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a b s t r a c t

We consider scheduling to minimize mean response time of the M/G/k queue with
unknown job sizes. In the single-server k = 1 case, the optimal policy is the Gittins
policy, but it is not known whether Gittins or any other policy is optimal in the
multiserver case. Exactly analyzing the M/G/k under any scheduling policy is intractable,
and Gittins is a particularly complicated policy that is hard to analyze even in the
single-server case.

In this work we introduce monotonic Gittins (M-Gittins), a new variation of the Gittins
policy, and show that it minimizes mean response time in the heavy-traffic M/G/k for
a wide class of finite-variance job size distributions. We also show that the monotonic
shortest expected remaining processing time (M-SERPT) policy, which is simpler than M-
Gittins, is a 2-approximation for mean response time in the heavy traffic M/G/k under
similar conditions. These results constitute the most general optimality results to date
for the M/G/k with unknown job sizes. Our techniques build upon work by Grosof et al.
(2018), who study simple policies, such as SRPT, in the M/G/k; Bansal et al. (2018),
Kamphorst and Zwart (2020), and Lin et al. (2010), who analyze mean response time
scaling of simple policies in the heavy-traffic M/G/1; and Aalto et al. (2009,2011) and
Scully et al. (2018,2020), who characterize and analyze the Gittins policy in the M/G/1.
© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Scheduling to minimize mean response time1 of the M/G/k queue is an important problem in queueing theory. The
ingle-server k = 1 case has been well studied. If the scheduler has access to each job’s exact size, the shortest remaining
rocessing time (SRPT) policy is easily shown to be optimal [1]. If the scheduler does not know job sizes, which is very
ften the case in practical systems, then a more complex policy called the Gittins policy is known to be optimal [2–4]. The
ittins policy tailors its priority scheme to the job size distribution, and it takes a simple form in certain special cases.
or example, for distributions with decreasing hazard rate (DHR), Gittins becomes the foreground-background (FB) policy,2
o FB is optimal in the M/G/1 for DHR job size distributions [2,3,5].
In contrast to the M/G/1, the M/G/k with k ≥ 2 has resisted exact analysis, even for very simple scheduling policies.

s such, much less is known about minimizing mean response time in the M/G/k, with the only nontrivial results holding
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1 A job’s response time, also called sojourn time or latency, is the amount of time between its arrival and its completion.
2 FB is the policy that prioritizes the job of least age, meaning the job that has been served the least so far. It is also known as least attained
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under heavy traffic.3 For known job sizes, recent work by Grosof et al. [6] shows that a multiserver analogue of SRPT
is optimal in the heavy-traffic M/G/k. For unknown job sizes, Grosof et al. [6] address only the case of DHR job size
distributions, showing that a multiserver analogue of FB is optimal in the heavy-traffic M/G/k.4 But in general, optimal
cheduling is an open problem for unknown job sizes, even in heavy traffic. We therefore ask:

What scheduling policy minimizes mean response time in the heavy-traffic M/G/k with unknown job sizes and general
job size distribution?

This is a very difficult question. In order to answer it, we draw upon several recent lines of work in scheduling theory.

• As part of their heavy-traffic optimality proofs, Grosof et al. [6] use a tagged job method to stochastically bound
M/G/k response time under each of SRPT and FB relative to M/G/1 response time (Fig. 2.1) under the same policy.

• Lin et al. [7] and Kamphorst and Zwart [8] characterize the heavy-traffic scaling of M/G/1 mean response time under
SRPT and FB, respectively.

• Scully et al. [9] show that a policy called monotonic shortest expected remaining processing time (M-SERPT), which is
considerably simpler than Gittins, has M/G/1 mean response time within a constant factor of that of Gittins.

hile these prior results do not answer the question on their own, together they suggest a plan of attack for proving
ptimality in the heavy-traffic M/G/k.
When searching for a policy to minimize mean response time, a natural candidate is a multiserver analogue of Gittins.

s a first step, one might hope to use the tagged job method of Grosof et al. [6] to stochastically bound M/G/k response
ime under Gittins relative to M/G/1 response time. Unfortunately, the tagged job method does not apply to multiserver
ittins, because it relies on both stochastic and worst-case properties of the scheduling policy, whereas Gittins has poor
orst-case properties.
One of our key ideas is to introduce a new variant of Gittins, called monotonic Gittins (M-Gittins), that has better worst-

case properties than Gittins while maintaining similar stochastic properties. This allows us to generalize the tagged job
method [6] to M-Gittins, thus bounding its M/G/k response time relative to its M/G/1 response time.

Our M/G/k analysis of M-Gittins reduces the question of whether M-Gittins is optimal in the heavy-traffic M/G/k to
analyzing the heavy-traffic scaling of M-Gittins’s M/G/1 mean response time. However, there are no heavy-traffic scaling
results for the M/G/1 under policies other than SRPT [7], FB [8], first-come, first served (FCFS) [10,11], and a small number
of other simple policies [12,13]. To remedy this, we derive heavy-traffic scaling results for M-Gittins in the M/G/1. It turns
out that analyzing M-Gittins directly is very difficult. Fortunately, M-Gittins has a simpler cousin, M-SERPT, which Scully
et al. [9] introduce and analyze. We analyze M-SERPT in heavy traffic as a key stepping stone in our heavy-traffic analysis
of M-Gittins.

This paper makes the following contributions:

• We introduce the M-Gittins policy and prove that it minimizes mean response time in the heavy-traffic M/G/k for a
large class of finite-variance job size distributions (Theorem 3.1).

• We also prove that the simple and practical M-SERPT policy is a 2-approximation for mean response time in the
heavy-traffic M/G/k for a large class of finite-variance job size distributions (Theorem 3.2).

• We characterize the heavy-traffic scaling of mean response time in the M/G/1 under Gittins, M-Gittins, and M-SERPT
(Theorem 3.3).

Section 3 formally states these results and compares them to prior work. Their proofs rely on a large collection of
intermediate results, which we outline in detail in Section 4 and prove in Sections 5–7.

2. Preliminaries

We consider an M/G/k queue with arrival rate λ and job size distribution X . Each of the k servers has speed 1/k,
so regardless of the number of servers, the total service rate is 1 and the system load is ρ = λE[X]. This allows us to
easily compare the M/G/k system to a single-server M/G/1 system, as illustrated in Fig. 2.1. We assume a preempt-resume
model with no preemption overhead. This means that a single-server M/G/1 system can simulate any M/G/k policy by
time-sharing between k jobs.

Throughout this paper we consider the ρ → 1 or heavy-traffic limit. This is the λ → 1/E[X] limit with the job size
distribution X and number of servers k held constant.

We write F for the cumulative distribution function of X and F (x) = 1 − F (x) for its tail. We assume that X has a
ontinuous, piecewise-monotonic5 hazard rate

h(x) =

d
dxF (x)

F (x)
.

3 Here ‘‘heavy traffic’’ refers to the limit as the system load approaches capacity for a fixed number of servers.
4 Both the SRPT and FB optimality results of Grosof et al. [6] hold under technical conditions similar to finite variance.
5 A function is piecewise-monotonic if, roughly speaking, it switches between increasing and decreasing finitely many times in any compact

interval.
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Fig. 2.1. Single-server and k-server systems.

We also frequently work with the expected remaining size of a job at age a, which is E[X − a | X > a]. We assume it, too,
s continuous and piecewise-monotonic as a function of a.

The above assumptions on hazard rate and expected remaining size are not restrictive and serve primarily to simplify
resentation. It is very likely that our proofs can be generalized to relax them.

.1. SOAP policies and rank functions

All of the scheduling policies considered in this work are in the class of SOAP policies [14], generalized to a multiserver
etting. In a single-server setting, a SOAP policy π is specified by a rank function

rπ
: R+ → R

hich maps a job’s age, namely the amount of service it has received so far, to its rank, or priority level. Single-server
OAP policies work by always serving the job of minimal rank, breaking ties in FCFS fashion.6
As an example, FB is a SOAP policy with rFB(a) = a. Because lower age corresponds to lower rank, FB prioritizes the

ob of least age.7
A multiserver SOAP policy uses the same rank function as its single-server analogue. The only difference is that the

ystem can serve up to k jobs, so a multiserver SOAP policy works as follows:

• If there are at most k jobs in the system, serve all of them.
• If there are more than k jobs in the system, serve the k jobs of minimal rank, breaking ties in FCFS fashion.

e often compare the k-server variant of a policy π to its single-server analogue. When it is necessary to distinguish
etween them, we write π-k for the k-server version of a policy, so π-1 is the single-server version. We write Tπ-k

x for the
ize-conditional response time distribution of jobs of size x under π-k, and we write Tπ-k for the overall response time
istribution.
There are four main policies we consider in this work: SERPT, M-SERPT, Gittins, and M-Gittins. None of the policies

eed job size information, but each uses the job size distribution to tune its rank function. As an example, Fig. 2.2 shows
he four rank functions for a bounded distribution with nonmonotonic hazard rate.

efinition 2.1. The shortest expected remaining processing time (SERPT) policy is the SOAP policy with rank function

rSERPT(a) = E[X − a | X > a] =

∫
∞

a F (t) dt

F (a)
.

As a reminder, lower rank means better priority, so, as hinted by its name, SERPT prioritizes the job of least expected
remaining size.

Definition 2.2. The monotonic SERPT (M-SERPT) policy is the SOAP policy with monotonic rank function

rM-SERPT(a) = max
b∈[0,a]

rSERPT(b).

Definition 2.3. The Gittins policy is the SOAP policy with rank function

rGittins(a) = inf
b>a

E[min{X, b} − a | X > a]
P{X ≤ b | X > a}

= inf
b>a

∫ b
a F (t) dt

F (a) − F (b)
.

6 The full SOAP class allows a job’s rank to depend on both its age and its ‘‘static’’ characteristics, such as its size or class, but we do not use
his generality in this paper.
7 When multiple jobs are tied for least age, FB shares the server among all such jobs because the rank function is increasing. See Scully et al.

14, Appendix B] for details.
3
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Fig. 2.2. Rank function examples.

Definition 2.4. The monotonic Gittins (M-Gittins) policy is the SOAP policy with monotonic rank function

rM-Gittins(a) = max
b∈[0,a]

rGittins(b).

The M-Gittins and M-SERPT policies, which both have monotonic rank functions, are the primary focus of this paper.
ome of our intermediate results apply more broadly to any policy with a monotonic rank function.

efinition 2.5. A SOAP policy π is monotonic if its rank function is nondecreasing, meaning rπ (a) ≤ rπ (b) for all ages
< b.8

Figure 2.2 shows the SERPT, M-SERPT, Gittins, and M-Gittins rank functions for a bounded distribution with nonmono-
onic hazard rate. Notice that SERPT and Gittins are not monotonic. This makes it hard to analyze their M/G/k response
ime (Appendix A). In contrast, the M-SERPT and M-Gittins are monotonic: their rank functions alternate between constant
egions and strictly increasing regions.

While the rank functions of Gittins and SERPT may not be monotonic, they are still well behaved under our assumptions
n the job size distribution.

emma 2.6. Under the assumption that the job size distribution X has continuous and piecewise-monotonic hazard rate and
xpected remaining size functions, each of rSERPT, rM-SERPT, rGittins, and rM-Gittins is continuous and piecewise-monotonic.

roof. It suffices to prove the claims for rSERPT and rGittins. The claim for rSERPT is exactly our assumption on expected
emaining size, and the claim for rGittins is a known result [3, Theorem 1]. □

.2. Job size distribution classes

We consider several classes of job size distributions in this paper. We briefly describe each class before giving the
ormal definitions.

• The OR(−∞, −1) class (Definition 2.7) contains, roughly speaking, distributions with Pareto-like tails.

– We focus especially on the OR(−∞, −2) subclass, all members of which have finite variance.

• The MDA(Λ) class (Definition 2.12) contains, roughly speaking, distributions with smooth tails that are lighter than
Pareto tails. It includes, among others, exponential, normal, log-normal, Weibull, and Gamma distributions.

• The QDHR and QIMRL classes (Definitions 2.8 and 2.9) are relaxations of the well-known decreasing hazard rate (DHR)
and increasing mean residual lifetime (IMRL) classes [2,3,5,15–19]. QDHR contains distributions whose hazard rate is
roughly decreasing with age, even if it is not perfectly monotonic, and QIMRL contains distributions with roughly
increasing expected remaining size.

– We focus especially on the subclasses MDA(Λ) ∩ QDHR and MDA(Λ) ∩ QIMRL.

