1 − ρav +
τ(π0L − π0H)

1 + τ
, (30)

π0H = 1 − ρav − π0L − π0H

1 + τ
, (31)

where ENH − ENL, ψ, and π0L − π0H are given by

ENH − ENL =
1

1 − ρHr1
− 1

1 − ρLr1
=

r1ρH

1 − ρHr1
− r1ρL

1 − ρLr1
, (32)

ψ =
1 − r1

κr1(1 − ρav)
=

(1 − ρavr1)
(1 − ρav)(1 − ρHr1)(1 − ρLr1)

, (33)

π0L − π0H =
ENH − ENL

ψ
. (34)

Proof: A sketch of the proof is as follows. A representation for ENH − ENL is obtained
by subtracting (25) from (26). Expressions for π0L and π0H are obtained in terms of r1
using the analytic properties of the generating functions Π̂L(z) and Π̂H(z). The resulting
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10 R. Vesilo et al.

expressions are then manipulated to obtain the final results by exploiting the relationships
between the roots of the cubic, D(z), and the coefficients of the cubic. The details of the
proof are given in Appendix A. �

Observe that each of the expressions for π0L, π0H , ENL, and ENH in Theorem 4.1
is composed of two terms: a first term that is the corresponding quantity for the average
M/M/1 system, and then plus or minus a second correction term that is the product of a
constant (dependent on other system primitives but independent of κ), and either π0L − π0H

or ENH − ENL, depending on the particular expression.
Using (16), we can express the results in Theorem 4.1 in alternative form as follows:

ENL =
ρav

1 − ρav
− (ρav − ρL)(1 − ρH)

(ρH − ρL)(1 − ρav)
(ENH − ENL), (35)

ENH =
ρav

1 − ρav
+

(ρH − ρav)(1 − ρL)
(ρH − ρL)(1 − ρav)

(ENH − ENL), (36)

and

π0L = 1 − ρav +
ρav − ρL

ρH − ρL
(π0L − π0H), (37)

π0H = 1 − ρav − ρH − ρav

ρH − ρL
(π0L − π0H). (38)

These equations show the impact of load imbalance; in particular, that as ρav approaches
ρL, then ENL and π0L approach the corresponding values for the average system, and that
as ρav approaches ρH , then ENH and π0H approach the corresponding values for the average
system.

4.1. Unit Load in the HIGH Phase (ρH = 1)

A gap in the analysis of Gupta et al. [17] is the case ρH = 1, which is at the boundary
between the HIGH state being overloaded and underloaded. For an M/M/1 system, this
would lead to an unstable system. However, for the M/M/1(R) system, the results in
Theorem 4.1 reveal some unexpected behavior. As κ→ 0, intuition may lead us to expect
that ENH becomes unbounded since the HIGH phase is unstable and the HIGH phase
duration increases as κ→ 0. Applying Theorem 4.1 confirms this. Setting ρH = 1 in (36)
shows that ENH is found to be

ENH =
ρav

1 − ρav
+

(1 − ρL)(ENH − ENL)
(1 + τ)(1 − ρav)

=
ρav

1 − ρav
+ ENH − ENL.

Now, from (32), ENH − ENL = 1/(1 − r1) − 1/(1 − ρLr1), giving

ENH =
ρav

1 − ρav
+

1
1 − r1

− 1
1 − ρLr1

.

Since r1 → 1 (κ→ 0) for ρH = 1, ENH → ∞. Surprisingly, in contrast, upon setting
ρH = 1 in (35), ENL is found to always have the same value, ρav/(1 − ρav), regardless of
the scaling value κ.
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SCALING PROPERTIES OF QUEUES WITH TIME-VARYING LOAD PROCESSES 11

4.2. Time-Stationary Quantities

The mean time stationary time in system, EW , is of particular interest to customers, while
the time stationary probability of the system being empty, denoted by π0, is of interest
mainly to system operators. Using Little’s law, EW = EN/λav, where EN is the mean
time stationary number in system. Since the environment process is an alternating renewal
process, the renewal-reward technique can be used to obtain the time stationary generating
function for the number in system, denoted by Π̂(z), given by (see [17])

Π̂(z) =
Π̂L(z)

αL
+ Π̂H(z)

αH

1
αL

+ 1
αH

. (39)

Using this equation, the time-stationary quantities EN and π0 are given by the following
corollary.

Corollary 4.1:

EN =
ρav

1 − ρav
+

(ENH − ENL)[αL(1 − ρL) − αHτ(1 − ρH)]
(αL + αH)(1 + τ)(1 − ρav)

, (40)

π0 = 1 − ρav +
αLαHr1(1 − ρav)(ρH − ρL)
(αL + αH)(1 + τ)(1 − ρavr1)

[
τ

αL
− 1
αH

]
. (41)

Proof: The proof is in Appendix A. �

Note, in the M/M/1(R) system, that although stability is determined by the require-
ment that ρav < 1, π0 is not a simple function of the system primitives, and π0 �= 1 − ρav

(unlike in an M/M/1 system).

5. SENSITIVITY OF PERFORMANCE AND CONVEXITY/CONCAVITY PROPER-
TIES

Most of the performance quantities in an M/M/1(R) system are known to be monotonic
functions of κ: Under our scaling assumptions, some quantities are always increasing with κ,
others are always decreasing with κ and some may either increase or decrease monotonically,
depending on the particular values of system primitives. Such analysis was conducted by
Gupta et al. [17]. The benefit of monotonicity properties is that they enable predictable
variations of behavior to occur as fluctuation rate varies. However, system operators may
require more detailed information; in particular, they may wish to know the sensitivity
of performance measure variation with κ. This section derives such sensitivity results. In
so doing, the section also shows that performance curves are, in fact, convex or concave,
depending on the particular performance metric being considered.

The following derivative results for the roots of the cubic can be used to establish
monotonicity and convexity/concavity properties of variables.

Lemma 5.1: Let r1, r2, and r3 be the roots of the cubic (14). Taking derivatives of these
with respect to κ:

r′1 =
r1(ρavr1 − 1)

ρLρH(r1 − r3)(r1 − r2)
, (42)
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12 R. Vesilo et al.

r′2 =
r2(ρavr2 − 1)

ρLρH(r2 − r3)(r2 − r1)
, (43)

r′3 =
r3(ρavr3 − 1)

ρLρH(r3 − r2)(r3 − r1)
. (44)

Since ρav, r1 < 1, r1 < r3, r2 < 1/ρav, r3 > 1/ρav, and r1 < r2, it follows that r′1 < 0,
r′2 > 0, and r′3 > 0.

Proof: The proof is in Appendix B. �

We now establish the convexity of r1 as a function of κ.

Lemma 5.2: r1 is a decreasing convex function of κ.

Proof: From Lemma 5.1 and (A.7),

r′1 =
r1(ρavr1 − 1)

ρLρH(r1 − r3)(r1 − r2)
=

(r1 − 1)(ρHr1 − 1)(ρLr1 − 1)
ρLρHκ(r2 − r1)(r3 − r1)

.

The denominator is an increasing function of κ since, by Lemma 5.1, r2 − r1, r3 − r1
and, trivially, κ are all increasing functions of κ. Since the numerator is a cubic with roots at
1, 1/ρH , and 1/ρL, the numerator is negative but decreases in magnitude to 0 (κ→ ∞), for
r1 ≤ min(1, 1/ρH). Hence, r′1 is negative and decreases in magnitude as κ increases, proving
that r1 is a decreasing convex function of κ. �

To obtain monotonicity and convexity and concavity properties of the phase-related
mean number in system, we proceed by considering ENH − ENL.

Theorem 5.1: For all κ > 0, ENH − ENL is a decreasing convex function of κ.

Proof: Begin by writing

ENH − ENL =
1

1 − ρHr1
− 1

1 − ρLr1
=

1/ρH

1/ρH − r1
− 1/ρL

1/ρL − r1
.

We now present the following intermediate lemma. Given 0 < a < b define

g(x) =
a

a− x
− b

b− x
. (45)

�

Lemma 5.3: For x ∈ (0, a), (i) g(x) > 0, (ii) g′(x) > 0, and (iii) g′′(x) > 0.

Proof: The proof is in Appendix C. �

To prove ENH − ENL is decreasing in κ, differentiate ENH − ENL to obtain

d

dκ
(ENH − ENL) =

d

dr1
(ENH − ENL)

dr1
dκ

. (46)

Applying Lemma 5.3, with g(x) = ENH − ENL, a = min(1, 1/ρH), b = 1/ρL, and x =
r1, gives d(ENH − ENL)/dr1 > 0, while Lemma 5.1 gives dr1/dκ < 0, proving that ENH −
ENL is decreasing.
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SCALING PROPERTIES OF QUEUES WITH TIME-VARYING LOAD PROCESSES 13

To prove ENH − ENL is convex, differentiate ENH − ENL a second time to obtain

d2

dκ2
(ENH − ENL) =

d2

dr21
(ENH − ENL)(

dr1
dκ

)2 +
d

dr1
(ENH − ENL)

d2r1
dκ2

.

Applying Lemma 5.3 gives d2(ENH − ENL)/dr21 > 0 and d(ENH − ENL)/dr1 > 0, and
applying Lemma 5.2 gives d2r1/dκ

2 > 0, and so d2(ENH − ENL)/dκ2 > 0; proving that
ENH − ENL is convex.

Remark 5.1: The specific rate of change of ENH − ENL with κ can be obtained by using
(46). For a given value of κ, the corresponding value of r1 can be obtained by root solving.
Then, (42) gives dr1/dκ in terms of r1, r2, and r3; r2 and r3 can be obtained from r1 by
solving a quadratic equation (see (A.9) in Appendix A); while d(ENH − ENL)/dκ can be
obtained by applying (C.1) in the proof of Lemma 5.3 in Appendix C. The rate of change
for ENL and ENH can be obtained by differentiating (28) and (29), respectively.

The following corollary is now obtained.