8 The nonincreasing case is less interesting, because all nonincreasing rank functions encode FCFS.
4
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• The ENBUE class (Definition 2.10) is a relaxation of the well-known new better than used in expectation (NBUE) class
[2,3,15].9 It contains distributions whose expected remaining size reaches a global maximum at some age.

– We focus especially on the Bounded subclass, which contains all bounded distributions.

These classes play two different roles in our analysis.

• Some of the classes broadly characterize the asymptotic behavior of the tail F . These include OR(−∞, −1), MDA(Λ),
and ENBUE. Virtually all job size distributions of interest are in one of these classes, so requiring membership in one
of them, as in Theorem 3.3, should not be viewed as a major restriction.

• Some of the classes impose additional conditions on the job size distribution that help us bound the M-Gittins and
M-SERPT rank functions (Section 6). These include QDHR, QDHR, and Bounded. While these classes are much broader
than those previously studied (Section 3.1), they do not cover all distributions of interest. Requiring membership in
one of them, as in Theorems 3.1 and 3.2, represents a genuine restriction.

Definition 2.7. A function f is O-regularly varying if there exist exponents β ≥ α > 0 along with constants C0, x0 > 0
uch that for all y ≥ x ≥ x0,

1
C0

(y
x

)−β

≤
f (y)
f (x)

≤ C0

(y
x

)−α

.

We write OR(−β0, −α0) for the set of O-regularly varying functions where the exponents α and β above may be chosen
such that α0 < α ≤ β < β0.10 We use the same OR(−β0, −α0) notation to represent the class of distributions whose
tails are in OR(−β0, −α0).

Definition 2.8. A job size distribution is in the quasi-decreasing hazard rate class, denoted as QDHR, if there exist a strictly
increasing function m : R+ → R+, an exponent γ ≥ 1, and constants C0, x0 > 0 such that for all x ≥ x0,

m(x) ≤
1

h(x)
≤ m(C0xγ ).

Definition 2.9. A job size distribution is in the quasi-increasing mean residual lifetime class, denoted as QIMRL, if there
xist a strictly increasing function m : R+ → R+, an exponent γ ≥ 1, and constants C0, x0 > 0 such that for all x ≥ x0,

m(x) ≤ E[X − x | X > x] ≤ m(C0xγ ).

Definition 2.10. A job size distribution is in the eventually new better than used in expectation class, denoted as ENBUE,
f there exists an age a∗ ≥ 0 at which a job’s expected remaining size reaches a global maximum, meaning that for all
̸= a∗,

E[X − a∗ | X > a∗] ≥ E[X − x | X > x].

Definition 2.11. A job size distribution is in the bounded class, denoted as Bounded, if there exists xmax < ∞ such that
(xmax) = 0.

efinition 2.12. A job size distribution is said to be in the Gumbel domain of attraction, denoted as MDA(Λ), under certain
onditions specified in extreme value theory [21].

The exact characterization of MDA(Λ) is outside the scope of this paper. The most important property is that
istributions in MDA(Λ) are lighter-tailed than all Pareto distributions.

emma 2.13. If X ∈ MDA(Λ), then F (x) = o(x−α) for all α > 0.

Proof. The result follows from a known characterization of MDA(Λ) [21, Proposition 1.4]. □

. Main results

We now present our main results, explaining how they relate to prior work in Section 3.1. We begin with our
eavy-traffic M/G/k optimality result.

9 Because the NBUE terminology originates in reliability analysis, the word ‘‘better’’ here means ‘‘longer’’.
10 This is not the standard definition of O-regular variation, but it is equivalent to it [20, Section 2.2.1]. Specifically, our OR(−β0, −α0) contains
the O-regularly varying functions whose Matuszewska indices are in the interval (−β , −α ).
0 0
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Theorem 3.1. In an M/G/k, if

X ∈ OR(−∞, −2) ∪ (MDA(Λ) ∩ QDHR) ∪ Bounded,

then

lim
ρ→1

E[TM-Gittins-k
]

E[TGittins-1]
= 1.

In such cases, M-Gittins-k is optimal for mean response time in heavy traffic.

The M-Gittins policy is based on the Gittins policy, which is somewhat complex to describe and compute. Fortunately,
the M-SERPT policy, which can be much simpler to compute [9], also performs well in the heavy-traffic M/G/k.

Theorem 3.2. In an M/G/k, if

X ∈ OR(−∞, −2) ∪ (MDA(Λ) ∩ (QDHR ∪ QIMRL)) ∪ Bounded,

then

lim
ρ→1

E[TM-SERPT-k
]

E[TGittins-1]
≤ 2.

n such cases, M-SERPT-k is a 2-approximation for mean response time in heavy traffic.

Theorems 3.1 and 3.2 apply to a broad class of finite-variance job size distributions. Roughly speaking, OR(−∞, −2)
overs heavy-tailed distributions, and MDA(Λ) covers non-heavy-tailed distributions that are unbounded (Section 2.2).
ssuming membership in these sets is standard for heavy-traffic analysis [8]. The main restriction the results impose is
n MDA(Λ) distributions, for which we additionally require membership in QDHR or QIMRL. While slightly relaxing this
estriction is possible,11 removing it entirely appears to be very difficult (Section 8).

A key step in the proofs of Theorems 3.1 and 3.2 is analyzing M-Gittins and M-SERPT in the heavy-traffic M/G/1. This
nalysis is itself a new result of independent interest. Notably, it extends to ordinary Gittins in addition to M-Gittins, thus
haracterizing the optimal heavy-traffic scaling attainable by any scheduling policy in the setting of unknown job sizes.

heorem 3.3. Let π-1 be one of Gittins-1, M-Gittins-1, or M-SERPT-1. If X ∈ OR(−2, −1), then in the ρ → 1 limit,

E[Tπ-1
] = Θ

(
log

1
1 − ρ

)
and if X ∈ OR(−∞, −2) ∪ MDA(Λ) ∪ ENBUE, then

E[Tπ-1
] = Θ

(
1

(1 − ρ) · rM-SERPT
(
F−1
e (1 − ρ)

)),

where F−1
e is the inverse of the tail of the excess of X, namely

Fe(x) =
1

E[X]

∫
∞

x
F (t) dt.

3.1. Relationship to prior work

Theorem 3.1 is the first result proving optimality of a scheduling policy in the heavy-traffic M/G/k with unknown job
izes and general job size distribution. As mentioned in Section 1, the only prior results of this type were shown by Grosof
t al. [6], who prove similar results for SRPT and FB, that latter for decreasing hazard rate (DHR) job size distributions.

• SRPT was shown to be optimal in the heavy-traffic M/G/k for job size distributions whose tail has upper Matuszewska
index less than −2 [6, Theorem 6.1], which corresponds to satisfying the upper bound in Definition 2.7 for some
α > 2. This is somewhat broader than the precondition of Theorem 3.1, though it is still limited to finite-variance
distributions.

– Given that SRPT is designed for known job sizes while M-Gittins is designed for unknown job sizes, Theorem 3.1
complements the prior SRPT results.

11 For example, we only need the QDHR and QIMRL assumptions to prove Theorems 6.3 and 6.5, so we could instead assume the results of those
theorems.
6
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• FB was shown to be optimal in the heavy-traffic M/G/k for job size distributions in the class DHR∩ (OR(−∞, −2)∪
MDA(Λ)) [6, Theorem 7.13].12 The DHR class is much more restrictive than QDHR, so this is much narrower than
the precondition of Theorem 3.1.

– Given that FB is equivalent to M-Gittins in the DHR case [2,3], Theorem 3.1 subsumes the prior FB results.

There is another result that follows from two prior works that complements Theorem 3.1, although to the best of our
nowledge it has never been explicitly stated. Köllerström [10,11] shows that under FCFS, the mean response times in
he M/G/1 and M/G/k converge. This means that if Gittins and M-Gittins happen to be equivalent to FCFS for a given job
ize distribution, then FCFS minimizes mean response time in the heavy-traffic M/G/k. Aalto et al. [2,3] show this occurs
xactly for job size distributions in the new better than used in expectation (NBUE) class, which includes some distributions
hat Theorem 3.1 does not cover.

Finally, versions of the Gittins policy have been shown to be heavy-traffic optimal for two discrete-state versions of
he M/G/k queue [22,23]. These models support some features our model does not, such as multiple job classes, but
iscretizing the state space imposes some limitations. Specifically, Glazebrook and Niño-Mora [22] require each job to
e composed of phases where each phase has exponentially distributed size; and Glazebrook [23] allows nonexponential
ob size distributions but discretizes time and additionally requires ENBUE job size distributions (Definition 2.10). In
ontrast, Theorem 3.1 applies to heavy-tailed and other non-ENBUE job size distributions that are of practical importance
n computer systems [24–27].

Theorem 3.2 shows that a simple scheduling policy, namely M-SERPT, has mean response time within a constant factor
f optimal in the heavy-traffic M/G/k with unknown job sizes and general job size distribution. Specifically, we show M-
ERPT is a 2-approximation. This complements the result of Scully et al. [9], who show that in the M/G/1, M-SERPT is a
-approximation for M/G/1 mean response time at all loads. Our result is tighter and applies to multiserver systems, not
ust single-server systems, but it applies only in heavy traffic. The techniques we introduce could be useful for tightening
he upper bound on M-SERPT’s M/G/1 approximation ratio, which is conjectured to be 2 [9].

Theorem 3.3 characterizes the heavy-traffic scaling of M/G/1 mean response time under Gittins, M-Gittins, and M-
ERPT. There are three other policies whose heavy-traffic scaling has been characterized: FB, SRPT, and a policy called
andomized multilevel feedback (RMLF) [28,29]. We now compare Theorem 3.3 to each of these prior results.

Kamphorst and Zwart [8] study FB in heavy traffic. They show that if X ∈ OR(−2, −1), then

E[T FB-1
] = Θ

(
log

1
1 − ρ

)
,

matching the first expression in Theorem 3.3. They also show that if X ∈ OR(−∞, −2) ∪ MDA(Λ), then

E[T FB-1
] = Θ

(
1

(1 − ρ) · rSERPT
(
F−1
e (1 − ρ)

)).

This is similar to the second expression in Theorem 3.3, except it replaces the monotonic rM-SERPT with the nonmonotonic
rSERPT, which pinpoints the suboptimality of FB’s heavy-traffic scaling.

Lin et al. [7] study SRPT in heavy traffic. They show that if X ∈ OR(−2, −1), then

E[T SRPT-1
] = Θ

(
log

1
1 − ρ

)
,

and if F has upper Matuszewska index less than −2, which covers X ∈ OR(−∞, −2) ∪ MDA(Λ), then

E[T SRPT-1
] = Θ

(
1

(1 − ρ) · G−1(1 − ρ)

)
,

here

G(x) = 1 −
E[X1(X ≤ x)]

E[X]
= Fe(x) +

xF (x)
E[X]

.

Recall that SRPT minimizes mean response time in the presence of job size information, whereas Gittins does not use job
size information, so the heavy-traffic scaling of SRPT is a lower bound on that of Gittins. By comparing the above result for
SRPT with our result for Gittins (Theorem 3.3), we learn when knowledge of job sizes yields an asymptotic improvement
in mean response time.

• For X ∈ OR(−2, −1), meaning X is heavy-tailed with infinite variance, the heavy-traffic scaling of Gittins matches
that of SRPT.

12 While Grosof et al. [6, Theorem 7.13] claim that this result applies to all distributions in DHR with upper Matuszewska index less than −2,
their proof incorrectly cites the preconditions of results of Kamphorst and Zwart [8]. Correcting the precondition narrows the result to what we
state here.
7
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• For X ∈ OR(−∞, −2), meaning X is heavy-tailed with finite variance, the heavy-traffic scaling of Gittins still matches
that of SRPT. Specifically, we later show rM-SERPT(a) = Θ(a) (Theorem 6.2), and one can also show G−1(1 − ρ) =

Θ(F−1
e (1 − ρ)).

• For X ∈ MDA(Λ), meaning X is not heavy-tailed, one can show rM-SERPT(a) = o(a) [21], implying Gittins has worse
heavy-traffic scaling than SRPT in those cases.

We see that, roughly speaking, Gittins matches the heavy-traffic scaling of SRPT if and only if the job size distribution
is heavy-tailed. We conclude that knowledge of job sizes yields an asymptotic improvement in mean response time for
non-heavy-tailed job size distributions.

Bansal et al. [12] study RMLF in heavy traffic. They show that if E[Xα
] < ∞ for some α > 2, then

E[T RMLF-1
] = O

(
E[T SRPT-1

] · log
1

1 − ρ

)
. (3.1)

ecause Gittins minimizes M/G/1 mean response time, this serves as an upper bound on the heavy-traffic scaling of Gittins.
owever, as previously discussed when comparing Theorem 3.3 to prior results on SRPT, there are cases where Gittins
atches the heavy-traffic scaling of SRPT, so our result is a tighter bound. With that said, requiring E[Xα

] < ∞ for some
> 2 is more lenient than the precondition of Theorem 3.3, so there are still instances where (3.1) is the best known

ound on Gittins’s heavy-traffic scaling.

. Technical overview

Our main goal is to show that M-Gittins minimizes M/G/k mean response time in the ρ → 1 limit. Specifically, we
how

E[TM-Gittins-k
] ≤ E[TGittins-1

] + o(E[TGittins-1
]). (4.1)

The only existing technique for proving a bound like (4.1) is the M/G/k tagged job method of Grosof et al. [6]. In
eneral, tagged job methods work as follows [6,14,30–35]: one focuses on a ‘‘tagged’’ job J throughout its time in the
ystem, tracking how much each other job delays J . The amount of time for which another job can delay J is called the
elevant work due to that other job. The specific M/G/k tagged job method [6] relates the amount of relevant work in an
/G/k under π-k to the amount of relevant work in an M/G/1 under π-1.
As a first approach, we might try to prove a result like (4.1) for Gittins-k using the M/G/k tagged job method.

nfortunately, the method turns out not to work for Gittins, because Gittins can have a nonmonotonic rank function.
t turns out that under nonmonotonic rank functions, jobs can contribute more relevant work in an M/G/k than in an
/G/1 (Appendix A), resulting in a much looser response time bound.
Our key insight is that we can generalize the M/G/k tagged job method of Grosof et al. [6] to any SOAP policy, provided

t has a monotonic rank function. In Theorem 5.1 we show that for any monotonic SOAP policy π ,

E[Tπ-k
] ≤ E[Q π-1

] + kE[Rπ-1
] + (k − 1)E[Sπ-1

], (4.2)

here the quantities on the right hand side, defined formally in Section 5, can be thought of as follows:

• Q π-1 and Rπ-1 are distributions called waiting time and residence time, respectively [14]. Response time in the M/G/1
is the sum of waiting time and residence time.

• Sπ-1 is a new distribution we call inflated residence time, which is similar to residence time but longer.

roving (4.2) is the first stepping stone to proving Theorem 3.1 because it reduces an M/G/k analysis to an M/G/1 analysis.
nly the E[Rπ-1

] and E[Sπ-1
] coefficients depend on k, so to prove Theorem 3.1, we show the E[Q π-1

] term dominates in
the ρ → 1 limit when π is M-Gittins. Figure 4.1 gives an overview of the main proof steps.

In the remainder of this section, our goal is to bound E[Q π-1
], E[Rπ-1

], and E[Sπ-1
], where π is either M-Gittins or

M-SERPT. We begin in Section 4.1 by explaining in more detail the concepts of relevant work and of waiting, residence,
and inflated residence time. In doing so, we introduce age cutoffs, quantities which characterize the relevant work due
to each job. It turns out that to bound E[Q π-1

], E[Rπ-1
], and E[Sπ-1

], we first need to bound the age cutoffs. Section 4.2
resents our age cutoff bounds, deferring proofs to Section 6, and Section 4.3 presents our bounds on E[Q π-1

], E[Rπ-1
],

nd E[Sπ-1
], deferring proofs to Section 7. Finally, in Section 4.4, we formally prove Theorems 3.1–3.3 by combining the

ntermediate results discussed throughout this section.

.1. Understanding the tagged job method and relevant work

In this section we give intuition for the tagged job method, deferring some formalities to Section 5.
Recall that the tagged job method works by focusing on the journey of a ‘‘tagged’’ job J through the system. Roughly

peaking, the relevant work due to any other job is the amount of time by which that job delays J ’s departure. A key
insight from the M/G/1 SOAP analysis [14] is that to figure out how much another job delays J , we need to look not at
8
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Fig. 4.1. Proof overview.

Fig. 4.2. New job and old job age cutoffs.

J ’s current rank but at its worst future rank. This is because even if J has priority over another job at first, if J ’s rank later
ncreases, the other job can get priority.

Suppose that J has size x. Under a monotonic SOAP policy π , such as M-Gittins or M-SERPT, the worst future rank J will
ave is always the rank it will have just before completion, namely rπ (x). The amount of relevant work due to another
ob J ′ is the amount of time J ′ is served while J is in the system until J ′ either completes or reaches rank rπ (x). Due to the
CFS tiebreaking rule (Section 2.1), exactly what ‘‘reaches’’ means depends on when J ′ arrives.

• New jobs, those that arrive after J , contribute relevant work until they first have rank greater than or equal to rπ (x).
This occurs at a specific age called the new job age cutoff, denoted as yπ

x .
• Old jobs, those that arrive before J , contribute relevant work until they first have rank strictly greater than rπ (x). This

occurs at a specific age called the old job age cutoff, denoted as zπ .
x

9
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Table 4.1
New job and old job age cutoff bounds.

Size distribution Quantity Bound Reference

OR(−∞, −1) yM-Gittins-1
x Θ(x) Theorem 6.4

zM-Gittins-1
x Θ(x)
yM-SERPT-1
x Θ(x) Theorem 6.2

zM-SERPT-1
x Θ(x)

QDHR yM-Gittins-1
x Ω(x1/γ ) for some γ ≥ 1 Theorem 6.5

zM-Gittins-1
x O(xγ ) for some γ ≥ 1

QDHR∪QIMRL yM-SERPT-1
x Ω(x1/γ ) for some γ ≥ 1 Theorem 6.3

∪QIMRL zM-SERPT-1
x O(xγ ) for some γ ≥ 1

These bounds on yπ
x and zπ

x are critical for characterizing heavy-traffic scaling of E[Q π-1
], E[Rπ-1

], and E[Sπ-1
].

igure 4.2 illustrates the new job and old job age cutoffs yπ
x and zπ

x , which are formally defined below.13 Roughly speaking,

• if rπ is increasing at x, then yπ
x = x = zπ

x ; and
• if rπ is constant at x, then yπ

x and zπ
x are the endpoints of the constant region containing x.

s Fig. 4.2 illustrates, we always have

yπ
x ≤ x ≤ zπ

x . (4.3)

efinition 4.1. Let π be a monotonic SOAP policy. The new job age cutoff and old job age cutoff of size x are, respectively,

yπ
x = sup{a ≥ 0 | rπ (a) < rπ (x)},

zπ
x = sup{a ≥ 0 | rπ (a) ≤ rπ (x)}.

hen the policy in question is clear, we drop the superscript π .

One can use new job and old job age cutoffs to write M/G/1 mean response time under a monotonic SOAP policy [9]. As
first step, we write M/G/1 response time Tπ-1 as a sum of two parts, called waiting time Q π-1 and residence time Rπ-1 [14]:

E[Tπ-1
] = E[Q π-1

] + E[Rπ-1
].

e define waiting and residence times formally in Section 5. For now, we just need to know that their means can be
ritten in terms of yπ

x and zπ
x . Specifically, Scully et al. [9, Propositions 4.7 and 4.8] show

E[Q π-1
] =

∫
∞

0

τ (zπ
x )

ρ(yπ
x )ρ(zπ

x )
dF (x),

E[Rπ-1
] =

∫
∞

0

x
ρ(yπ

x )
dF (x),

(4.4)

here ρ and τ are defined as

ρ(a) = 1 − λE[min{X, a}] = 1 −

∫ a

0
λF (t) dt,

τ (a) =
λ

2
E[min{X, a}2] =

∫ a

0
λtF (t) dt.

(4.5)

he proof of Theorem 5.1 explains the intuition behind (4.4).
The significance of (4.2) is that it expresses M/G/k response time in terms of waiting and residence times, which are

/G/1 quantities. It also features a third quantity called inflated residence time Sπ-1. We define inflated residence time
ormally in Section 5. For now, we just need to know that its mean,

E[Sπ-1
] =

∫
∞

0

zπ
x

ρ(yπ
x )

dF (x), (4.6)

can be written in terms of yπ
x and zπ

x . Note that E[Rπ-1
] ≤ E[Sπ-1

].

4.2. Bounding new and old age cutoffs

Recall that proving our main results rests on characterizing the heavy-traffic scaling of E[Q π
], E[Rπ

], and E[Sπ
], where

π is either M-Gittins or M-SERPT. As we see in (4.4) and (4.6), both yπ
x and zπ

x feature prominently in the formulas of

13 The new job and old job age cutoffs of x are equivalent to what Scully et al. [9] call the previous and next hill ages of x.
10
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Table 4.2
Heavy-traffic scaling of waiting, residence, and inflated residence times.
Size distribution Quantity Heavy-traffic scaling Reference

OR(−2, −1) E[Q π-1
] O(− log(1 − ρ)) Theorems 7.4 and 7.11

E[Rπ-1
] O(− log(1 − ρ))

OR(−∞, −2) E[Q π-1
] Ω((1 − ρ)−δ) for some δ > 0 Theorems 7.9 and 7.11

E[Rπ-1
] O(− log(1 − ρ))

E[Sπ-1
] O(− log(1 − ρ)) Theorems 7.9 and 7.12

MDA(Λ) E[Q π-1
] Ω((1 − ρ)−(1−ϵ)) for all ϵ > 0 Theorems 7.10 and 7.11

E[Rπ-1
] O((1 − ρ)−ϵ ) for all ϵ > 0

MDA(Λ) ∩ QDHR E[Sπ-1
] O((1 − ρ)−ϵ ) for all ϵ > 0 Theorems 7.10 and 7.12

MDA(Λ) ∩ QIMRL E[SM-SERPT-1
] O((1 − ρ)−ϵ ) for all ϵ > 0 Theorem 7.10

ENBUE E[Q π-1
] Θ((1 − ρ)−1) Theorems 7.5 and 7.11

E[Rπ-1
] Θ(1)

Bounded E[Sπ-1
] Θ(1) Theorems 7.5 and 7.12

These bounds hold when π is either M-Gittins or M-SERPT, except for the MDA(Λ)∩QIMRL case, in which the bound
holds only for M-SERPT.

E[Q π
], E[Rπ

], and E[Sπ
]. This means the first step of characterizing the heavy-traffic scaling of E[Q π

], E[Rπ
], and E[Sπ

]

is understanding yπ
x and zπ

x . This is the subject of Section 6, in which we prove bounds on yπ
x and zπ

x for a wide class of
job size distributions. Table 4.1 summarizes these results. The main takeaway is that yπ

x and zπ
x are always polynomially

bounded relative to x.

4.3. Characterizing heavy traffic scaling

Armed with bounds on age cutoffs, we are ready to characterize heavy-traffic scaling of mean waiting, residence, and
inflated residence times. This is the subject of Section 7, in which

• Theorems 7.4, 7.5, 7.9 and 7.10 characterize M-SERPT’s heavy-traffic scaling; and
• Theorems 7.11 and 7.12 characterize M-Gittins’s heavy-traffic scaling in terms of M-SERPT’s.

Table 4.2 summarizes these results. The main takeaway of the table is that for all of the finite-variance job size distribution
classes considered,14 if π is either M-Gittins or M-SERPT, E[Q π-1

] dominates E[Rπ-1
] and E[Sπ-1

], with the latter sometimes
requiring an additional condition. Specifically,

• E[Q π-1
] grows polynomially in 1/(1 − ρ), whereas

• E[Rπ-1
] and E[Sπ-1

] grow subpolynomially in 1/(1 − ρ).

4.4. From intermediate results to main results

We now prove our main results. The proofs of Theorems 3.1 and 3.2 both follow the same three main steps, where π
is M-Gittins or M-SERPT, respectively:

• Theorem 5.1 bounds E[Tπ-k
] in terms of M/G/1 quantities.

• The results in Table 4.2 show limρ→1 E[Tπ-k
]/E[Q π-1

] = 1.
• Prior work relates E[Q π-1

] to E[TGittins-1
].

Proof of Theorem 3.1. An M/G/1 can simulate any M/G/k policy by sharing the server, so the fact that Gittins minimizes
M/G/1 mean response time means E[TM-Gittins-k

]/E[TGittins-1
] ≥ 1. It therefore suffices to show limρ→1 E[TM-Gittins-k

]/

E[TGittins-1
] ≤ 1.