Corollary 5.1: For all κ > 0, (i) ENH is a decreasing convex function of κ and (ii) for
ρH < 1, ENL is an increasing concave function of κ, for ρH > 1, ENL is a decreasing convex
function of κ, and for ρH = 1, ENL is a constant function.

Proof: These results following directly from Theorem 4.1 and Theorem 5.1. (i) Considering
ENH first, given in (29), it is the sum of a ρav/(1 − ρav) plus a positive constant, 1 − ρH ,
times a decreasing convex function, proving the result. (ii) Examination of ENL in (28)
shows it to be equal to a ρav/(1 − ρav) minus a constant, 1 − ρH , times a decreasing convex
function. Depending on ρH , the constant is positive, zero, or negative for ρH < 1, ρH > 1,
or ρH = 1, respectively, proving the result. �

An implication of this corollary is that both ENH and ENL are more sensitive to changes
in κ for smaller values of κ than for larger values of κ.

6. STOCHASTIC MONOTONICITY OF NH

Mean values provide a first-order basis for comparing the performance of two systems.
A more detailed comparison is possible using stochastic ordering concepts. For example,
systems can be compared on the basis of tail probabilities of the number in system.

Recall that a random variable X is less than or equal to a random variable Y in the
sense of stochastic ordering, denoted X ≤st Y , if Pr(X > x) ≤ Pr(Y > x) for all x.

Given a random variable L that is a function of κ we say L is stochastically increasing
(decreasing) in κ if for κ2 > κ1, we have L(κ1) ≤st (≥st)L(κ2). In previous work, Gupta et
al. [17] showed that NL �≤st NA and NL ≤st NH . This section examines the open problem
in Gupta et al. [17] of whether NH is stochastically monotone with κ. First, we provide
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some insight into this problem. From (19) and (21), it follows that

Pr(NL > n) =
∞∑

i=n+1

Pr(NL = i) =
aLρ

n+1
2

1 − ρ2
+
bLρ

n+1
3

1 − ρ3
, (47)

Pr(NH > n) =
∞∑

i=n+1

Pr(NH = i) =
aHρ

n+1
2

1 − ρ2
+
bHρ

n+1
3

1 − ρ3
. (48)

Focusing on NH , we see from (48) that Pr(NH > n) is dominated by the first term
as n→ ∞, that is, Pr(NH > n) ∼ aHρ

n+1
2 /(1 − ρ2). Suppose for the moment that aH is a

positive constant, independent of κ. Then, for fixed n,

d

dκ

aHρ
n+1
2

1 − ρ2
=

d

dρ2

aHρ
n+1
2

1 − ρ2

dρ2

dκ
=
aH((1 − ρ2)(n+ 1) + ρ2)ρn

2

(1 − ρ2)2
dρ2

dκ
.

Since dρ2/dκ < 0, this expression would be negative and so, in the asymptotic regime,
Pr(NH > x) would be decreasing with κ. However, for stochastic monotonicity, we need
to consider all n ≥ 0, as well as take into consideration that aH varies with κ and include
the term bHρ

n+1
3 /(1 − ρ3), which complicates the determination of conditions for NH to be

stochastically decreasing.
Despite these difficulties, it will shown, that provided the loads ρL, ρH , ρav satisfy cer-

tain conditions, then NH does stochastically decrease with κ locally, by which we mean
that there exists an open interval containing κ such that for any κ2 > κ1 in that interval
NH(κ2) ≤st NH(κ1).

Theorem 6.1: NH is stochastically decreasing locally in κ if

(1 − ρavr2)(r3 − r1) > (1 − ρLr2)(r2 − r1). (49)

Proof: A sketch of the proof is as follows. An expression for Pr(NH > n) is first derived
from (48) by substituting in the expressions for aH and bH given in (22). The result-
ing expression contains the term 1 − ρ3 − π0H . The proof then shows that under the
theorem conditions, this term is decreasing, and that this is sufficient for NH to be locally
stochastically decreasing with κ. The details of the proof are given in Appendix D. �

Taking the limit κ→ 0 in (49), for the case of ρH < 1, the theorem gives the requirement(
1 − ρav

ρH

) (
1
ρL

− 1
)
>

(
1 − ρL

ρH

) (
1
ρH

− 1
)
.

If this is satisfied, then it is also true in a neighborhood of 0 since the functions involved
are continuous. For example, if τ = 1, ρH = 0.9, and ρL = 0.1, the condition is satisfied
but if τ = 1, ρH = 0.3, and ρL = 0.2, then it is not satisfied. For the case ρH > 1, the
corresponding condition for κ→ 0 becomes

(1 − ρav)
(

1
ρL

− 1
ρH

)
> (1 − ρL)

(
1 − 1

ρH

)
,

which likewise holds for some parameter values but not others.
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SCALING PROPERTIES OF QUEUES WITH TIME-VARYING LOAD PROCESSES 15

For large values of κ observe that 1 − ρavr2 → 0 but r3 → ∞ (κ→ ∞). To circumvent
this problem, multiply (49) by ρavr3 − 1 and rearrange to give the requirement:

(1 − ρavr2)(ρavr3 − 1) > (1 − ρLr2)(r2 − r1)
ρavr3 − 1
r3 − r1

.

Using (A.2) to replace the left-hand side of this gives

(1 − ρav)(ρH − ρav)(ρav − ρL)
ρLρH(1 − ρavr1)

> (1 − ρLr2)(r2 − r1)
ρavr3 − 1
r3 − r1

.

Taking limits as κ→ ∞ gives (since r3 → ∞)

(1 − ρav)(ρH − ρav)(ρav − ρL)
ρLρH

>

(
1 − ρL

ρav

)
.

If this is satisfied, then it is also true for κ large enough since the functions involved are
continuous. For example, if τ = 1, ρH = 0.9, and ρL = 0.1, the condition is satisfied but if
τ = 1, ρH = 0.9, and ρL = 0.2, then it is not satisfied.

7. PRACTICAL APPLICATION OF RESULTS

In this section, we consider two practical applications of the results of our paper.

7.1. Server Rate Allocation

In this section, we use the expression for ENH − ENL given in (32) to optimize the per-
formance of a service center. The approach we follow parallels that given in Section 1.1 of
Stidham [30] for optimizing service rate in an M/M/1 system. Before proceeding to the
analysis of the cost minimization problem, we first review the concept of slack, that will
required in that analysis.

7.1.1. Slack The following is based on Gupta et al. [17], except we use our novel
representations of EN and π0 to obtain the results. Define the slack values in the LOW and
HIGH states by μL − λL and λH − μH , respectively. By rearranging (40), we can express

EN =
ρav

1 − ρav
+D

[
r1ρH

1 − r1ρH
− r1ρL

1 − r1ρL

]
,

where

D = (αL/μL)
[(μL − λL) − (μH − λH)]

(αL + αH)(1 + τ)(1 − ρav)
.

This shows that if μL − λL < λH − μH , then limκ→0 EN < limκ→∞ EN ; and if μL −
λL > λH − μH , then limκ→0 EN > limκ→∞ EN .

In the case of π0, rearranging (41) gives

π0 = 1 − ρav +
αLr1(1 − ρav)(ρH − ρL)

μL(αL + αH)(1 + τ)(1 − ρavr1)
[μH − μL].

In this case, if μH > μL, then π0 is a decreasing function of κ (since r1/(1 − ρavr1) is a
decreasing function), that is, the server utilization increases as κ increases; and the converse
applies if μH < μL.
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The application of the representations in Theorem 4.1 gives the new result that cus-
tomers and the system operator see different behavior as κ increases. From (34), π0L −
π0H = (ENH − ENL)/ψ. Since 1/ψ = (1 − ρ2)(1 − ρ3), it can be shown that d(1/ψ)/dκ > 0.
Hence, π0L − π0H equals the product of the decreasing function ENH − ENL and the
increasing function 1/ψ, and so it follows that π0L − π0H approaches 0 more slowly than
ENH − ENL approaches 0. This means that as the fluctuation rate increases, when the
mean number in system is considered, the system approaches the performance of the average
system faster than when server utilization is considered.

7.1.2. Cost Minimization Assume a cost of c units per unit rate of server capacity, and
that a customer incurs a holding cost of h units per unit time in the system. The total mean
cost is given by

C(μL, μH) = cμav + hEN = cμav + h
ρav

1 − ρav
+ hD(ENH − ENL)

= cμav + h
λav

μav − λav
+ hD

r1λH

μH − r1λH
− hD

r1λL

μL − r1λL

= c

μL

αL
+ μH

αH

1
αL

+ 1
αH

+ h
λav

μL
αL

+
μH
αH

1
αL

+ 1
αH

− λav

+ hD
r1λH

μH − r1λH
− hD

r1λL

μL − r1λL
. (50)

The goal is to minimize cost. Differentiating partially with respect to μL and μH ,
equating to zero to find stationary points and simplifying shows (see Appendix E) the only
solution is D = 0, that is, μL − λL = μH − λH , and

c− h
λav

(
μL
αL

+
μH
αH

1
αL

+ 1
αH

− λav)2
= 0,

yielding
μL

αL
+ μH

αH

1
αL

+ 1
αH

= λav +

√
hλav

c
. (51)

We can interpret this as follows. First ensure that service rates are constrained such
that the slack in both phases is equal—from (40), this gives the mean number in system as
ρav/(1 − ρav); then, just as in the M/M/1 case, the average service rate is then chosen to
minimize the average delay—this gives (51).

7.2. Sampling Methods

Sampling of system state can be used for various purposes. According to the PASTA prop-
erty (Poisson Arrivals See Time Averages), the mean number in system as determined by
sampling the system number at epochs of an independent Poisson process equals the time
average number in system. Applying Little’s law then gives the mean time in system as
EW = EN/λav. If the input process to the M/M/1(R) system is Poisson, that is, λL = λH ,
the actual arrivals can be used to do the sampling. If not, then sampling at customer arrival
and departure epochs (which is common) may yield biased estimates. In this section, we
derive expressions for the amount of bias that can occur, how bias is affected by fluctuation
rate and determine how to correct for the bias.
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SCALING PROPERTIES OF QUEUES WITH TIME-VARYING LOAD PROCESSES 17

In the following, it is assumed that the LOW phase is sampled by an independent
Poisson process of rate βL and that the HIGH phase is sampled by an independent Poisson
process of rate βH . This form of sampling method will be referred to as state-dependent
sampling.