Theorem 5.1 implies

E[TM-Gittins-k
]

E[QM-Gittins-1]
≤ 1 +

kE[RM-Gittins-1
] + (k − 1)E[SM-Gittins-1

]

E[QM-Gittins-1]
.

Theorems 7.5 and 7.9–7.12 imply that the second term vanishes in the ρ → 1 limit. A result of Scully et al. [9,
Proposition 4.7] implies

E[QM-Gittins-1
] ≤ E[Q Gittins-1

] ≤ E[TGittins-1
], (4.7)

mplying the desired result. □

14 That is, for all the classes in Table 4.2 except OR(−2, −1).
11
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Table 5.1
Summary of notation.
Notation Description Reference

π-k k-server version of SOAP policy π Section 2.1
ρ(a), τ (a) functions of moments of min{X, a} (4.5)
yπ
x , zπ

x new job and old job age cutoffs Definition 4.1
Tπ-k response time under π-k Section 2.1
Q π-1 waiting time under π-1 (4.4)
Rπ-1 residence time under π-1 (4.4)
Sπ-1 inflated residence time under π-1 (4.6)

Additionally, Tπ-k
x is size-conditional response time for size x, and similarly for Q π-1

x , Rπ-1
x , and Sπ-1

x .

roof of Theorem 3.2. Theorem 5.1 implies

E[TM-SERPT-k
]

E[QM-SERPT-1]
≤ 1 +

kE[RM-SERPT-1
] + (k − 1)E[SM-SERPT-1

]

E[QM-SERPT-1]
.

Theorems 7.5, 7.9 and 7.10 imply that the second term vanishes in the ρ → 1 limit. Scully et al. [9, Lemma 5.6] show15

E[QM-SERPT-1
] ≤ 2E[QM-Gittins-1

],

which combines with (4.7) to imply the desired result. □

To prove Theorem 3.3, we simply combine the results in Table 4.2.

roof of Theorem 3.3. We examine each case in turn.

• For X ∈ OR(−2, −1), we use Theorems 7.4 and 7.11.
• For X ∈ OR(−∞, −2) ∪ MDA(Λ), we use Theorems 7.9–7.11.
• For X ∈ ENBUE, we have rM-SERPT(a) = Θ(1) by Definition 2.10, so we use Theorems 7.5 and 7.11. □

. M/G/k Response time bound

This section bounds M/G/k mean response time under any monotonic SOAP policy π . The notation used in Theorem 5.1
elow is summarized in Table 5.1.

heorem 5.1. For any monotonic SOAP policy π ,

E[Tπ-k
x ] ≤

1
ρ(yπ

x )

(
τ (zπ

x )
ρ(zπ

x )
+ kx + (k − 1)zπ

x

)
, (5.1)

nd therefore

E[Tπ-k
] ≤ E[Q π-1

] + kE[Rπ-1
] + (k − 1)E[Sπ-1

].

Proof. In order to bound M/G/k mean response time, we use a tagged job method in the style of Grosof et al. [6], but we
generalize it to allow an arbitrary monotonic SOAP policy π . We consider an arbitrary ‘‘tagged’’ job J of size x arriving to
a steady-state system. Our goal is to analyze the distribution of J ’s response time.

The first step is a shift in perspective: instead of thinking about time passing, we reason in terms of work completed.
Since each of the k servers works at rate 1/k, the system can complete work at rate 1. While J is in the system, servers
sometimes complete work and are sometimes left idle. This means J ’s response time is the sum of

• the amount of work completed while J is in the system and
• the amount of work ‘‘wasted’’, meaning service capacity left idle, while J is in the system.

We bound J ’s response time by bounding the total amount of work above. We do so by dividing it into several pieces:

• Tagged work: the work of J itself.
• Virtual work: work on jobs prioritized behind J , plus wasted work due to servers left idle.
• Relevant work: work on jobs prioritized ahead of J . We divide this into two subcategories:

– Old relevant work: relevant work on old jobs, namely those present when J arrives.

15 While Scully et al. [9, Lemma 5.6] mention Gittins instead of M-Gittins, they prove the desired statement for M-Gittins as an intermediate
step of their proof.
12
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– New relevant work: relevant work on new jobs, namely those that arrive after J .

For the first two categories, we have the same simple bound as Grosof et al. [6]: tagged work and virtual work add up to
at most kx. This is because tagged work is J ’s size x, and the scheduling policy ensures that a server only completes virtual
work while J is in service at another server. However, bounding the two relevant work categories is more complicated
than in Grosof et al. [6].

We begin by asking: what rank must a job have to contribute to relevant work? Note that the job J will never have
rank greater than its rank upon completion, rπ (x), since π is a monotonic policy. As a result, all new relevant work is
from jobs with rank strictly less than rπ (x), and all old relevant work is from jobs with rank less than or equal to rπ (x).
We can put this in terms of the age cutoffs defined in Definition 4.1:

• jobs contribute new relevant work up to at most age yπ
x , and

• jobs contribute old relevant work up to at most age zπ
x .

In the rest of this proof, yx and zx refer to yπ
x and zπ

x , respectively.
To help us bound the amount of old relevant work completed while J is in the system, we define a new concept: the

amount of relevant work in the M/G/k system under π .

Definition 5.2. Let RelWorkπ-k
x (t) denote the amount of work in the M/G/k at time t which is relevant to a job J of size x:

RelWorkπ-k
x (t) =

∑
jobs J ′

(
min{zx, xJ ′} − aJ ′ (t)

)+
,

where xJ ′ is the size of job J ′ and aJ ′ (t) is its age at time t . We write RelWorkπ-k
x for the steady state distribution of the

amount of relevant work in the M/G/k system.

Since J is a Poisson arrival, RelWorkπ-k
x is the distribution of the amount of relevant work in the system when J arrives.

That amount is an upper bound on the amount of old relevant work that will be completed while J is in the system.
To bound new relevant work, note that if a job J ′ of size x′ arrives while J is in the system, then J ′ contributes at most

min{x′, yx} new relevant work. As a result, new relevant work can be upper bounded by considering a transformed M/G/1
system in which the job size distribution is

Xyx =st min{X, yx}.

he amount of new relevant work that arrives to our real system is upper bounded by the total amount of work that
rrives to the transformed system. Let Byx (w) be the length of a busy period in the transformed M/G/1 system started by

an initial amount of work w. If w is the total amount of tagged, virtual, and old relevant work, then the amount of new
relevant work is at most Byx (w) − w.

Combining our bounds, we obtain

Tπ-k
x ≤st Byx

(
kx + RelWorkπ-k

x

)
.

Applying Lemma 5.3, stated and proven later in this section, yields

Tπ-k
x ≤st Byx

(
kx + RelWorkπ-1

x + (k − 1)zx
)
. (5.2)

aking expectations gives us

E[Tπ-k
x ] ≤

E[RelWorkπ-1
x ] + kx + (k − 1)zx

ρ(yx)
.

Because π-1 is work conserving with respect to relevant work, the Pollaczek-Khinchine formula tells us

E[RelWorkπ-1
x ] =

τ (zx)
ρ(zx)

,

hich completes the proof of (5.1).
To connect (5.1) to the quantities E[Q π

], E[Rπ
], and E[Sπ

], we rewrite (5.2) as

Tπ-k
x ≤st Byx (RelWorkπ-1

x ) +

k∑
1

Byx (x) +

k−1∑
1

Byx (zx), (5.3)

here all of the relevant busy periods are independent. Prior work on SOAP policies [9,14] gives names to some of the
istributions on the right-hand side.16

16 We define waiting, residence, and inflated residence times in terms of relevant busy periods. Waiting and residence times also have natural
definitions as components of M/G/1 response time [9,14], but we do not need them in this paper.
13
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• The size-conditional waiting time for size x is the random variable Q π-1
x =st Byx (RelWorkπ-1

x ), and waiting time is
Q π-1

=st Q π-1
X .

• The size-conditional residence time for size x is the random variable Rπ-1
x =st Byx (x), and residence time is Rπ-1

=st Rπ-1
X .

• As there is no concise name for Byx (zx) in prior work, we define size-conditional inflated residence time for size x to
be the random variable Sπ-1

x =st Byx (zx), and we define inflated residence time to be Sπ-1
=st Sπ-1

X .

ith these definitions in place, (5.3) gives us

Tπ-k
x ≤st Q π-1

x +

k∑
1

Rπ-1
x +

k−1∑
1

Sπ-1
x ,

o the result follows by taking the expectation of Tπ-k
=st Tπ-k

X . □

Theorem 5.1 applies only to monotonic SOAP policies. It is tempting to try to apply the same technique to SOAP policies
ith nonmonotonic rank functions, but as we discuss in Appendix A, the argument does not readily generalize.
The proof of Theorem 5.1 assumes a bound on RelWorkπ-k

x . We prove the bound in the following lemma, which
eneralizes a similar lemma of Grosof et al. [6, Lemma 7.10].

emma 5.3. Let

∆x(t) = RelWorkπ-k
x (t) − RelWorkπ-1

x (t).

hen ∆x(t) ≤ (k − 1)zπ
x for all times t, and therefore

RelWorkπ-k
x ≤st RelWorkπ-1

x + (k − 1)zπ
x .

Proof. Throughout this proof, zx refers to zπ
x . We consider a pair of coupled systems with the same arrival sequence:

• System 1, an M/G/1 using π-1; and
• System k, an M/G/k using π-k.

ur approach is to bound the difference in relevant work between Systems 1 and k at any time t .
Call a job relevant if it has age less than zx. These are the only jobs that contribute relevant work. To bound ∆x(t), we

ivide times t into two types of intervals:

• few-jobs intervals, during which there are fewer than k relevant jobs in System k; and
• many-jobs intervals, during which there are at least k relevant jobs in System k.

ote that both types of intervals are defined based on System k alone, so System 1 may or may not have relevant jobs
uring either type of interval.
Any time t is in either a few-jobs interval or a many-jobs interval. If t is in a few-jobs interval, the argument is simple:

here are at most k − 1 relevant jobs in System k at time t , so

∆x(t) ≤ RelWorkπ-k
x (t) ≤ (k − 1)zx.

uppose instead that t is in a many-jobs interval. Let s ≤ t be the start of the many-jobs interval containing t . We will
how

∆x(t) ≤ ∆x(s) ≤ (k − 1)zx.

We begin by showing ∆x(t) ≤ ∆x(s). Note that arrivals do not affect ∆x, because the two systems experience the same
rrivals and have the same definition of relevant work. Next, note that service to irrelevant jobs does not affect ∆x, because
rrelevant jobs never become relevant under π , since π is a monotonic policy. In fact, the only way that ∆x changes over a
any-jobs period is due to service to relevant jobs. System k serves relevant jobs on all k servers throughout a many-jobs
eriod, completing relevant work at rate 1. System 1 may or may not serve relevant jobs during a many-jobs period, so
t completes relevant work at rate at most 1. This means ∆x(t) ≤ ∆x(s), as desired.

All that remains is to show that ∆x(s) ≤ (k−1)zx. Recall that s is the start of a many-jobs interval. Many-jobs intervals
annot start due to irrelevant jobs becoming relevant, because π is a monotonic policy. This means each many-jobs interval
tarts due to a relevant job arriving while System k has k − 1 relevant jobs. Relevant jobs arriving do not change ∆x, as
iscussed above. This means ∆x(s) = ∆x(s−), where s− is the instant before the arrival that starts the many-jobs interval.
ut s− is in a few-jobs interval, so

∆x(s) = ∆x(s−) ≤ (k − 1)zx. □
14
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Fig. 6.1. Relationship between SERPT and M-SERPT rank functions.

6. Rank function bounds

We now have a bound on M/G/k mean response time under monotonic SOAP policies π , including M-Gittins and
M-SERPT. The bound (Theorem 5.1) is expressed in terms of E[Q π-1

], E[Rπ-1
], and E[Sπ-1

], quantities which in turn are
xpressed in terms of the new job and old job age cutoffs yπ

x and zπ
x . In order to prove optimality of M-Gittins in the

eavy-traffic M/G/k, we need to understand the heavy-traffic behavior of E[Q π-1
], E[Rπ-1

], and E[Sπ-1
], which, as we will

ee in Section 7, boils down to understanding the behavior of yπ
x and zπ

x in the x → ∞ limit. This section is thus devoted
o asymptotically bounding the new job and old job age cutoffs, and more generally the rank functions, of M-Gittins and
-SERPT.
Recall from Definition 2.2 that SERPT’s rank function is used to define M-SERPT’s. The following lemma shows that the

wo rank functions are equal at the new job and old job age cutoffs, and similarly for Gittins and M-Gittins. Figure 6.1
ives an intuitive picture of the result.

emma 6.1. The SERPT and M-SERPT rank functions are related by

rSERPT(yM-SERPT
x ) = rM-SERPT(yM-SERPT

x ) = rM-SERPT(x) = rM-SERPT(zM-SERPT
x ) = rSERPT(zM-SERPT

x ),

nd analogously for Gittins and M-Gittins.

roof. We prove the statement for SERPT and M-SERPT, as the proof for Gittins and M-Gittins is analogous. Throughout
his proof, yx and zx refer to yM-SERPT

x and zM-SERPT
x , respectively. The illustration in Fig. 6.1 may provide helpful intuition

or the following argument.
We first show the outer equalities. Definition 4.1 implies that rM-SERPT is increasing in the intervals (yx − δ, yx) and

zx, zx + δ) for some δ > 0. By Definition 2.2, for rM-SERPT to be increasing at age a, we must have rM-SERPT(a) = rSERPT(a),
o continuity of rM-SERPT (Lemma 2.6) implies the outer equalities.
By (4.3) and the monotonicity of rM-SERPT, it remains only to show rM-SERPT(yx) = rM-SERPT(zx). This is immediate if

x = zx, and if yx < zx, then rM-SERPT is constant over the interval [yx, zx), so the result follows by the continuity of rM-SERPT

Lemma 2.6). □

.1. Bounds on the M-SERPT rank function

In this section we show two bounds on yM-SERPT
x and zM-SERPT

x , each subject to a different assumption on the job size
istribution.

heorem 6.2. If X ∈ OR(−∞, −1), then

rSERPT(a) = Θ(a),

rM-SERPT(a) = Θ(a),

yM-SERPT
x = Θ(x),

zM-SERPT
x = Θ(x).

roof. By Definition 2.7, there exists α > 1 such that

rSERPT(a) =

∫
∞

a

F (t)

F (a)
dt ≤ O(1)

∫
∞

a

(
t
a

)−α

dt = O(a),

and rSERPT(a) = Ω(a) follows similarly. This implies

rM-SERPT(a) = max rSERPT(b) = max Θ(b) = Θ(a),

b∈[0,a] b∈[0,a]

15
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so the result follows from Lemma 6.1. □

Theorem 6.3. If X ∈ QDHR ∪ QIMRL with exponent γ , then

yM-SERPT
x = Ω(x1/γ ),

zM-SERPT
x = O(xγ ).

roof. The QDHR case follows from Theorem 6.5 (Section 6.2) and a result of Scully et al. [9, Eq. (3.8)] stating

yM-Gittins
x ≤ yM-SERPT

x ≤ zM-SERPT
x ≤ zM-Gittins

x ,

so only the QIMRL case remains.
In the rest of this proof, yx and zx refer to yM-SERPT

x and zM-SERPT
x , respectively. By (4.3), it suffices to show zx = O(yxγ ).

ecause X ∈ QIMRL with exponent γ , there exists strictly increasing function m : R+ → R+ such that for all ages a,

a ≤ m−1(rSERPT(a)) ≤ O(aγ ).

The result follows by plugging in a = yx and a = zx and applying Lemma 6.1. □

6.2. Bounds on the M-Gittins rank function

In this section we show two bounds on yM-Gittins
x and zM-Gittins

x , each subject to a different assumption on the job size
distribution.

Theorem 6.4. If X ∈ OR(−∞, −1), then

yM-Gittins
x = Θ(x),

zM-Gittins
x = Θ(x).

Theorem 6.5. If X ∈ QDHR with exponent γ , then

yM-Gittins
x = Ω(x1/γ ),

zM-Gittins
x = O(xγ ).

These bounds are harder to prove than their M-SERPT counterparts from Section 6.1. The most important component
s the following definition, which helps us better understand the M-Gittins rank function and relate it to the simpler
-SERPT rank function.

efinition 6.6. The time per completion over an age interval (a, b] is17

η(a, b) =
E[min{X, b} − a | X > a]

P{X < b | X > a}
=

∫ b
a F (t) dt

F (a) − F (b)
.

We extend this definition to the b → a and b → ∞ limits:

η(a, a) =
1

h(a)
,

η(a, ∞) = E[X − a | X > a].

We can write the rank functions of SERPT, M-SERPT, Gittins, and M-Gittins in terms of η as

rSERPT(a) = η(a, ∞),

rM-SERPT(a) = max
b∈[0,a]

η(b, ∞),

rGittins(a) = min
b∈[a,∞]

η(a, b),

rM-Gittins(a) = max
b∈[0,a]

min
c∈[b,∞]

η(b, c).

(6.1)

Armed with Definition 6.6 and (6.1), we are ready to prove Theorems 6.4 and 6.5. The former proof relies on some
technical lemmas that we defer to Section 6.3.

17 Our time per completion function is the reciprocal of what Aalto et al. [2,3] call the efficiency function.
16



Z. Scully, I. Grosof and M. Harchol-Balter Performance Evaluation 145 (2021) 102150

a
r

p

B

t

I

Proof of Theorem 6.4. Throughout this proof, yx and zx refer to yM-Gittins
x and zM-Gittins

x , respectively. By (4.3), it suffices to
show there exist C0, x0 > 0 such that for all x ≥ x0,

zx ≤ C0yx.

We will set C0 ≥ 2, which covers the zx ≤ 2yx case. The rest of the proof is thus devoted to the zx > 2yx case. Our
approach is to show there exist C1, C2 such that for all x ≥ x0,

C1yx ≥ rGittins(yx) ≥ C2zx. (6.2)

We begin with the upper bound on rGittins(yx). By Lemma 6.1, we have rGittins(yx) = rM-Gittins(yx) for all sizes x,
nd by (6.1), we have rM-Gittins(a) ≤ rM-SERPT(a) for all ages a. Combining these observations with Theorem 6.2 implies
Gittins(yx) = O(yx) and thereby implies the desired upper bound from (6.2).18
We now turn to the lower bound on rGittins(yx). This requires Lemmas 6.7 and 6.8, which are facts about η that we

rove in Section 6.3. Combining Lemma 6.7 with (6.1) and the fact that we are in the zx > 2yx case gives us

rGittins(yx) = η(yx, zx) ≥ η

( zx
2

, zx
)
.

y Lemma 6.8, there exist C2, x2 such that for all x with zx/2 > x2,

η

( zx
2

, zx
)

≥ C2zx,

implying the desired lower bound from (6.2). □

Proof of Theorem 6.5. Throughout this proof, yx and zx refer to yM-Gittins
x and zM-Gittins

x , respectively. By (4.3), it suffices
o show zx = O(yxγ ). Because X ∈ QDHR with exponent γ , there exists a strictly increasing function m : R+ → R+ such
that for all sizes x,

m(x) ≤
1

h(x)
≤ m(O(xγ )).

We have rGittins(yx) ≤ 1/h(yx) by (6.1), and Lemma 6.1 implies rGittins(zx) = rGittins(yx), so

rGittins(zx) ≤ m(O(yxγ )).

t remains only to lower bound rGittins(zx). We do so using the observation that for any age a,

rGittins(a) = min
b∈[a,∞]

η(a, b)

=

(
max

b∈[a,∞]

∫ b
a F (t)h(t) dt∫ b

a F (t) dt

)−1

≥
(
sup
b>a

h(b)
)−1

= inf
b>a

1
h(b)

≥ m(a),

where the first inequality follows from viewing the ratio of integrals as a weighted average. Plugging in a = zx implies
m(zx) ≤ m(O(yxγ )), so the result follows because m is strictly increasing. □

6.3. Time per completion lemmas

Lemma 6.7. For all sizes x and ages a, if yx < a < zx, then

rGittins(yx) = η(yx, zx) ≥ η(a, zx).

Proof. A property of the Gittins index [4, Lemma 2.2] implies19

rGittins(yx) = η(yx, zx).

In particular, for any a ̸= zx,

η(yx, a) ≥ η(yx, zx). (6.3)

18 This would be more subtle if limx→∞ yx were finite, but Theorem 6.2 and a result of Aalto et al. [3, Proposition 9] imply limx→∞ yx = ∞.
19 The proof given by Gittins et al. [4] is in a discrete setting, but essentially the same proof carries over to our continuous setting.
17
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A basic property of the η function [9, Eq. (D.3)] is that for any d < e < f ,

η(d, e) ≥ η(d, f ) ⇔ η(d, f ) ≥ η(e, f ).

Plugging in d = yx, e = a, and f = zx and applying (6.3) yields η(yx, zx) ≥ η(a, zx), as desired. □

emma 6.8. If X ∈ OR(−∞, −1), then there exist constants C0, x0 > 0 such that for all b > a > x0,

η(a, b) ≥ C0a
(
1 −

a
b

)
.

Proof. We can write η(a, b) as

η(a, b) =

∫ b
a F (t)/F (a) dt

1 − F (b)/F (a)
≥

∫ b

a

F (t)

F (a)
dt.

Because X ∈ OR(−∞, −1), there exist β > 1 and C1, x1 > 0 such that for all t > a > x1,

F (t)

F (a)
≥ C1

(
t
a

)−β

.

For all b > a > x1, we have

η(a, b) ≥ C1

∫ b

a

(
t
a

)−β

dt =
C1a

β − 1

(
1 −

(b
a

)−(β−1))
.

We now consider two cases: β ≥ 2 or 1 < β < 2. If β ≥ 2, then (b/a)−(β−1)
≤ a/b and therefore

η(a, b) ≥
C1a

β − 1

(
1 −

a
b

)
, (6.4)

o setting C0 = C1/(β − 1) and x0 = x1 suffices. If 1 < β < 2, we use the fact that for all u > 0,

uβ−1
≤ 1 + (β − 1)(u − 1).

Substituting u = a/b and combining this with (6.4) yields

η(a, b) ≥ C1a
(
1 −

a
b

)
,

so setting C0 = C1 and x0 = x1 suffices. □

7. Heavy-traffic scaling of M/G/1 waiting and residence times

In this section we characterize the heavy-traffic scaling of mean waiting, residence, and inflated residence times, which
are the M/G/1 quantities that appear Theorem 5.1. Because M-SERPT is a simpler policy than M-Gittins, our approach
is to first study M-SERPT’s heavy-traffic scaling (Sections 7.2 and 7.3) then show that the results extend to M-Gittins
(Section 7.4).

7.1. Key parts of waiting and residence time

Before starting the heavy-traffic analyses of M-Gittins and M-SERPT, we introduce some new notation. Let

Hρ(x) =
F (x)
ρ(x)

.

Definition 7.1. The key M/G/1 response time quantities, or simply ‘‘key quantities’’, of a monotonic SOAP policy π are the
following:

IπQ =

∫
∞

0

(
Hρ(yπ

x ) + Hρ(zπ
x )
)λτ (zπ

x )F (x)
ρ(x)2

dx,

IIπQ =

∫
∞

0
λxHρ(yπ

x )
2
·

F (x)

F (yπ
x )

dx,

IIπR =

∫
∞

0
λzπ

x Hρ(yπ
x )Hρ(zπ

x ) ·
F (x)

F (yπ
x )

dx,

IIIπR =

∫
∞

Hρ(yπ
x ) ·

F (x)
π

dx,

0 F (yx )

18
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IIπS = IIπR ,

IIIπS =

∫
∞

0
Hρ(yπ

x ) dx.

When the policy in question is clear, we drop the superscript π .

In Theorems B.1–B.3 (Appendix B) we show that for any monotonic SOAP policy π ,

E[Q π
] = IπQ + IIπQ ,

E[Rπ
] = IIπR + IIIπR ,

E[Sπ
] = IIπS + IIIπS .

ounding mean waiting, residence, and inflated residence times thus amounts to bounding the key quantities.
For the most of the rest of this section we focus on the case where π is M-SERPT, deferring the M-Gittins case to

ection 7.4. Until then, yx, zx, and the key quantities are understood to have an implicit superscript M-SERPT.
The most important step of bounding the key quantities is bounding Hρ(yx) and Hρ(zx). As a first step, we bound Hρ(x).

et

Fe(x) =
1

E[X]

∫
∞

x
F (t) dt (7.1)

e the tail of the excess of X . We can write ρ(x) as

ρ(x) = (1 − ρ) + ρFe(x). (7.2)

his means that for all ϵ ∈ [0, 1], we have

Hρ(x) ≤
F (x)

max{1 − ρ, ρFe(x)}
≤

F (x)

(1 − ρ)ϵ(ρFe(x))1−ϵ
=

F (x)ϵH1(x)1−ϵ

(1 − ρ)ϵρ1−ϵ
, (7.3)

here H1(x) = F (x)/Fe(x) = limρ→1 Hρ(x). This bound is useful because it separates Hρ(x)’s dependence on x and ρ:
he numerator depends only on x, and the denominator depends only on ρ. We will typically choose ϵ to be either 0 or
rbitrarily small.
Having bounded Hρ(x) in (7.3), we now turn to bounding Hρ(yx) and Hρ(zx). Recalling the definition of rSERPT

Definition 2.1),

H1(x) =
F (x)

Fe(x)
=

E[X]

rSERPT(x)
,

so Lemma 6.1 and the monotonicity of rM-SERPT imply

H1(yx) = H1(zx) =
E[X]

rM-SERPT(x)
= O(1). (7.4)

ombining this with (7.3) yields bounds on Hρ(yx) and Hρ(zx), though the bounds still have F (yx) and F (zx) terms. To
better understand Hρ(yx) and Hρ(zx), we need to use our results from Section 6 in arguments that depend on what class
of distributions contains X . We do this over the course of Sections 7.2 and 7.3.