Different forms of sampling can be obtained depending on how βL and βH are chosen.
Regardless of the specific choices, the sampling produces a discrete-time series of samples
that, in general, is denoted by {N (S)

i }, where i is an integer. From this can be derived
a (discrete)-time-stationary sample random variable denoted by N (S) whose probability
generating function is Π̂(S)(z) ≡ E(zN(S)

). The following theorem relates Π̂(S)(z) to Π̂L(z)
and Π̂H(z).

Theorem 7.1: The (discrete)-time stationary probability generating function of the state-
dependent sampling sequence is given by

Π̂(S)(z) =
βL

αL
Π̂L(z) + βH

αH
Π̂H(z)

βL

αL
+ βH

αH

. (52)

Proof: The proof of the theorem, given in Appendix F, is based on the application of the
renewal-reward theorem for random sequences. �

7.2.1. Sampling at Arrival Epochs Setting βL = λL and βH = λH in Theorem 7.1 gives
sampling at potential arrival epochs. However, we assume the potential arrival epochs used
for sampling coincide with the actual arrivals, in which case sampling is performed at arrival
epochs.

Lemma 7.1: (i) The (discrete)-time stationary probability generating function of the
state-dependent sampling sequence at arrival epochs is given by

Π̂A(z) =
ρLΠ̂L(z) + τρHΠ̂H(z)

ρL + τρH
. (53)

(ii) The probability that the system is empty as seen by an arriving customer is given by

π0A =
ρLπ0L + τρHπ0H

ρL + τρH
= 1 − ρav − τr1(1 − ρav)(ρH − ρL)2

(1 + τ)(ρL + τρH)(1 − ρavr1)
.

(iii) The mean number in the system at arrival sampling instances is given by

ENA =
ρLENL + τρHENH

ρL + τρH
=

ρav

1 − ρav
+
τ(ρH − ρL)(ENH − ENL)

(1 + τ)2ρav(1 − ρav)
.
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Proof: (i) Setting βL = λL and βH = λH in (52) gives

Π̂A(z) =
λL

αL
Π̂L(z) + λH

αH
Π̂H(z)

λL

αL
+ λH

αH

=
λL

μL
Π̂L(z) + λH

μH

μHαL

μLαH
Π̂H(z)

λL

μL
+ λH

μH

μHαL

μLαH

=
ρLΠ̂L(z) + τρHΠ̂H(z)

ρL + τρH
.

(ii) Setting z = 0 in (53) gives

π0A = Π̂A(0) =
ρLπ0L + τρHπ0H

ρL + τρH
.

Using the expressions for π0L and π0H in (A.14) and (A.15), in Lemma A.3, respectively,
gives

π0A = 1 − ρav +
ρLτr1(1 − ρav)(ρH − ρL)

(1 + τ)(ρL + τρH)(1 − ρavr1)

− τρHr1(1 − ρav)(ρH − ρL)
(1 + τ)(ρL + τρH)(1 − ρavr1)

,

which simplifies to the desired result.
(iii) Taking the derivative of Π̂A(z) in (53) and setting z = 1 gives

ENA = Π̂′
A(1) =

ρLENL + τρHENH

ρL + τρH
.

The result now follows straightforwardly, using the expressions for ENL and ENH in
(28) and (29), in Theorem 4.1, respectively. �

This lemma shows that ENA is a decreasing function of κ since ENH − ENL is a
decreasing function of κ.

To provide a unified analysis of the effect of sampling, we introduce the general quantity
γ > 0 that enables us to write

ENL = −γ(ENH − ENL)
1 + γ

+
ENH + γENL

1 + γ
, (54)

ENH =
ENH − ENL

1 + γ
+

ENL + γENH

1 + γ
, (55)

EN =
ENH−ENL

αH(1+γ) − γ(ENH−ENL)
αL(1+γ)

1
αH

+ 1
αL

+ ENγ =
ENH − ENL

1 + γ

[
1

αH
− γ

αL

1
αH

+ 1
αL

]
+ ENγ , (56)
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SCALING PROPERTIES OF QUEUES WITH TIME-VARYING LOAD PROCESSES 19

where ENγ = (ENH + γENL)/(1 + γ). For sampling at arrival times, set γ = τρH/ρL =
(λH/αH)/(λL/αL), for which ENγ = ENA, to give

ENL = − (τρH/ρL)(ENH − ENL)
1 + τρH/ρL

+ ENA,

ENH =
ENH − ENL

1 + τρH/ρL
+ ENA,

EN =
ENH − ENL

1 + τρH/ρL

[
1

αH
− λHαL

λLαHαL

1
αH

+ 1
αL

]
+ ENA

=
ENH − ENL

(1 + τρH/ρL)αH

[
1 − λH

λL

1
αH

+ 1
αL

]
+ ENA.

Hence, if λH > λL, ENA overestimates EN , and vice versa. The final equation also gives
the correction factor needed to retrieve EN from ENA.

7.2.2. Sampling at Potential Service Completions Setting βL = μL and βH = μH in
Theorem 7.1 gives sampling at potential service completion epochs. This form of sampling
can be seen as a form of exit polling. (One can use actual departures as sampling points;
and when the system becomes empty sample at epochs of two internally generated Poisson
processes of rate μL and μL, for LOW and HIGH phases, respectively.)

Lemma 7.2: (i) The (discrete)-time stationary probability generating function of the
state-dependent sampling sequence at potential service completion epochs is given
by

Π̂S(z) =
Π̂L(z) + τ Π̂H(z)

1 + τ
.

(ii) The probability that the system is empty at a potential service completion is given by

π0S =
π0L + τπ0H

1 + τ
= 1 − ρav =

(1 − ρL) + τ(1 − ρH)
1 + τ

.

(iii) The mean number in the system at potential service sampling instances can be
obtained by differentiating the generating functions in Lemma 7.1.

ENS =
ENL + τENH

1 + τ
=

ρav

1 − ρav
+
τ(ρH − ρL)(ENH − ENL)

(1 + τ)2(1 − ρav)
.

Proof: (i) Setting βL = μL and βH = μH in (52) gives the result along similar lines to the
proof of Lemma 7.1(i).

(ii) The derivation of π0S follows immediately from Lemma A.2.
(iii) The proof of the result for ENS is similar to the proof of Lemma 7.1(iii). �

This lemma shows that ENS is a decreasing function of κ since ENH − ENL is a
decreasing function of κ.
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Setting γ = τ = (μH/αH)/(μL/αL) in (54)—(56), respectively, gives

ENL = −τ(ENH − ENL)
1 + τ

+ ENS ,

ENH =
ENH − ENL

1 + τ
+ ENS ,

EN =
ENH − ENL

1 + τ

[
1

αH
− μHαL

μLαHαL

1
αH

+ 1
αL

]
+ ENS

=
ENH − ENL

(1 + τ)αH

[
1 − μH

μL

1
αH

+ 1
αL

]
+ ENS .

Hence, if μH > μL, ENS overestimates EN , and vice versa.

7.2.3. Discussion

1. Constant rate sampling, that is, βL = βH = constant (e.g., 1), gives expressions equal
to time-stationary quantities.

2. For sampling at potential service completions, it is observed that irrespective of
the value of the scaling parameter κ, the probability of the system being empty at a
potential service completion is constant. This is a particular instance of the following
result for any stable queueing system without loss: Rate of arrivals = Probability of
busy at a potential service completion × rate of potential service completions.2

3. Comparing ENA with ENs, we see that ENA > ENS . That is, Arrivals see on aver-
age more in the system than do potential completions. To see why this is the case
consider a coupled system where actual departures occur at potential service com-
pletion instances. This is probabilistically the same as the original system. Let the
mean number in the system at departures be denoted by END. Now, departures
see the same distribution as arrivals, which is true for general single-server system
where both arrivals and departures occur singly, so that ENA = END. In the cou-
pled system, every departure corresponds to a potential service completion but only
service completions when the number in system N > 0 correspond to a departure.
Potential service completions when N = 0 are included in ENS but not END. Thus,
ENS < END = ENA.

7.2.4. Examples The examples in this section illustrate how the time stationary and
sampled mean number in system vary with κ. Within each example given, the service rates
μL and μH are kept fixed (although μL and μH are different for each example) while the
phase switching rates αL, αH are varied, keeping the ratio αL/αH constant. To achieve
this, define δ ≡ μH/μL and σ ≡ αH/αL. Here, δ represents the ratio of the service rate in
the HIGH phase to that in the LOW phase; and σ represents the ratio of the average time
spent in the LOW phase to the average time spent in the HIGH phase. This gives τ = δ/σ
and

κ =
αL

μL

(
1 +

σ

δ

)
.

In this case, the parameter κ is proportional to αL.

2 We thank the anonymous Editorial Board Member for pointing out this simple relation.
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Figure 3. Plot of the mean number in the system, EN , where EN is decreasing.

For both examples, ρL = 0.5 and ρH = 0.6. Phase rates are set equal: αL = αH , so
that δ = 1, and αL is varied. We plot EN , ENL, ENH , ENS , and ENA against log10(αL).
We use αL on the horizontal axis rather than κ because the examples use different values
of μL and μH . The first system (Figure 3) uses the service rates: μL = 2 and μH = 1.
This gives the parameter values: λL = 1, λH = 0.6, ρav = 0.53333, and τ = 0.5. The slack
condition satisfied is μL − λL = 1 > μH − λH = 0.4 and EN is decreasing with αL (and
also κ). Observe in both this example and the next that ENH , ENS , and ENA are always
decreasing with αL, whereas ENL is increasing with αL. The second system (Figure 4) uses
the service rates: μL = 1 and μH = 2. This gives the parameter values: λL = 0.5, λH = 1.2,
ρav = 0.566667, and τ = 2. The slack condition satisfied is μL − λL = 0.5 < μH − λH = 0.8
and EN is increasing with αL. The examples demonstrate how it is possible that two
systems can have the same load conditions and phase processes; yet divergent behavior
for EN is possible by varying other parameters— in this case, the service rates μL and
μH—because of different values of slack in the two states. The examples also show that in
some cases (e.g., Figure 3), sampling at arrival times and potential completion times can
both underestimate EN , whereas in other cases (e.g., Figure 4), sampling at arrival times
and potential completion times can both overestimate EN .