7.2. Infinite-variance job size distributions

In this section we study the heavy-traffic scaling of M-SERPT’s waiting, residence, and inflated residence times for
infinite-variance job size distributions, specifically those in OR(−2, −1). With that said, many of the intermediate results
we prove will also be useful for the finite-variance OR(−∞, −2) case (Section 7.3).

Suppose that X ∈ OR(−∞, −1). Combining Theorem 6.2 and (7.4) gives us

yx, zx = Θ(x),

H1(yx),H1(zx) = Θ

(1
x

)
.

(7.5)

his alone is enough to bound all of the key quantities except IQ .

emma 7.2. Under M-SERPT, if X ∈ OR(−∞, −1), then

IIQ , IIR, IIIR, IIS, IIIS = O
(
log

1
1 − ρ

)
.

19
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Proof. Our approach is to use the fact that, by (4.5),∫
∞

0
Hρ(x) dx =

∫
∞

0

F (x)
ρ(x)

dx =
E[X]

ρ
log

1
1 − ρ

. (7.6)

ecause IIR = IIS and IIIR ≤ IIIS , it suffices to show that the integrands of IIQ , IIS , and IIIS are all O(Hρ(x)).
We begin by showing that IIIS ’s integrand is O(Hρ(x)). By (7.5) and the fact that X ∈ OR(−∞, −1), we have

F (yx) = F (Θ(x)) = Θ(F (x)),

which yields

Hρ(yx) =
F (yx)
ρ(yx)

≤
F (yx)
ρ(x)

=
O(F (x))
ρ(x)

= O(Hρ(x)). (7.7)

his implies the desired bound for IIIS and IIIR.
We show IIS ’s integrand is O(Hρ(x)) by applying (7.3) with ϵ = 0, (7.5), and (7.7):

λzxHρ(yx)Hρ(zx) ≤ λzxHρ(yx)H1(zx) = O(Hρ(x)).

This implies the desired bound for IIS and IIR. Similarly,

λxHρ(yx)2 ·
F (x)

F (yx)
≤ λxHρ(yx)H1(yx) = O(Hρ(x)),

implying the bound for IIQ . □

It remains only to characterize the heavy-traffic scaling of IQ . Treating the OR(−∞, −2) case requires some additional
care, so we defer it to Section 7.3, focusing on the OR(−2, −1) case for now. The first step is to bound τ (x).

emma 7.3. If X ∈ OR(−2, −1), then

τ (x) = Θ(x2F (x)).

Proof. By Definition 2.7, there exists β ∈ (1, 2) such that

τ (x)

F (x)
=

∫ x

0

λtF (t)

F (x)
dt ≤ O(1)

∫ x

0
t
(
t
x

)−β

dt = O(x2),

and similarly for the lower bound. □

We now have bounds on every term in IQ ’s integrand, allowing us to bound IQ and thereby mean response time.

Theorem 7.4. If X ∈ OR(−2, −1), then in the ρ → 1 limit,

E[QM-SERPT-1
] = O

(
log

1
1 − ρ

)
,

E[RM-SERPT-1
] = O

(
log

1
1 − ρ

)
,

and therefore

E[TM-SERPT-1
] = O

(
log

1
1 − ρ

)
.

Proof. By Lemma 7.2, it suffices to upper bound IQ . We compute(
Hρ(yx) + Hρ(zx)

)λτ (zx)F (x)
ρ(x)2

≤
(
H1(yx) + H1(zx)

)λτ (zx)H1(x)
ρ(x)

[by (7.3)]

=
(
H1(yx) + H1(zx)

)O(zx2F (zx)) · H1(x)
ρ(x)

[by Lemma 7.3]

=
O(F (x))
ρ(x)

[by (7.5)]

= O(Hρ(x)),

so (7.6) implies the desired bound. □
20
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7.3. Finite-variance job size distributions

We now turn to finite-variance job size distributions, specifically those in OR(−∞, −2), MDA(Λ), and ENBUE. We
egin with the simplest case, which is ENBUE.

heorem 7.5. If X ∈ ENBUE, then in the ρ → 1 limit,

E[QM-SERPT-1
] = Θ

(
1

1 − ρ

)
,

E[RM-SERPT-1
] = Θ(1),

nd therefore

E[TM-SERPT-1
] = Θ

(
1

1 − ρ

)
.

f additionally X ∈ Bounded, then in the ρ → 1 limit,

E[SM-SERPT-1
] = Θ(1).

roof. Let xmax be the supremum of X ’s support, so we may have xmax = ∞. Because X ∈ ENBUE, there exists age
∗ < xmax such that

• rM-SERPT(a) < rM-SERPT(a∗) for all a < a∗, and
• rM-SERPT(a) = rM-SERPT(a∗) for all a ≥ a∗.

his means

• yx ≤ a∗ for all sizes x,
• zx ≤ a∗ for all sizes x ≤ a∗, and
• zx = xmax for all sizes x > a∗.

ecause

ρ(a∗) < ρ(xmax) = 1 − ρ,

applying (4.4) yields

E[QM-SERPT-1
] = Θ(1) +

∫
∞

a∗

τ (xmax)
ρ(a∗) · (1 − ρ)

dF (x) = Θ

(
1

1 − ρ

)
,

E[RM-SERPT-1
] = Θ(1) +

∫
∞

a∗

x
ρ(a∗)

dF (x) = Θ(1).

If additionally X ∈ Bounded, then xmax < ∞, so

E[SM-SERPT-1
] = Θ(1) +

∫
∞

a∗

xmax

ρ(a∗)
dF (x) = Θ(1). □

We now turn to the OR(−∞, −2) and MDA(Λ) cases, which require the following technical lemma.

Lemma 7.6. Let

Lπ (u) =
1

rπ
(
F−1
e (1/u)

) ,
here π is SERPT or M-SERPT. If X ∈ OR(−∞, −2), then

LSERPT, LM-SERPT
∈ OR(−1, 0),

nd if X ∈ MDA(Λ), then

LSERPT, LM-SERPT
∈ OR(−ϵ, ϵ) for all ϵ > 0.

roof. Because LM-SERPT is the nonincreasing envelope of LSERPT, it suffices to prove the result for LSERPT. The OR(−∞, −2)
ase follows from closure properties of Matuszewska indices [8, Lemmas 4.5 and 4.6]. The MDA(Λ) case follows from a
esult of Kamphorst and Zwart [8, Section 4.2.2] which states that if X ∈ MDA(Λ), then LSERPT is slowly varying, a property
mplying LSERPT ∈ OR(−ϵ, ϵ) for all ϵ > 0 [20]. □
21
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One implication of Lemma 7.6 is that if X ∈ MDA(Λ), then

H1(x) = O(F (x)−ϵ) for all ϵ > 0. (7.8)

We are now ready to tackle the OR(−∞, −2) and MDA(Λ) cases. As in Section 7.2, we begin by bounding the five key
uantities other than IQ . Lemma 7.2 does so for OR(−∞, −2), and the following lemma does so for MDA(Λ).

emma 7.7. Under M-SERPT, if X ∈ MDA(Λ), then

IIQ , IIR, IIIR, IIS = O
(

1
(1 − ρ)ϵ

)
for all ϵ > 0.

If additionally X ∈ MDA(Λ) ∩ (QDHR ∪ QIMRL), then

IIIS = O
(

1
(1 − ρ)ϵ

)
for all ϵ > 0.

Proof. Our overall approach is to use (7.3) on each key quantity to bound it by an expression of the form (1 − ρ)−ϵ
·∫

∞

0 Φ(ϵ, x) dx, where Φ(ϵ, x) does not depend on ρ. The challenge is then to show that the integral converges for arbitrarily
small ϵ > 0.

We begin with two bounds on Hρ(yx) · F (x)/F (yx), a term which appears in the integrands of several key quantities. By
4.3),

Hρ(yx) ·
F (x)

F (yx)
≤ Hρ(yx), (7.9)

Hρ(yx) ·
F (x)

F (yx)
=

F (x)
ρ(yx)

≤
F (x)
ρ(x)

= Hρ(x). (7.10)

Combining (7.10) with (7.6) implies the desired bound for IIIR.
We now bound IIQ . To do so, we apply (7.3) twice, choosing ϵ = 0 for Hρ(yx) and arbitrarily small ϵ > 0 for Hρ(x):

IIQ ≤

∫
∞

0
λxHρ(yx)Hρ(x) dx [by (7.10)]

≤
1

(1 − ρ)ϵ

∫
∞

0
λxF (x)ϵH1(yx)H1(x)1−ϵ dx [by (7.3)]

≤
O(1)

(1 − ρ)ϵ

∫
∞

0
xF (x)ϵF (x)−ϵ(1−ϵ) dx [by (7.4), (7.8)]

≤
O(1)

(1 − ρ)ϵ

∫
∞

0
x1−αϵ2 dx, [by Lemma 2.13]

where we may choose α > 0 arbitrarily large. Choosing α > 2/ϵ2 makes the integral converge, so IIQ = O((1−ρ)−ϵ). The
computation for IIS is similar:

IIS ≤
1

(1 − ρ)ϵ

∫
∞

0
λzxF (zx)ϵH1(yx)H1(zx)1−ϵ dx [by (7.3), (7.9)]

≤
O(1)

(1 − ρ)ϵ

∫
∞

0
zx1−αϵ dx. [by (7.4), Lemma 2.13]

ecause zx ≥ x, the integral converges if we choose α > 2/ϵ, so IIS = O((1 − ρ)−ϵ). This also covers IIR because IIR = IIS .
If additionally X ∈ MDA(Λ) ∩ (QDHR ∪ QIMRL) with exponent γ , then we can similarly bound IIIS :

IIIS ≤
1

(1 − ρ)ϵ

∫
∞

0
F (yx)ϵH1(yx)1−ϵ dx [by (7.3)]

≤
O(1)

(1 − ρ)ϵ

∫
∞

0
yx−αϵ dx [by (7.4), Lemma 2.13]

≤
O(1)

(1 − ρ)ϵ

∫
∞

0
x−αϵ/γ dx, [by Theorem 6.3]

so choosing α > γ /ϵ shows that IIIS = O((1 − ρ)−ϵ). □

It remains only to characterize the heavy-traffic scaling of IQ .
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Lemma 7.8. Under M-SERPT, if X ∈ OR(−∞, −2) ∪ MDA(Λ), then

IQ =

(
1

(1 − ρ) · rM-SERPT
(
F−1
e (1 − ρ)

)).

Proof. Because E[X2
] < ∞, we have τ (x) = Θ(1), so by (7.3) and (7.4),

IQ =

∫
∞

0

Θ(1)
rM-SERPT(x)

·
F (x)
ρ(x)2

dx.

For the lower bound, we integrate up to F−1
e (1 − ρ) instead of ∞. For x ≤ F−1

e (1 − ρ), we have Fe(x) ≥ 1 − ρ, so (7.2)
mplies

ρFe(x) ≤ ρ(x) ≤ (1 + ρ)Fe(x).

Using this fact along with the monotonicity of rM-SERPT yields

IQ ≥
Ω(1)

rM-SERPT
(
F−1
e (1 − ρ)

) ∫ F−1
e (1−ρ)

0

F (x)

Fe(x)2
dx

=
Ω(1)

rM-SERPT
(
F−1
e (1 − ρ)

)( 1

Fe
(
F−1
e (1 − ρ)

) − 1

)
[by (7.1)]

= Ω

(
1

(1 − ρ) · rM-SERPT
(
F−1
e (1 − ρ)

)).