8. SIMPLE AND EXACT CLOSED-FORM COMPUTATION OF ROOTS

The paper by Gupta et al. [17] develops various quadratic approximations to the cubic to
enable easier computation of performance measures using simple tools such as spreadsheets.
However, this quadratic approximation has a lower bound on error, and the error is largest
in the intermediate region. In this paper, we develop a computational approach that can
also be used with simple tools that gives complete accuracy, down to the level of numerical
precision of the tool. In particular, our approach for computing the roots of the cubic D(z)
is obtained by developing a new representation of the cubic polynomial that shows that the
three roots of D(z) are positioned at equally spaced locations across a single period of a
suitably scaled and vertically shifted cosine wave. All that is required of the computation
tool, in addition to basic arithmetic functions, are accurate implementations of the cosine
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Figure 4. Plot of the mean number in the system, EN , where EN is increasing.

function and the inverse cosine function. As an intermediate result, we also show that the
roots are the eigenvalues of a suitable constructed 3 × 3 matrix.

The new method for obtaining the roots of the cubic polynomial (13) is based on
the method described in Day and Romero [16] for finding the roots of a polynomial using
Chebyshev polynomials whereby the roots of (13) are obtained as the eigenvalues of a matrix.
In general, we seek to obtain the roots of an nth order polynomial p(z) in an interval [a, b].
Given the inner product 〈·, ·〉r defined by

〈f, g〉r =
∫ b

a

f(z)g(z)r(z) dz,

where f and g are functions defined on [a, b] and r is a suitable weight function, {φi(z)} is
a set of orthogonal polynomials with respect to this inner product if 〈φi, φj〉r = 0 for i �= j.

Assume p(z) can be expressed as the following weighted sum with coefficients γi:

p(z) =
n∑

i=0

γiφi(z).

Suppose that {φi(z)} satisfy the following recurrence relation for some constants hi,j

zφn−1(z) =
n∑

i=0

hi,n−1φi(z)

and define the n× n matrix H = [hi,j ]0≤i.j≤n−1. Define the following vectors: fn(z) =
(φ0(z), . . . , φn−1(z))T and c = (γ0, . . . , γn−1)T so that p(z) can be expressed as

p(z) = fn(z)T c + γnφn.

Theorem 2.3 of Day and Romero [16] shows that the roots of p(z) are the eigenvalues
of the nonstandard companion matrix

Bn = Hn − hn,n−1

γn
ceT

n−1,

where en−1 is the n× 1 column vector en−1 = (0, . . . , 0, 1)T .
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This technique is applied to the polynomial (13) to obtain the root r1 in the interval
[−1, 1] by using Chebyshev polynomials Tn(z) as the set of orthogonal polynomials, that is,
φi(z) = Ti(z). This gives

p(z) =
n∑

i=0

γiTi(z). (57)

The nth Chebyshev polynomial is defined by

Tn(z) = cos(n cos−1(z)),

where the first four Chebyshev polynomials are

T0(z) = 1, T1(z) = z,

T2(z) = 2z2 − 1, T3(z) = 4z3 − 3z.

Chebyshev polynomials satisfy the following recursion (k ≥ 1)

zTk(z) =
1
2
Tk−1(z) +

1
2
Tk+1(z)

from which is obtained that h0,1 = 1/2, h1,0 = 1, hi,i+1 = hi+1,i = 1/2 (i = 1, . . . , n− 1).
Thus, for n = 3

H3 =

⎛⎝0 1/2 0
1 0 1/2
0 1/2 0

⎞⎠
and

B3 =

⎛⎝0 1/2 0
1 0 1/2
0 1/2 0

⎞⎠ − h3,2

γ3

⎛⎝0 0 γ0

0 0 γ1

0 0 γ2

⎞⎠ =

⎛⎜⎜⎜⎜⎝
0 1/2 − γ0

2γ3

1 0 1/2 − γ1

2γ3

0 1/2 − γ2

2γ3

⎞⎟⎟⎟⎟⎠ .

Matching the coefficients of z in (13) and with those in (57), the coefficients γi can be
determined to be

γ3 =
ρLρH

4
,

γ2 = −κρav + ρL + ρH + ρLρH

2
,

γ1 = κ+ 1 + ρL + ρH +
3ρLρH

4
,

γ0 = −κρav + ρL + ρH + ρLρH + 2
2

.

This yields the roots of (13) as the eigenvalues of

B3 =

⎛⎜⎜⎜⎜⎜⎜⎝
0 1/2

κρav + ρL + ρH + ρLρH + 2
ρLρH

1 0 −κ+ 1 + ρL + ρH + ρLρH

2
ρLρH

2

0 1/2
κρav + ρL + ρH + ρLρH

ρLρH

⎞⎟⎟⎟⎟⎟⎟⎠ .
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An exact solution for the eigenvalues λi of a 3 × 3 matrix A can be found using the
following approach.3 Define

q = tr(A)/3 and p = tr((A− qI)2/6)1/2

and define the matrix B by B = (A− qI)/p. The eigenvalues of A are then given by λk =
pβk + q, k = 0, 1, 2, where

βk = 2 cos
(

1
3

cos−1(det(B)/2) +
2kπ
3

)
.

To apply the above, let A = B3. The roots occur equally spaced along the x-axis of
a vertically shifted and scaled cosine wave. The cosine function and the inverse cosine
function can be evaluated by efficient numerical algorithms. Alternatively, these functions
can be precomputed and loaded into a lookup table, whose accuracy is determined by the
amount of memory available. Either way, the accuracy of computation is determined by the
amount of resources available.

9. EXAMPLES OF OTHER TYPES OF SYSTEMS

9.1. Degenerate M/M/1(R) Systems

If one or more of λL, λH , μL, μH are zero or ρL = ρH , then (6) and (7) simplify, leading to
what may be called degenerate M/M/1(R) systems, which in some cases represent systems
that have useful practical application.

If ρL = 0, then arrivals occur only in the HIGH phase. This is denoted as a system with
ON–OFF arrival rates. In this case, (11) and (12) become

Π̂L(z) =
(π0L + τπ0H)z − μ̃L(1 − z)π0L(τ − zρ̃HL)
(1 + τ)(1 − ρavz)z − μ̃L(z − 1)(ρ̃HLz − τ)

,

Π̂H(z) =
(π0L + τπ0H)z − μ̃L(1 − z)τπ0H

(1 + τ)(1 − ρavz)z − μ̃L(z − 1)(ρ̃HLz − τ)
,

where ρ̃HL ≡ λ̃H/μ̃L. The denominator D(z) = −((1 + τ)ρav + μ̃H ρ̃HL)z2 + ((1 + τ) +
μ̃Lτ + μ̃Lρ̃HL)z − τ μ̃L has two roots only one of which is greater than one: r1 < 1, r2 > 1.

Using a similar approach, other degenerate models are:

• Interrupted service model: In this model, μH = 0 and no service is provided in the
HIGH phase, although arrivals may still occur in that phase.

• Inactive state model: In this model, λH = 0 and μH = 0, and so there are no arrivals
or service conducted during the HIGH phase.

• Alternating phase model: In this model, λL = 0, μH = 0, and so arrivals occur only
in the HIGH phase and service occurs only in the LOW phase. In this case, ρL = 0
and τ = 0.

In each of these systems, there is only one root greater than one, that we denote by r2.
The techniques to deal with one root will be similar to those used in the non-degenerate
M/M/1(R) system. The starting equations can be obtained setting ρ3 = 0 into the non-
degenerate system equations (25)–(27). We omit the details.

3 This method of solution was given in https://en.wikipedia.org/wiki/Eigenvalue algorithm; however, we
have been unable to locate a journal reference for this.
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One final degenerate case occurs when ρH = ρL but μL �= μH . Setting ρL = ρH in
(32) gives ENH − ENH = 0. From (28), this implies ENL = ENH = 1/(1 − ρav). Hence,
the mean number in system remains the same regardless of the value of the fluctuation
parameter, κ, and equals the mean number in the average M/M/1 system with average
load.

9.2. More Sophisticated Time-Varying Systems

In this section, we examine more sophisticated systems that may be analyzed using the
same approach as used for the M/M/1(R) system and discuss what additional complexities
may be involved and how these may be addressed. The main assumption is that the system
operates in a random environment that is in one of two phases that we notionally call “LOW”
and “HIGH” and the time spent in each phase is given by two independent exponentially
distributed random variables. It is assumed that at the end of each phase, the number in
system can be represented using two random variables NL and NH defined on the space of
natural numbers whose probability generating functions Π̂L(z) and Π̂H(z). For notational
continuity, Π̂L(z) will be called the equation for the LOW phase and Π̂H(z) the equation for
the HIGH phase; although in the general case, LOW and HIGH phases may have different
interpretations.

The quantity of interest is the number in system and it is assumed that at a phase
change, the number in system does not change. As in the M/M/1(R) system, it will be
assumed that the system can be described by two coupled equations having a common
denominator polynomial, V (z), and numerator polynomials, UL(z) and UH(z), respectively:

Π̂L(z) =
UL(z)
V (z)

, Π̂H(z) =
UH(z)
V (z)

.

The approach used to obtain these equations is to generalize the structure of the
expressions in the M/M/1(R) case and assume that we can express Π̂L(z) and Π̂H(z)
as

Π̂L(z) =
a(z) − pzΠ̂H(z)

b(z)
, Π̂H(z) =

c(z) − qzΠ̂L(z)
d(z)

,

where p, q are constants and a(z), b(z), c(z), d(z) are polynomials. Solving for Π̂L(z)and Π̂H

gives

Π̂L(z) =
a(z)d(z) − pzc(z)
b(z)d(z) − pqz2

, (58)

Π̂H(z) =
c(z)b(z) − qza(z)
b(z)d(z) − pqz2

. (59)

This gives V (z) = b(z)d(z) − pqz2, and UL(z) and UH(z) are similarly matched.

9.3. Catastrophe Queue in a Random Environment

The first example is of an M/M/1 queue with catastrophes operating in a random envi-
ronment. First, we review results for a homogeneous single-server M/M/1 system that is
cleared of all customers at the renewal epochs of a Poisson process, called the catastrophe
process. The same notation is used as in Section 3 and the rate of the catastrophe process
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is assumed to be ω. The differential equation for Π(z, t) for this homogeneous catastrophe
system is given by Kumar and Arivudainambi [20]:

∂

∂t
Π(z, t) = Π(z, t)

[
−(λ+ μ+ ω) + λz +

μ

z

]
− μ

(
1
z
− 1

)
p0(t) + ω.

The Laplace Transform of Π(z, t) is found to be

Π̂(z, s) =
μ(1 − z)p̂0(s) − zΠ(z, 0) − ωz/s

λz2 − (s+ λ+ μ+ ω)z + μ
,

where p̂0(s) is the Laplace transform of p0(t).
Suppose now a catastrophe queue operates in an alternating two-phase random envi-

ronment similar to the M/M/1(R) system, governed by αL and αH . Following Section 3,
the generating functions for the number in the system at the end of the LOW and HIGH
phases are given by

Π̂L(z) =
μL(1 − z)π0L − αLzΠL(z, 0) − ωLz

λLz2 − (αL + λL + μL + ωL)z + μL
,

Π̂H(z) =
μH(1 − z)π0H − αHzΠH(z, 0) − ωHz

λHz2 − (αH + λH + μH + ωH)z + μH
,

in which ΠL(z, 0) = Π̂H(z) and ΠH(z, 0) = Π̂L(z) because of continuity of generating func-
tions at phase transitions. Using (58) gives for the LOW phase (the HIGH phase is
similar),

Π̂L(z) =
(μL(1 − z)π0L − ωLz)(λHz2 − (αH + λH + μH + ωH)z + μH) − αLz(μH(1 − z)π0H − ωHz)

(λLz2 − (αL + λL + μL + ωL)z + μL)(λHz2 − (αH + λH + μH + ωH)z + μH) − αLαHz2
.

(60)

In general, the denominator is a fourth-order polynomial; unlike theM/M/1(R) system,
z − 1 will not be a factor in the denominator. We sketch a numerical method for dealing with
this situation. The quartic in the denominator in (60) has four roots r0, r1, r2, r3 that can
be found using numerical methods. Numerical tests we conducted showed that two roots are
in the interval (0, 1), that we denote r0 and r1 with r0 < r1, and two roots are greater than
1 that we denote r2 and r3 with r2 < r3. We do not go into detailed examination of roots
here. For the generating function to be analytic, r0 and r1 must be roots of the numerator
in (60). Setting z equal to r0 and r1 gives two linear equations in π0L and π0H that can
be solved for those values. Thus, we have a system with two roots 1 < r2 < r3 with the
values of π0L and π0H known. As an example, for a system with the parameters λL = 0.5,
λH = 0.9, μL = μH = 1, αL = αH = 0.1, ωL = ωH = 0.01, the quartic in the denominator
had the roots r0 = 0.6936, r1 = 0.9793, r2 = 1.3581, and r3 = 2.4313, giving π0L = 0.4090
and π0H = 0.2390.

9.4. M/M/c in a Random Environment

The second example is an M/M/c queue operating in a random environment, that we
denote as M/M/c(R), where the service and arrival rates vary according to a two-state
continuous-time Markov chain in the same way as in the M/M/1(R) system. In the non-
random environment case, with fixed arrival rate λ and fixed service rate μ, the state
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equations for the M/M/c queue, where c is the number of servers, are given by (e.g., see
[22])

p′0(t) = −λp0(t) + μp1(t),

p′n(t) = −(λ+ nμ)pn(t) + λpn−1(t) + (n+ 1)μpn+1(t), 1 ≤ n ≤ c− 1,

p′n(t) = −(λ+ cμ)pn(t) + λpn−1(t) + cμpn+1(t), n ≥ c.

The generating function for the number in system satisfies

∂

∂t
Π(z, t) =

[
−(λ+ cμ) +

cμ

z
+ λz

]
Π(z, t) − cμ

(
1
z
− 1

)
qc(t, z)
c

,

where

qc(t, z) =
c−1∑
i=0

(c− i)pi(t)zi.

This equation is the same as (1) except that μ is replaced by cμ and p0(t) is replaced
by qc(t, z)/c. The Laplace Transform of Π(z, t) is

Π̂(z, s) =
μ(1 − z)q̂c(s, z) − zΠ(z, 0)
λz2 − (s+ λ+ cμ)z + cμ

where q̂c(s, z) is the Laplace transform of qc(t, z).
For a random time T , where T has an exponential probability distribution with rate α,

we have, as in Section 3, that the generating function of N(T ) is given by

Π̂α(z) = E(zN(T )) = αΠ̂(z, α).

Defining νi ≡ P (N(T ) = i) (i = 0, . . . , c− 1) gives

q̂c(α, z) =
∑c−1

i=0 (c− i)νiz
i

α
.

Combining the above yields

Π̂α(z) =
μ(1 − z)(

∑c−1
i=0 (c− i)νi) − αzΠ(z, 0)

λz2 − (α+ λ+ cμ)z + cμ
.

Using (58) and (59) equations for Π̂L(z) and Π̂H(z) can be obtained, respectively. The
numerators of Π̂L(z) and Π̂H(z) will have 1 − z as a factor, that cancels out, and the common
denominator will be a cubic, similar to the M/M/1(R) system, except that the service rates
will be cμL and cμH in the LOW and HIGH phases, respectively. The main complications
in this case will be that the order of the numerator polynomials will be larger than the
order of the denominator polynomial and that we need to obtain νi (i = 0, . . . , c− 1) for
both LOW and HIGH phases. The techniques in Haghihi and Mishev [18], for example, can
be used to find νi (i = 0, . . . , c− 1) for both LOW and HIGH phases. The remaining part
of the analysis will be along the same lines as the M/M/1(R) system.
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10. CONCLUSION

This paper examined the problem of determining the effect of varying the fluctuation
rate of the underlying random environment process associated with the random two-phase
M/M/1(R) system on key performance quantities. It extended the results of Gupta et al.
[17] to include boundary cases (ρH = 1) and extended monotonicity results to include con-
vexity/concavity results for phase related and time stationary number in system. The paper
achieved this by developing new representations for the mean number in system and the
probability of an empty system in terms of the quantities ENH − ENL and ψ that enabled
simpler unified expressions to be obtained. The expressions obtained clearly showed how the
system performance could be expressed as the sum of the performance of the average system
plus or minus a correction term. Other results derived include: a new stochastic ordering
result for ENH , and a new representation for the cubic, allowing new insights into root loca-
tions to be made and provided an alternative method of computing roots. The paper demon-
strated the usefulness of the results obtained through two applications to practical systems:
service rate optimization and sampling. The paper examined how the approach used for
M/M/1(R) systems could be applied, and needed to be modified, to other types of systems
operating in a two-phase random environment: a range of degenerate M/M/1(R) systems,
anM/M/1 catastrophe queue, and anM/M/c system. Future work would include extending
these results to systems operating in random environments with more than two phases.
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APPENDIX A. PROOF OF THEOREM 4.1 AND COROLLARY 4.1

The proof of Theorem 4.1 is obtained by means of the sequence of results in this appendix.

Relationships Between Roots and Coefficients of D(z)

In general, no simple formula exists for the roots of the cubic D(z). However, the coefficients
of D(z) express relationships between the roots that can be used to simplify equations and to
explain how performance quantities depend on system parameters. To derive such relationships,
first normalize D(z) by dividing through by the leading coefficient. The resulting polynomial D̃(z)
can be expressed as

D̃(z) =
D(z)

ρLρH
= z3 − z2

(κρav + ρL + ρH + ρLρH)

ρLρH
+ z

(κ+ 1 + ρL + ρH)

ρLρH
− 1

ρLρH
(A.1)

def
= z3 − C2z

2 + C1z − C0. (A.2)
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Noting that D̃(z) = (z − r1)(z − r2)(z − r3) gives

C2 = r1 + r2 + r3 =
κρav + ρL + ρH + ρLρH

ρLρH
, (A.3)

C1 = r1r2 + r2r3 + r1r3 =
κ+ 1 + ρL + ρH

ρLρH
, (A.4)

C0 = r1r2r3 =
1

ρLρH
. (A.5)

The above together with (13) gives the identity

(z − r1)(z − r2)(z − r3) =
1

ρLρH
[κz(1 − ρavz) − (z − 1)(ρHz − 1)(1 − ρLz)] (A.6)

that can used to obtain a number of useful relationships between roots. For example, setting z = 1
gives

(1 − r1)(1 − r2)(1 − r3) =
κ(1 − ρav)

ρLρH
. (A.7)

Alternatively, setting z = ri (i = 1, 2, 3) gives

0 = κri(1 − ρavri) − (ri − 1)(ρHri − 1)(1 − ρLri).

In particular, for z = r1, the following is obtained

1 − r1
κr1

=
(1 − ρavr1)

(1 − ρHr1)(1 − ρLr1)
. (A.8)

Note that given one root, for example r1, then the other two roots can be obtained as the
solution of a quadratic equation involving that root. For example, we can use (A.5) to eliminate r3
from (A.3) to give

r2 +
1

r2(r1ρLρH)
=
κρav + ρL + ρH + ρLρH

ρLρH
− r1, (A.9)

that leads a quadratic equation for r2.

π0L and π0H

The probabilities of the system being empty at the end of a LOW and a HIGH phase, π0L and
π0H , respectively, are given by the following theorem.