For the upper bound, we split the integration region at F−1
e (1 − ρ):

IQ =

∫ F−1
e (1−ρ)

0

O(1)
rM-SERPT(x)

·
F (x)
ρ(x)2

dx +

∫
∞

F−1
e (1−ρ)

O(1)
rM-SERPT(x)

·
F (x)
ρ(x)2

dx. (7.11)

he second integral in (7.11) is simple to bound using the monotonicity of rM-SERPT:∫
∞

F−1
e (1−ρ)

O(1)
rM-SERPT(x)

·
F (x)
ρ(x)2

dx

≤
O(1)

rM-SERPT
(
F−1
e (1 − ρ)

) ∫ ∞

F−1
e (1−ρ)

F (x)
ρ(x)2

dx

≤
O(1)

rM-SERPT
(
F−1
e (1 − ρ)

)( 1
1 − ρ

−
1

1 − ρ + ρF−1
e (1 − ρ)

)
[by (4.5), (7.2)]

= O

(
1

(1 − ρ) · rM-SERPT
(
F−1
e (1 − ρ)

)).

To bound the first integral in (7.11), we change variables to u = 1/Fe(x):∫ F−1
e (1−ρ)

0

O(1)
rM-SERPT(x)

·
F (x)
ρ(x)2

dx ≤

∫ F−1
e (1−ρ)

0

O(1)
rM-SERPT(x)

·
F (x)

Fe(x)2
dx [by (7.2)]

=

∫ 1/(1−ρ)

1

O(1)

rM-SERPT
(
F−1
e (1/u)

) du
= O(1)

∫ 1/(1−ρ)

1
LM-SERPT(u) du,

here LM-SERPT is as in Lemma 7.6. By Lemma 7.6, we have LM-SERPT
∈ OR(−1, ∞), so a result in Karamata theory [20,

heorem 2.6.1] implies∫ v

1
LM-SERPT(u) du = O(vLM-SERPT(v))

n the v → ∞ limit. Letting v = 1/(1 − ρ) yields the desired bound. □

Having characterized the heavy-traffic scaling of all the key quantities, the main heavy-traffic results for OR(−∞, −2)
nd MDA(Λ) follow easily.
23



Z. Scully, I. Grosof and M. Harchol-Balter Performance Evaluation 145 (2021) 102150

a

w

B
L

T

Theorem 7.9. If X ∈ OR(−∞, −2), then in the ρ → 1 limit,

E[QM-SERPT-1
] = Θ

(
1

(1 − ρ) · rM-SERPT
(
F−1
e (1 − ρ)

))

= Ω

(
1

(1 − ρ)δ

)
for some δ > 0,

E[RM-SERPT-1
] ≤ E[SM-SERPT-1

]

= Θ

(
log

1
1 − ρ

)
,

nd therefore

E[TM-SERPT-1
] = Θ

(
1

(1 − ρ) · rM-SERPT
(
F−1
e (1 − ρ)

)).

Proof. After applying Lemmas 7.2 and 7.8, it remains only to show IQ = Ω((1 − ρ)−δ). Using LM-SERPT from Lemma 7.6,
e can rewrite Lemma 7.8 as

IQ = Θ

(
1

1 − ρ
LM-SERPT

(
1

1 − ρ

))
. (7.12)

y Lemma 7.6, we have L ∈ OR(−1, 0), which means there exists β ∈ (0, 1) such that L(u) = Ω(u−β ) in the u → ∞ limit.
etting δ = 1 − β and u = 1/(1 − ρ) yields the desired bound. □

heorem 7.10. If X ∈ MDA(Λ), then in the ρ → 1 limit,

E[QM-SERPT-1
] = Θ

(
1

(1 − ρ) · rM-SERPT
(
F−1
e (1 − ρ)

))

= Ω

(
1

(1 − ρ)1−ϵ

)
for all ϵ > 0,

E[RM-SERPT-1
] = O

(
1

(1 − ρ)ϵ

)
for all ϵ > 0,

and therefore

E[TM-SERPT-1
] = Θ

(
1

(1 − ρ) · rM-SERPT
(
F−1
e (1 − ρ)

)).

If additionally X ∈ MDA(Λ) ∩ (QDHR ∪ QIMRL), then

E[SM-SERPT-1
] = O

(
1

(1 − ρ)ϵ

)
for all ϵ > 0.

Proof. After applying Lemmas 7.7 and 7.8, it remains only to show IQ = Ω((1 − ρ)−(1−ϵ)). This follows from (7.12) and
Lemma 7.6, similarly to the proof of Theorem 7.9. □

7.4. Extending heavy-traffic analysis from M-SERPT to Gittins and M-Gittins

Having characterized heavy-traffic scaling under M-SERPT, we now do the same for Gittins and M-Gittins. Our first
result shows that the mean waiting and residence times of Gittins and M-Gittins have the same heavy-traffic scaling as
that of M-SERPT. Note that the precondition holds for all of the job size distributions we consider in Section 7.3.20

Theorem 7.11. In the ρ → 1 limit,

E[RGittins-1
], E[RM-Gittins-1

] = O(E[RM-SERPT-1
]),

and if E[RM-SERPT-1
] = O(E[QM-SERPT-1

]), then

E[Q Gittins-1
], E[QM-Gittins-1

] = Θ(E[QM-SERPT-1
]).

20 With some extra effort, one can show it also holds for X ∈ OR(−2, −1).
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Proof. The residence time result follows immediately from results of Scully et al. [9, Eq. (3.8) and Proposition 4.8], which
mply

E[RGittins-1
] ≤ E[RM-Gittins-1

] ≤ E[RM-SERPT-1
].

For waiting time, we first invoke further results of Scully et al. [9, Proposition 4.7 and Lemma 5.6], which imply

E[Q Gittins-1
] ≥ E[QM-Gittins-1

] ≥
E[QM-SERPT-1

]

2
.

It thus suffices to show E[Q Gittins-1
] = O(E[QM-SERPT-1

]). Because Gittins minimizes mean response time [2–4], we have

E[Q Gittins-1
] ≤ E[TGittins-1

] ≤ E[TM-SERPT-1
] = E[QM-SERPT-1

] + E[RM-SERPT-1
],

so the result follows from the E[RM-SERPT-1
] = O(E[QM-SERPT-1

]) precondition. □

Our final heavy-traffic result shows that for certain job size distributions, under M-Gittins, mean waiting time
dominates mean inflated residence time. The conditions are the same as those shown for M-SERPT over the course of
Section 7.3, except QDHR ∪ QIMRL is replaced by QDHR.

Theorem 7.12. If

X ∈ OR(−∞, −2) ∪ (MDA(Λ) ∩ QDHR) ∪ Bounded,

then in the ρ → 1 limit,

E[SM-Gittins-1
] = o(E[QM-Gittins-1

]).

More specifically, E[SM-Gittins-1
] obeys the same scaling bounds as shown for E[SM-SERPT-1

] in Theorems 7.5, 7.9 and 7.10.

Proof. The proof is very similar to the proofs of analogous results for M-SERPT (Theorems 7.5, 7.9 and 7.10), so we just
describe the differences.

• If X ∈ OR(−∞, −2), we follow the same proof as Theorem 7.9 and the lemmas it requires, except we use Theorem 6.4
to bound yM-Gittins

x and zM-Gittins
x .

• If X ∈ MDA(Λ) ∩ QDHR, we follow the same proof as Theorem 7.10 and the lemmas it requires, except we use
Theorem 6.5 to bound yM-Gittins

x and zM-Gittins
x .

• If X ∈ Bounded, we follow the same proof as Theorem 7.5, except we use a result of Aalto et al. [3, Proposition 9]
to justify the existence of the critical age a∗. □

8. Conclusion

We study optimal scheduling in the M/G/k to minimize mean response time. This problem is solved by the Gittins policy
for the single-server k = 1 case but was previously open for the much more difficult multiserver case. We introduce a
new variant of Gittins called M-Gittins (Definition 2.4) and show that it minimizes mean response time in the heavy-
traffic M/G/k for a large class of finite-variance job size distributions (Theorem 3.1). We also show that the simple and
practical M-SERPT policy is a 2-approximation for mean response time in the heavy-traffic M/G/k under similar conditions
(Theorem 3.2). As a byproduct of our M/G/k study, we obtain results characterizing the heavy-traffic scaling of M/G/1 mean
response time under Gittins, M-Gittins, and M-SERPT (Theorem 3.3).

A natural question to ask is whether the conditions under which we prove M-Gittins’s optimality can be relaxed,
particularly the QDHR and Bounded assumptions. The difficulty lies in the fact that for some job size distributions, the
bound in Theorem 5.1 is not strong enough because inflated residence time is infinite. It is possible that the techniques
used by Köllerström [10,11] to analyze the heavy-traffic M/G/k under FCFS could be helpful, seeing as FCFS has infinite
inflated residence time.

Another major open question is analyzing the performance of M-Gittins outside of the heavy-traffic limit. In the single-
server case, one can generalize the techniques of Scully et al. [9] to show that M-Gittins is a 3-approximation for M/G/1
mean response time at all loads. However, the multiserver case remains open.
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Fig. A.1. Age cutoffs for nonmonotonic rank functions.

Appendix A. Difficulty of M/G/k analysis for nonmonotonic rank functions

In this appendix we explain why Theorem 5.1 does not readily generalize to SOAP policies with nonmonotonic rank
unctions.

Recall that the proof of Theorem 5.1 considers a tagged job J of size x and considers several categories of work
completed while J is in the system. Our focus here is on relevant work, which is work on jobs that are prioritized ahead
of J . Let sπ-k

x be the maximum age at which a new job, namely one that arrives after J , can contribute relevant work under
π-k. When π is monotonic, sπ-k

x does not depend on the number of servers k. Specifically, we have sπ-k
x = yπ

x . The problem
for nonmonotonic SOAP policies π is that, as we show below, we can have sπ-k

x > sπ-1
x when k ≥ 2.

The following discussion uses definitions of yπ
x and zπ

x generalized to all SOAP policies π .

• If π is monotonic, then yπ
x and zπ

x are given by Definition 4.1.
• If π is nonmonotonic, we can define yπ

x and zπ
x in terms of a monotonic SOAP policy related to π [9]. Specifically,

letting M-π be the monotonic SOAP policy with rank function

rM-π (a) = max
b∈[0,a]

rπ (b),

we define yπ
x = yM-π

x and zπ
x = zM-π

x .

Consider the example SOAP policy π and tagged job size x shown in Fig. A.1. In the single-server k = 1 case, we have
π-1
x = yπ

x . To see why, consider the moment a new job J ′ reaches age yπ
x while the tagged job J is still in the system. For

his to occur, it must be that J is also at age yπ
x , because otherwise J would have priority over J ′. With both J and J ′ at the

same rank, the FCFS tiebreaker prioritizes J . Thereafter, J never has rank worse than rπ (yπ
x ), so J ′ remains stuck at age yπ

x
nd is never prioritized over J .
We now reconsider the same example from Fig. A.1 but with k ≥ 2 servers. The key difference is that because there

are multiple servers, J ′ can receive service even while J has better rank because J and J ′ can occupy different servers
simultaneously. This means J ′ no longer gets stuck at age yπ

x . In particular, if J reaches age c and J ′ passes age b, then J ′
contributes relevant work between ages b and c . Therefore, sπ-k

x = c > sπ-1
x for k ≥ 2.

The bound in Theorem 5.1 follows from assuming that every new job J ′ will contribute relevant work until it completes
or reaches age sπ-k

x . This is a worst-case estimate, because the tagged job J might complete before J ′ completes or reaches
age sπ-k

x . When π is monotonic, we have sπ-k
x = sπ-1

x , so this overestimate is tight enough to compare the mean response
times under π-k and π-1. However, when π is nonmonotonic, it may be that sπ-k

x > sπ-1
x , as explained above, so we do not

obtain a tight comparison between the π-k and π-1 systems. This suggests generalizing Theorem 5.1 to nonmonotonic
SOAP policies requires not relying as heavily on worst-case quantities like sπ-k

x .

Appendix B. New formulas for mean waiting and residence times

In this appendix we prove the following new formulas for mean waiting, residence, and inflated residence times.

Theorem B.1. Under any monotonic SOAP policy π ,

E[Q π-1
] =

∫
∞

0

((
F (yπ

x )
ρ(yπ

x )
+

F (zπ
x )

ρ(zπ
x )

)
λτ (zπ

x )F (x)
ρ(x)2

+
λxF (yπ

x )F (x)
ρ(yπ

x )
2

)
dx.