Lemma A.1:

π0L =
r1κ(1 − ρav)

(1 − r1)(1 − ρHr1)
=

(1 − ρav)(1 − ρLr1)

1 − ρavr1
, (A.10)

π0H =
r1κ(1 − ρav)

(1 − r1)(1 − ρLr1)
=

(1 − ρav)(1 − ρHr1)

1 − ρavr1
. (A.11)
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Proof: First, consider π0L. Since Π̂L(z) is an analytic function, r1 must be a root of the numerator

of Π̂L(z) (see [22]). Hence, from (11):

(π0L + τπ0H)r1 − (1 − r1)μ̃Hπ0L(1 − ρHr1) = 0. (A.12)

A second equation involving π0L and π0H is obtained by putting z = 1 in (11) to give

Π̂L(1) = 1 =
π0L + τπ0H

μ̃Hκ(1 − ρav)
. (A.13)

Substituting this into (A.12) gives

r1μ̃Hκ(1 − ρav) − (1 − r1)μ̃Hπ0L(1 − ρHr1) = 0

from which is obtained the first equality in (A.10):

π0L =
r1κ(1 − ρav)

(1 − r1)(1 − ρHr1)
.

Applying (A.8) then gives the second equality in (A.10). Eq. (A.11) is derived similarly. �

Observe that applying (A.7) to (A.10) and (A.11) followed by a small amount of algebra, we can
express π0L = (1 − ρ2)(1 − ρ3)/(1 − ρHr1) and π0H = (1 − ρ2)(1 − ρ3)/(1 − ρLr1), respectively.

The probabilities π0L and π0H satisfy the identities given in the following lemma.

Lemma A.2:

π0L + τπ0H

1 + τ
= 1 − ρav =

(1 − ρL) + τ(1 − ρH)

1 + τ
.

Proof: From (A.13), π0L + τπ0H = μ̃Hκ(1 − ρav). Since (using (9)) κμ̃H = 1 + τ , the first
equality follows. The second equality follows by applying (15). �

By applying Lemma A.2, π0L and π0H can be expressed as deviations from the probability of
finding the system empty in the averaged system, 1 − ρav.

Lemma A.3:

π0L = 1 − ρav +
τr1(1 − ρav)(ρH − ρL)

(1 + τ)(1 − ρavr1)
, (A.14)

π0H = 1 − ρav − r1(1 − ρav)(ρH − ρL)

(1 + τ)(1 − ρavr1)
. (A.15)
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Proof: Start by expressing π0L as

π0L =
π0L + τπ0H + τ(π0L − π0H)

1 + τ
.

Taking the difference between (A.10) and (A.11) gives

π0L − π0H =
r1(1 − ρav)(ρH − ρL)

1 − ρavr1
. (A.16)

Thus, with the aid of Lemma A.2, π0L can be written as

π0L =
(1 + τ)(1 − ρav) +

τr1(1−ρav)(ρH−ρL)
1−ρavr1

1 + τ
= 1 − ρav +

τr1(1 − ρav)(ρH − ρL)

(1 + τ)(1 − ρavr1)
.

Along similar lines,

π0H =
π0L + τπ0H − (π0L − π0H)

1 + τ
=

(1 + τ)(1 − ρav) − r1(1−ρav)(ρH−ρL)
1−ρavr1

1 + τ

= 1 − ρav − r1(1 − ρav)(ρH − ρL)

(1 + τ)(1 − ρavr1)
= 1 − ρav − π0L − π0H

1 + τ
.

�

Bounds for π0L and π0H , enabling crude performance estimates for the system to be obtained,
are

(i) 1 − ρav ≤ π0L ≤ 1 − ρL and (ii) max(1 − ρH , 0) ≤ π0H ≤ 1 − ρav.

The lower bound in (i) is obtained from (A.10), and by noting that ρav ≥ ρL:

π0L =
(1 − ρav)(1 − ρLr1)

1 − ρavr1
≥ (1 − ρav). (A.17)

The upper bound in (i) follows from rewriting the right-hand side of the equality in the
preceding expression as

π0L = 1 − ρL − (ρav − ρL)(1 − r1)

1 − r1ρav
≤ 1 − ρL,

after observing that the final term before the inequality is non-negative. The bounds in (ii) are
obtained similarly.

Remark A.1: After defining θ by

θ ≡ 1 − ρav

1 − ρavr1
, (A.18)

Theorem A.1 gives π0L = θ(1 − ρLr1) and π0H = θ(1 − ρHr1), from which the following is
also obtained:

π0L =
1 − r1ρL

1 − r1ρH
π0H .

Since ρL ≤ ρH , it follows immediately that π0L ≥ π0H . The above results have been obtained
by Gupta et al. [17] but are included here for completeness and because they are used later.
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Expectations

Expressions for the explanatory quantities ENH − ENL and ψ are given by the following lemma.

Lemma A.4:

ENH − ENL = (π0L − π0H)ψ, (A.19)

=
1

1 − ρHr1
− 1

1 − ρLr1
. (A.20)

where

ψ =
1 − r1

κr1(1 − ρav)
=

(1 − ρavr1)

(1 − ρav)(1 − ρHr1)(1 − ρLr1)
. (A.21)

Proof: Subtracting (25) from (26) gives (A.19). Applying (A.7) to ψ in (27) gives

ψ =
1 − r1
r1

r1r2r3
(1 − r1)(1 − r2)(1 − r3)

=
1 − r1

κr1(1 − ρav)
.

Applying (A.8) then gives

ψ =
(1 − ρavr1)

(1 − ρav)(1 − ρHr1)(1 − ρLr1)
.

Inserting into (A.19) the expression for ψ in (A.21) and the expression for π0L − π0H in (A.16)
gives

ENH − ENL =
r1(1 − ρav)(ρH − ρL)

1 − ρavr1

(1 − ρavr1)

(1 − ρav)(1 − ρHr1)(1 − ρLr1)

=
(ρH − ρL)r1

(1 − ρHr1)(1 − ρLr1)
=

1

1 − ρHr1
− 1

1 − ρLr1
.

�

We now obtain an expression for (ENL + τENH)/(1 + τ) that will be used in the derivation
of expressions for ENL and ENH .

Lemma A.5:

ENL + τENH

1 + τ
=

1

1 + τ

[
ρL(1 − ρavr1)

(1 − ρav)(1 − ρLr1)
+

τρH(1 − ρavr1)

(1 − ρav)(1 − ρHr1)

]
. (A.22)
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Proof: Using (23) and (24) gives

ENL + τENH =
(1 − ρ2ρ3) − π0L

(1 − ρ2)(1 − ρ3)
+ τ

(1 − ρ2ρ3) − π0H

(1 − ρ2)(1 − ρ3)
.

After some rearrangement and simplification, this becomes

ENL + τENH

1 + τ
=

[
(1 − ρ2ρ3) − (π0L + τπ0H)

1 + τ

]
ψ.

By Theorem A.2, (π0L + τπ0H)/(1 + τ) = ρav. Thus,

ENL + τENH

1 + τ
= [(1 − ρ2ρ3) − (1 − ρav)]ψ = [(ρav − ρ2ρ3]ψ.

Since C0 = r1r2r3 = r1/(ρ2ρ3) = 1/(ρLρH) implies ρ2ρ3 = r1ρLρH , using (A.21) for ψ gives

ENL + τENH

1 + τ
=

(ρav − ρLρHr1)(1 − ρavr1)

(1 − ρav)(1 − ρHr1)(1 − ρLr1)
. (A.23)

The following identity, where y is an arbitrary real number, is straightforward to derive.

(1 + τ)(ρav − ρLρHy) = ρL(1 − ρHy) + τρH(1 − ρLy). (A.24)

In particular, upon setting y = 1,

(1 + τ)(ρav − ρLρH) = ρL(1 − ρH) + τρH(1 − ρL). (A.25)

Rearranging this gives

ρav − ρLρHr1 =
1

1 + τ
[ρL(1 − ρHr1) + τρH(1 − ρLr1)].

Substituting this into (A.23) gives

ENL + τENH

1 + τ
=

1

1 + τ

[
ρL(1 − ρavr1)

(1 − ρav)(1 − ρLr1)
+

τρH(1 − ρavr1)

(1 − ρav)(1 − ρHr1)

]
.

�

ENL and ENH can be now be determined by the following.

Lemma A.6:

ENL =
ρav

1 − ρav
− τ(1 − ρH)(ENH − ENL)

(1 + τ)(1 − ρav)
, (A.26)

ENH =
ρav

1 − ρav
+

(1 − ρL)(ENH − ENL)

(1 + τ)(1 − ρav)
. (A.27)
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Proof: First express (1 + τ)ENH as

(1 + τ)ENH = (ENH − ENL) + (ENL + τENH).

Using the expressions for ENL − ENH and (ENL + τENH)/(1 + τ) in (A.20) and (A.22),
respectively, yields:

(1 + τ)ENH =
1

1 − ρHr1
− 1

1 − ρLr1
+

ρL(1 − ρavr1)

(1 − ρav)(1 − ρLr1)
+

τρH(1 − ρavr1)

(1 − ρav)(1 − ρHr1)
.

which, after making following two expansions:

ρL(1 − ρavr1)

(1 − ρav)(1 − ρLr1)
=

ρav

1 − ρav
+

ρL − ρav

(1 − ρav)(1 − ρLr1)

and
ρH(1 − ρavr1)

(1 − ρav)(1 − ρHr1)
=

ρav

1 − ρav
+

ρH − ρav

(1 − ρav)(1 − ρHr1)
,

gives

(1 + τ)ENH =
1

1 − ρHr1
− 1

1 − ρLr1
+

ρav

1 − ρav
+

ρL − ρav

(1 − ρav)(1 − ρLr1)
+

τρav

1 − ρav

+
τ(ρH − ρav)

(1 − ρav)(1 − ρHr1)
=

(1 + τ)ρav

1 − ρav
+

1 − ρL

1 − ρav

[
1

1 − ρHr1
− 1

1 − ρLr1

]
.

Using the expression for ENH − ENL in Lemma A.4, this can be simplified to give

ENH =
ρav

1 − ρav
+

(1 − ρL)(ENH − ENL)

(1 + τ)(1 − ρav)
.

The result for ENL is obtained similarly. �

Proof of Corollary 4.1

Proof: By differentiating (39) and setting z = 1, EN , is given by

EN =
αHENL + αLENH

αL + αH
. (A.28)

After substituting in (A.26) and (A.27), this gives

EN =
ρav

1 − ρav
+

(ENH − ENL)[αL(1 − ρL) − αHτ(1 − ρH)]

(αL + αH)(1 + τ)(1 − ρav)
. (A.29)

The probability, π0, is found by setting z = 0 in (39), to give

π0 =

π0L
αL

+ π0H
αH

1
αL

+ 1
αH

.

Substituting in (A.14) and (A.15) gives

π0 = 1 − ρav +
αLαHr1(1 − ρav)(ρH − ρL)

(αL + αH)(1 + τ)(1 − ρavr1)

[
τ

αL
− 1

αH

]
.

�
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APPENDIX B. PROOF OF LEMMA 5.1

Proof: Start by differentiating (A.3), (A.4), and (A.5), respectively, to give

r′1 + r′2 + r′3 =
ρav

ρHρL
,

r′1(r2 + r3) + r′2(r1 + r3) + r′3(r1 + r2) =
1

ρLρH
,

r′1r2r3 + r′2r1r3 + r′3r1r2 = 0.

These equations can be expressed in matrix form as

Pr′ = b,

where

P =

⎛⎝ 1 1 1
r2 + r3 r1 + r3 r1 + r2
r2r3 r1r3 r1r2

⎞⎠ , r′ =

⎛⎝r′1r′2
r′3

⎞⎠ , b′ =

⎛⎝ ρav
ρLρH

1
ρLρH

0

⎞⎠ .

The determinant of P is given by

Δ = det(P ) = (r2 − r3)(r1 − r3)(r1 − r2).

Cramer’s rule can then be used to obtain r′1 as

r′1 =
N1

Δ
,

where

N1 =

∣∣∣∣∣∣∣∣∣
ρav

ρLρH
1 1

1

ρLρH
r1 + r3 r1 + r2

0 r1r3 r1r2

∣∣∣∣∣∣∣∣∣ =
r1(r2 − r3)(ρavr1 − 1)

ρLρH
,

giving

r′1 =
r1(ρavr1 − 1)

ρLρH(r1 − r3)(r1 − r2)
.

r′2 and r′3 can be found similarly. �

APPENDIX C. PROOF OF LEMMA 5.3

Proof: (i) Rewrite (45) as

g(x) =
x(b− a)

(a− x)(b− x)
> 0.

(ii) Taking the derivative of g(x) gives

g′(x) =
a

(a− x)2
− b

(b− x)2
, (C.1)

which, after a little algebra, equals

g′(x) =
(b− a)(ab− x2)

(a− x)2(b− x)2
> 0;

and so, g(x) is increasing.
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(iii) The second derivative of g(x) equals

g′′(x) =
2a

(a− x)3
− 2b

(b− x)3
,

which after algebraic manipulation becomes

=
2(b− a)(ab(b+ a) − 3abx+ x3)

(a− x)3(b− x)3
.

After defining h(x) = ab(b+ a) − 3abx+ x3, we have h(0) = ab(b+ a) > 0 and h(a) = ab(b+
a) − 3a3b+ b3 = 2a(b− a)3 > 0. Thus, for h(x) to have a value less than 0 for x ∈ (0, a), then h(x)
must have a turning point for x ∈ (0, a). Now, h′(x) = −3ab+ 3x2 = 3(x2 − ab) = 3(x−√

ab)(x+√
ab), and so h(x) has only two turning points: One is at x = −√

ab < 0 and the other is at
a < x =

√
ab < b. Thus, h(x) has no turning point for x ∈ (0, a). Therefore, h(x) > 0 for x ∈ (a, b),

and so g′′(x) > 0 for x ∈ (0, a); proving that g(x) is convex. �

APPENDIX D. PROOF OF THEOREM 6.1

Proof: From (48) (repeated here),

Pr(NH > n) =
aHρ

n+1
2

1 − ρ2
+
bHρ

n+1
3

1 − ρ3
,

and, from (22) (repeated here),

aH =
(1 − ρ2)(1 − ρ3 − π0H)

(ρ2 − ρ3)
, bH =

(1 − ρ3)(1 − ρ2 − π0H)

(ρ3 − ρ2)
,

we obtain

Pr(NH > n) =

[
(1 − ρ2)(1 − ρ3 − π0H)

ρ2 − ρ3

]
ρn+1
2

1 − ρ2
+

[
(1 − ρ3)(1 − ρ2 − π0H)

ρ3 − ρ2

]
ρn+1
3

1 − ρ3

=
1

ρ2 − ρ3
[(1 − ρ3 − π0H)ρn+1

2 − (1 − ρ2 − π0H)ρn+1
3 )]

=
1

ρ2 − ρ3
[(1 − ρ3)ρ

n+1
2 − (1 − ρ2)ρ

n+1
3 − π0H(ρn+1

2 − ρn+1
3 )]

=
1

ρ2 − ρ3
[(ρn+1

2 − ρn+1
3 ) − ρ2ρ3(ρ

n
2 − ρn

3 ) − π0H(ρn+1
2 − ρn+1

3 )]. (D.1)

Rearrangement of (A.1) gives

Pr(NH > n) =
1

ρ2 − ρ3
[(ρn+1

2 − ρn+1
3 ) − ρn+1

2 ρ3 + ρn+1
3 ρ2 − π0H(ρn+1

2 − ρn+1
3 )]

=
1

ρ2 − ρ3
[(ρn+1

2 − ρn+1
3 ) − ρn+1

2 ρ3 + ρn+2
3 − ρn+2

3 + ρn+1
3 ρ2 − π0H(ρn+1

2 − ρn+1
3 )]

=
1

ρ2 − ρ3
[(ρn+1

2 − ρn+1
3 ) − ρ3(ρ

n+1
2 − ρn+1

3 ) + ρn+1
3 (ρ2 − ρ3) − π0H(ρn+1

2 − ρn+1
3 )]

=
1

ρ2 − ρ3
(ρn+1

2 − ρn+1
3 )[1 − ρ3 − π0H)] + ρn+1

3

= [ρn
2 + ρn−1

2 ρ3 + · · · + ρ2ρ
n−1
3 + ρn

3 ][1 − ρ3 − π0H)] + ρn+1
3 .

Since ρ2 and ρ3 are decreasing functions of κ (because r2 and r3 are increasing functions), the
term in the first brackets [· · · ] is decreasing, as is ρn+1

3 . Thus, if it can be shown that the term in
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the second brackets [· · · ], which, using (A.11), is given by

F ≡ 1 − ρ3 − π0H = 1 − 1

r3
− (1 − ρav)(1 − ρHr1)

1 − ρavr1
,

is decreasing in κ for some set of values of ρL, ρH , and ρav, then sufficient conditions exist for NH

to be stochastically decreasing with κ.
Observe, in the limiting case of κ→ 0 (since r3 → 1/ρL and r1 → 1), assuming ρH < 1,

F → 1 − ρL − (1 − ρav)(1 − ρH)

1 − ρav
= ρH − ρL

and in the case of κ→ ∞ (since r3 → ∞ and r1 → 0)

F → 1 − (1 − ρav) = ρav.

Thus, for F to be decreasing in κ over the entire interval (0,∞), it is required that at least
ρH − ρL ≥ ρav. However, this minimal condition is not even satisfied in many cases. For example,
take τ = 1, ρH = 0.9, ρL = 0.7, ρav = (ρL + τρH)/(1 + τ) = 0.8. However, in such cases, it is still
possible for F to be decreasing in portions of the interval (0,∞).

Guided by the fact that π0H → 1 − ρav (κ→ ∞), (since r1 → 0), F can be expressed as

F = ρav − 1

r3
+ ((1 − ρav) − π0H) = ρav − 1

r3
+A,

where A = 1 − ρav − π0H . As the constant ρav can be ignored, it is sufficient to show that A− 1/r3
is decreasing. Using (A.15) gives

A =
r1(1 − ρav)(ρH − ρL)

(1 + τ)(1 − ρavr1)
=
r1(1 − ρav)(ρH − ρav)

1 − ρavr1

=
(1 − ρav)

ρav

(ρH − ρav)(ρavr1 − 1 + 1)

1 − ρavr1
=

(1 − ρav)(ρH − ρav)

ρav

[
−1 +

1

1 − ρavr1

]
.

(The last equality in the first line is obtained by using (15).) This gives

A− 1

r3
= − (1 − ρav)(ρH − ρav)

ρav
+

(1 − ρav)(ρH − ρav)

ρav(1 − ρavr1)
− 1

r3
.

As the first term is a constant, we only need to show that the second and third terms taken
together are decreasing. Setting z = 1/ρav in (A.6) gives

ρLρH

(
1

ρav
− r1

) (
1

ρav
− r2

) (
1

ρav
− r3

)
= −

(
1

ρav
− 1

) (
1 − ρL

ρav

) (
ρH

ρav
− 1

)
,

which can be rearranged as

− (1 − ρav)(ρH − ρav)

(1 − ρavr1)
=
ρLρH(1 − ρavr2)(1 − ρavr3)

(ρav − ρL)
. (D.2)

Therefore (using (A.5)),

(1 − ρav)(ρH − ρav)

ρav(1 − ρavr1)
− 1

r3
= −r1r2ρLρH − ρLρH(1 − ρavr2)(1 − ρavr3)

ρav(ρav − ρL)

= ρLρH

[
−r1r2 − (1 − ρavr2)(1 − ρavr3)

ρav(ρav − ρL)

]
.
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Ignoring the positive constant factor ρLρH , we need to show the following is decreasing:

−r1r2 − (1 − ρavr2)(1 − ρavr3)

ρav(ρav − ρL)
= −r1r2ρav(ρav − ρL) + (1 − ρavr2)(1 − ρavr3)

ρav(ρav − ρL)

= −r1r2ρ
2
av − r1r2ρavρL + 1 − ρavr2 − ρavr3 + ρ2avr2r3

ρav(ρav − ρL)
.