Theorem B.2. Under any monotonic SOAP policy π ,

E[Rπ-1
] =

∫
∞

0

(
λzπ

x F (x)F (z
π
x )

ρ(yπ
x )ρ(zπ

x )
+

F (x)
ρ(yπ

x )

)
dx.
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Theorem B.3. Under any monotonic SOAP policy π ,

E[Sπ-1
] =

∫
∞

0

(
λzπ

x F (x)F (z
π
x )

ρ(yπ
x )ρ(zπ

x )
+

F (yπ
x )

ρ(yπ
x )

)
dx.

Proving these results requires new technical machinery for, roughly speaking, performing integration by parts on
expressions involving yπ

x and zπ
x , such as those in (4.4). Appendix B.1 introduces the general technical machinery, which

Appendix B.2 then applies to prove the above results.
Throughout this appendix, ∂ denotes the derivative operator, and [t1, . . . , tn ↦→ RHS] denotes the function that maps

ariables t1, . . . , tn to expression RHS.

.1. Integration by parts with hills and valleys

efinition B.4. A hill-valley partition of R+ is a sequence

0 = u0 ≤ v0 < u1 < v1 < u2 < v2 < . . . .

ntervals of the form (ui, vi] are called valleys, and intervals of the form (vi, ui+1] are called hills.21

efinition B.5. Functions y, z : R+ → R+ are a hill-valley pair for a given hill-valley partition if for each valley (ui, vi],

y(x) = ui,z(x) = vi, for all x ∈ (ui, vi],

and for each hill (vi, ui+1],

y(x) = x,z(x) = x, for all x ∈ (vi, ui+1].

For compactness, we write yx = y(x) and zx = z(x).

It is simple to check that for any monotonic SOAP policy π , the pair yπ , zπ (Definition 4.1) is a hill-valley pair.

Definition B.6. For functions Φ : R+ → R+, we define the difference ratio operator ∆ as follows:

∆Φ(⟨u, v⟩) =

⎧⎨⎩
Φ(v) − Φ(u)

v − u
if u ̸= v

∂Φ(u) if u = v,

here ∂ is the derivative operator. Similarly, for functions with multiple arguments, ∆i is a version of ∆ that works on
he ith argument:

∆iΦ(. . . , ⟨u, v⟩, . . . ) = ∆[t ↦→ Φ(. . . , t, . . . )](⟨u, v⟩).

Like ∂ , it is easily seen that ∆ is a linear operator. When applied to polynomials, ∆ elegantly generalizes ∂ . For example,

∆

[
t ↦→

1
t

]
(⟨u, v⟩) =

1
uv

. (B.1)

The ∆ operator also obeys various chain-rule-like identities. We highlight the two we use below.

Lemma B.7. Let Φ, Ψ : R → R be differentiable. For all u, v ∈ R,

∆[t ↦→ Φ(Ψ (t))](⟨u, v⟩) = ∆Φ(⟨Ψ (u), Ψ (v)⟩)∆Ψ (⟨u, v⟩).

Proof. If u = v, this is the chain rule. If u ̸= v but Ψ (u) = Ψ (v), then both sides are 0. If Ψ (u) ̸= Ψ (v), then the result
follows by a simple computation. □

Lemma B.8. Let Φ : R2
→ R be differentiable. For all u, v ∈ R,

∆[t ↦→ Φ(t, t)](⟨u, v⟩) = ∆2Φ(u, ⟨u, v⟩) + ∆1Φ(⟨u, v⟩, v).

Proof. If u = v, this is the multivariable chain rule. If u ̸= v,

(v − u)∆[t ↦→ Φ(t, t)](⟨u, v⟩) = Φ(v, v) − Φ(u, u)
= Φ(v, v) − Φ(u, v) + Φ(u, v) − Φ(u, u)
= (v − u)(∆1Φ(⟨u, v⟩, v) + ∆2Φ(u, ⟨u, v⟩)). □

21 We borrow the terms ‘‘hill’’ and ‘‘valley’’ from Scully et al. [9], who use a similar concept to analyze SOAP policies, but this definition is
abstracted away from the details of SOAP. As a corner case, we consider the first hill or valley to also include 0.
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The most important result of this appendix is the following lemma, which formulates a version of integration by parts
hat works for hill-valley pairs despite their discontinuity.

emma B.9. Let y, z be a hill-valley pair, Φ : R3
+

→ R be differentiable, P : R+ → R be differentiable, and P(x) = c − P(x)
for some c ∈ R. If

P(0)Φ(0, 0, z0) = 0,

lim
x→∞

P(x)Φ(yx, x, zx) = 0,

then ∫
∞

0
Φ(yx, x, zx) ∂P(x) dx =

∫
∞

0

(
P(yx)∆3Φ(yx, yx, ⟨yx, zx⟩) + P(x) ∂2Φ(yx, x, zx) + P(v)∆1Φ(⟨yx, zx⟩, zx, zx)

)
dx.

Proof. For each valley (u, v],∫ v

u
Φ(yx, x, zx) ∂P(x) dx

=

∫ v

u
P(x) ∂2Φ(u, x, v) dx + P(u)Φ(u, u, v) − P(v)Φ(u, v, v)

=

∫ v

u
P(x) ∂2Φ(u, x, v) dx + P(u)Φ(u, u, u) − P(v)Φ(v, v, v)

+ (v − u)P(u)∆3Φ(u, u, ⟨u, v⟩) + (v − u)P(v)∆1Φ(⟨u, v⟩, v, v)

=

∫ v

u

(
P(u)∆3Φ(u, u, ⟨u, v⟩) + P(x) ∂2Φ(u, x, v) + P(v)∆1Φ(⟨u, v⟩, v, v)

)
dx

+ P(u)Φ(u, u, u) − P(v)Φ(v, v, v)

=

∫ v

u

(
P(yx)∆3Φ(yx, yx, ⟨yx, zx⟩) + P(x) ∂2Φ(yx, x, zx) + P(v)∆1Φ(⟨yx, zx⟩, zx, zx)

)
dx

+ P(u)Φ(u, u, u) − P(v)Φ(v, v, v).

For each hill (v, u],∫ u

v

Φ(yx, x, zx) ∂P(x) dx

=

∫ u

v

P(x) ∂[t → Φ(t, t, t)](x) dx + P(v)Φ(v, v, v) − P(u)Φ(u, u, u)

=

∫ u

v

(
P(x) ∂3Φ(x, x, x) + P(x) ∂2Φ(x, x, x) + P(x) ∂1Φ(x, x, x)

)
dx

+ P(v)Φ(v, v, v) − P(u)Φ(u, u, u)

=

∫ u

v

(
P(yx)∆3Φ(yx, yx, ⟨yx, zx⟩) + P(x) ∂2Φ(yx, x, zx) + P(v)∆1Φ(⟨yx, zx⟩, zx, zx)

)
dx

+ P(v)Φ(v, v, v) − P(u)Φ(u, u, u).

Summing the hill and valley expressions over all hills and valleys, most of the non-integral terms cancel out, and the two
that remain are 0 by assumption:∫

∞

0
Φ(yx, x, zx) ∂P(x) dx

=

∫
∞

0

(
P(yx)∆3Φ(yx, yx, ⟨yx, zx⟩) + P(x) ∂2Φ(yx, x, zx) + P(v)∆1Φ(⟨yx, zx⟩, zx, zx)

)
dx

+ P(0)Φ(0, 0, z0) − lim
x→∞

P(x)Φ(yx, x, zx). □

Our final two lemmas show that integrals using ∆ can sometimes be turned into integrals using ∂ .

emma B.10. Let y, z be a hill-valley pair and Φ : R3
+

→ R+ be differentiable with respect to its second argument. Then∫
∞

0
∆2Φ(yx, ⟨yx, zx⟩, zx) dx =

∫
∞

0
∂2Φ(yx, x, zx) dx.
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B

t

P

Proof. For each valley (u, v],∫ v

u
∆2Φ(yx, ⟨yx, zx⟩, zx) dx =

∫ v

u
∆2Φ(u, ⟨u, v⟩, v) dx

= (v − u)∆2Φ(u, ⟨u, v⟩, v)
= Φ(u, v, v) − Φ(u, u, v)

=

∫ v

u
∂2Φ(u, x, v) dx

=

∫ v

u
∂2Φ(yx, x, zx) dx.

For each hill (v, u],∫ u

v

∆2Φ(yx, ⟨yx, zx⟩, zx) dx =

∫ u

v

∆2Φ(x, ⟨x, x⟩, x) dx

=

∫ u

v

∂2Φ(x, x, x) dx

=

∫ u

v

∂2Φ(yx, x, zx) dx.

Summing the hill and valley expressions over all hills and valleys yields the desired result. □

Lemma B.11. Let y, z be a hill-valley pair and both Φ : R3
+

→ R and Ψ : R+ → R be differentiable. Then∫
∞

0
∆[t ↦→ Φ(yx, Ψ (t), zx)](⟨yx, zx⟩) dx =

∫
∞

0
∆2Φ(yx, ⟨Ψ (yx), Ψ (zx)⟩, zx) ∂Ψ (x) dx.

Proof. We compute∫
∞

0
∆[t ↦→ Φ(yx, Ψ (t), zx)](⟨yx, zx⟩) dx

=

∫
∞

0
∆2Φ(yx, ⟨Ψ (yx), Ψ (zx)⟩, zx)∆Ψ (⟨yx, zx⟩) dx [by Lemma B.7]

=

∫
∞

0
∆2

[
u, t, v ↦→ ∆2Φ(u, ⟨Ψ (u), Ψ (v)⟩, v) · Ψ (t)

]
(yx, ⟨yx, zx⟩, zx) dx

=

∫
∞

0
∆2Φ(yx, ⟨Ψ (yx), Ψ (zx)⟩, zx) ∂Ψ (x) dx. [by Lemma B.10] □

.2. Proofs of new formulas

We now apply the theory developed in Appendix B.1 to prove Theorems B.1–B.3. Throughout the proofs, yx and zx refer
o yπ

x and zπ
x , respectively. Recall that y, z form a hill-valley pair (Definition B.5) under any monotonic SOAP policy π .

roof of Theorem B.1. We compute

E[Q π-1
] =

∫
∞

0

τ (zx)
ρ(yx)ρ(zx)

dF (x) [by (4.4)]

=

∫
∞

0

(
F (yx)
ρ(yx)

∆

[
t ↦→

τ (t)
ρ(t)

]
(⟨yx, zx⟩) +

F (zx)τ (zx)
ρ(zx)

∆

[
t ↦→

1
ρ(t)

]
(⟨yx, zx⟩)

)
dx [by Lemma B.9]

=

∫
∞

0

(
F (yx)
ρ(yx)2

+
F (yx)τ (zx)

ρ(yx)
∆

[
t ↦→

1
ρ(t)

]
(⟨yx, zx⟩)

+
F (zx)τ (zx)

ρ(zx)
∆

[
t ↦→

1
ρ(t)

]
(⟨yx, zx⟩)

)
dx [by Lemma B.8]

=

∫
∞

0

(
F (yx)

ρ(yx)ρ(yx)
∂τ (x) + τ (zx)

(
F (yx)
ρ(yx)

+
F (zx)
ρ(zx)

)
∂

[
t ↦→

1
ρ(t)

]
(x)

)
dx, [by Lemma B.10]

which equals the desired result by (4.5). □
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Proof of Theorem B.2. We compute

E[Rπ-1
] =

∫
∞

0

x
ρ(yx)

dF (x) [by (4.4)]

=

∫
∞

0

(
zxF (zx)∆

[
t ↦→

1
ρ(t)

]
(⟨yx, zx⟩) +

F (x)
ρ(yx)

)
dx [by Lemma B.9]

=

∫
∞

0

(
−zxF (zx)
ρ(yx)ρ(zx)

∂ρ(x) +
F (x)
ρ(yx)

)
dx, [by (B.1), Lemma B.11]

which equals the desired result by (4.5). □

Proof of Theorem B.3. Very similarly to the proof of Theorem B.2, we compute

E[Sπ-1
] =

∫
∞

0

zx
ρ(yx)

dF (x) [by (4.6)]

=

∫
∞

0

(
zxF (zx)∆

[
t ↦→

1
ρ(t)

]
(⟨yx, zx⟩) +

F (yx)
ρ(yx)

)
dx [by Lemma B.9]

=

∫
∞

0

(
−zxF (zx)
ρ(yx)ρ(zx)

∂ρ(x) +
F (yx)
ρ(yx)

)
dx, [by (B.1), Lemma B.11]

which equals the desired result by (4.5). □
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