Since the denominator is a positive constant then what we need to show is equivalent to
showing that the negative of the numerator is increasing, which, using C1 and C2 from (A.4) and
(A.3), is equal to

H ≡ r1r2ρ
2
av − r1r2ρavρL + 1 − ρavr2 − ρavr3 + ρ2avr2r3

= ρ2av(r1r2 + r2r3) − ρav(r2 + r3) + 1 − r1r2ρavρL

= ρ2av(C1 − r1r3) − ρav(C2 − r1) + 1 − r1r2ρavρL.

Noting, again, from (A.4) and (A.3), that (d/dκ)C1 = 1/ρLρH and (d/dκ)C2 = ρav/ρLρH ,
the derivative of H is given by

ρ2av
1

ρLρH
− ρ2av(r1r

′
3 + r′1r3) − ρav

ρav

ρLρH
+ ρavr

′
1 − ρavρL(r′1r2 + r1r

′
2)

= −ρ2av(r1r
′
3 + r′1r3) + ρavr

′
1 − ρavρL(r′1r2 + r1r

′
2).

Taking the derivative of C0 = r1r2r3 = 1/(ρLρH) gives

r′1r2r3 + r1r
′
2r3 + r1r2r

′
3 = 0,

from which

r1r
′
2r3 = −(r′1r3 + r1r

′
3)r2

r1r2r
′
3 = −(r′1r2 + r1r

′
2)r3,

allowing the derivative of H to be given by

ρ2av
r1r

′
2r3
r2

+ ρavr
′
1 + ρLρav

r1r2r
′
3

r3
= ρavr1

[
r′1
r1

+ ρavr3
r′2
r2

+ ρLr2
r′3
r3

]
.

Therefore, since ρavr1 > 0, it is required to show that

0 <
r′1
r1

+ ρavr3
r′2
r2

+ ρLr2
r′3
r3
. (D.3)

Since

log(r1r2r3) = log(r1) + log(r2) + log(r3) = log

(
1

ρLρH

)
,

taking derivatives of this gives

r′1
r1

+
r′2
r2

+
r′3
r3

= 0.

Applying this to (A.3) means it is required to show that

0 < −r
′
2

r2
− r′3
r3

+ ρavr3
r′2
r2

+ ρLr2
r′3
r3

= (ρavr3 − 1)
r′2
r2

+ (ρLr2 − 1)
r′3
r3

=
r′3
r3

[
(ρavr3 − 1)

r3
r2

r′2
r′3

+ (ρLr2 − 1)

]
.
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Since r3, r
′
3 > 0, the requirement becomes

0 < (ρavr3 − 1)
r3
r2

r′2
r′3

+ (ρLr2 − 1).

Using (43) and (44),

r3
r2

r′2
r′3

=
r3
r2

r2(ρavr2−1)
ρLρH(r2−r3)(r2−r1)

r3(ρavr3−1)
ρLρH(r3−r2)(r3−r1)

=
(ρavr2 − 1)(r3 − r1)

(ρavr3 − 1)(r1 − r2)
.

Hence, the requirement for decreasing stochastic order at κ is

0 < (ρavr3 − 1)
(ρavr2 − 1)(r3 − r1)

(ρavr3 − 1)(r1 − r2)
+ ρLr2 − 1 =

(1 − ρavr2)(r3 − r1)

(r2 − r1)
− (1 − ρLr2),

which, upon minor rearrangement, proves the theorem. �

APPENDIX E. DERIVATION OF MINIMUM COST CONDITION

Taking partial derivatives of (50), and equating to zero gives

0 =
∂C(μL, μH)

∂μL
= c

1
αL

1
αL

+ 1
αH

− h

1
αL

1
αL

+ 1
αH

λav( μL
αL

+
μH
αH

1
αL

+ 1
αH

− λav

)2
+ hD

r1λL

(μL − r1λL)2

=

1
αL

1
αL

+ 1
αH

⎡⎢⎢⎢⎣c− h
λav( μL

αL
+

μH
αH

1
αL

+ 1
αH

− λav

)2

⎤⎥⎥⎥⎦ + hD
r1λL

(μL − r1λL)2
,

and

0 =
∂C(μL, μH)

∂μH
c

1
αH

1
αL

+ 1
αH

− h

1
αH

1
αL

+ 1
αH

λav( μL
αL

+
μH
αH

1
αL

+ 1
αH

− λav

)2
− hD

r1λH

(μH − r1λH)2

=

1
αH

1
αL

+ 1
αH

⎡⎢⎢⎢⎣c− h
λav( μL

αL
+

μH
αH

1
αL

+ 1
αH

− λav

)2

⎤⎥⎥⎥⎦ − hD
r1λH

(μH − r1λH)2
.

Hence,

1
αL

1
αL

+ 1
αH

⎡⎢⎢⎢⎣c− h
λav( μL

αL
+

μH
αH

1
αL

+ 1
αH

− λav

)2

⎤⎥⎥⎥⎦ = −hD r1λL

(μL − r1λL)2

1
αH

1
αL

+ 1
αH

⎡⎢⎢⎢⎣c− h
λav( μL

αL
+

μH
αH

1
αL

+ 1
αH

− λav

)2

⎤⎥⎥⎥⎦ = hD
r1λH

(μH − r1λH)2
.
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APPENDIX F. PROOF OF THEOREM 7.1

Proof: For simplicity of notation, instead of Π̂(S)(z) the proof is given for EN (S). The proof for

Π̂(S)(z) will be along similar lines.

EN (S) can be found using the renewal-reward theorem applied to discrete-time processes.
Consider the renewal cycle comprising of one LOW phase and the subsequent HIGH phase in the
original system. Let C be the number of sample points in this cycle (note that it is possible for C
to be 0). The renewal-reward theorem gives

EN (S) =
E(

∑C
i=1N

(S)
i )

EC
. (F.1)

In the denominator, the mean number of samples during a cycle is given by

EC =
βL

αL
+
βH

αH
.

To derive the numerator of (F.1), a similar approach to the modified system approach used
in the proof of Theorem 3 of Gupta et al. [17] will be followed. We define the following modified
systems.

Modified system 1: this system operates the same as the M/M/1(R) system except that when
the system switches from the HIGH phase to the LOW phase, the number of jobs at the beginning of
the LOW phase is randomly sampled from the distribution of NH . The distribution of the number
in system is the same as in the M/M/1(R) system because the distribution of jobs at the start of
a LOW phase is the same and the system is Markovian.

Modified system 2(LOW): In this system, a governing Poisson process of rate αL runs. With
each event in the governing Poisson process, the number in the system is reset by sampling from
the distribution of NL at the start of a LOW phase in the M/M/1(R) system. The system between
arrivals in the governing Poisson process operates the same as in the LOW phases of the M/M/1(R)
system until the next event in the governing Poisson process. The system is the equivalent to the
LOW phases of modified system 1 being stitched together. Modified system 2(HIGH) is defined
similarly.

In the notation below, i = 1 denotes modified system 1, i = 2 denotes either modified system
2(LOW) or modified system 2(HIGH), depending on the context, and if i is absent, it denotes the
original system. When considering LOW phases, let CYCLE denote a LOW phase in the context
of the original system and modified system 1 and denote the time from an arrival in the governing
Poisson process to the next arrival in that process in modified system 2(LOW).

For system i define:

C
(i)
L is the number of samples in a CYCLE in system i.

T
(i)
L be the time duration of a CYCLE.

{N (i,t)
L , 0 ≤ t < T

(i)
L } is the number in system at time t during a CYCLE.

N
(i)
L is the number in the system at an arbitrary time.

{N (i,S)
Li , i = 1, . . . , C

(i)
L } is the number in system sample values during a cycle.

N
(i,S)
L is the value of an arbitrary sample value.

Similar notation is used for the HIGH phase and the modified system 2(HIGH).
Using this notation, (F.1) can be expressed as

EN (S) =
E(

∑CL
i=1N

(S)
Li ) + E(

∑CH
i=1N

(S)
Hi )

EC
.

The LOW and HIGH phases are now examined separately. Consider first the LOW phase for
which the following is obtained. Since the distribution at the start of a CYCLE is the same by
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construction, the sampling Poisson process has the same rate in each system, and the same Markov
chain governs the system evolution during a CYCLE, we obtain

E

⎛⎝ CL∑
i=1

NS
Li

⎞⎠ = E(

C
(2)
L∑

i=1

N
(2,S)
Li ). (F.2)

Applying the renewal-reward theorem to the modified system 2(LOW) gives

E(
∑C

(2)
L

i=1 N
(2,S)
Li )

EC
(2)
L

= EN
(2,S)
L . (F.3)

By applying the PASTA property to the sampling Poisson process in modified system 2(LOW),
the mean number in system as seen at sampling epochs is the same as seen at an arbitrary time:

EN
(2,S)
L = EN

(2)
L .

Next, at a random time point, the backward recurrence time to the previous point in the
governing Poisson process in modified system 2(LOW) is an exponential random variable with rate
αL. Thus,

EN
(2)
L = EN

(2,T
(2)
L )

L .

(Gupta et al. [17] explained this using the PASTA principle.)
Since the original system, modified system 1 at the end of a LOW phase and modified system

2(LOW) at the end of a CYCLE are the same probabilistically:

EN
(2,T

(2)
L )

L = EN
(1,T

(1)
L )

L = EN
(TL)
L .

Combining the above gives

EN
(2,S)
L = EN

(TL)
L = ENL,

where the last equality follows by definition. Also, since a CYCLE has an exponential distribution

with rate αL in each system then ECL = EC
(2)
L . Hence, (F.2) and (F.3) give

E

⎛⎝ CL∑
i=1

N
(S)
Li

⎞⎠ = ENLECL.

A similar result holds for the HIGH phases:

EN (S) =
ENLECL + ENHECH

EC
=

βLENL
αL

+ βHENH
αH

μL

βL
+ βH

αH

.
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