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Abstract

In this paper we consider server farms with a setup cost. This model is common in manufacturing
systems and data centers, where there is a cost to turn servers on. Setup costs always take the
form of a time delay, and sometimes there is additionally a power penalty, as in the case of data
centers. Any server can be either on, off, or in setup mode. While prior work has analyzed single
servers with setup costs, no analytical results are known for multi-server systems. In this paper,
we derive the first closed-form solutions and approximations for the mean response time and
mean power consumption in server farms with setup costs. We also analyze variants of server
farms with setup, such as server farm models with staggered boot up of servers, where at most
one server can be in setup mode at a time, or server farms with an infinite number of servers.
For some variants, we find that the distribution of response time can be decomposed into the
sum of response time for a server farm without setup and the setup time. Finally, we apply our
analysis to data centers, where both response time and power consumption are key metrics. Here
we analyze policy design questions such as whether it pays to turn servers off when they are idle,
whether staggered boot up helps, how to optimally mix policies, and other questions related to
the optimal data center size.

Keywords: setup times, power management, data centers, M/M/k, staggered boot up

1. Introduction

Motivation
Server farms are ubiquitous in manufacturing systems, call centers and service centers. In man-
ufacturing systems, machines are usually turned off when they have no work to do, in order to
save on operating costs. Likewise, in call centers and service centers, employees can be dis-
missed when there are not enough customers to serve. However, there is usually a setup cost
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iadan@win.tue.nl (Ivo Adan)



/ Performance Evaluation 00 (2013) 1–22 2

Poisson
   t   λ( )

1

k

2

3

4

5

central queue

ON

ON

SETUP

SETUP

OFF

OFF

Figure 1: Illustration of our server farm model.

involved in turning on a machine, or in bringing back an employee. This setup cost is typically
in the form of a time delay. Thus, an important question in manufacturing systems, call cen-
ters and service centers, is whether it pays to turn machines/employees “off ”, when there is not
enough work to do.
Server farms are also prevalent in data centers. In data centers, servers consume peak power
when they are servicing a job, but still consume about 60% [1] of that peak power, when they are
idle. Idle servers can be turned off to save power. Again, however, there is a setup cost involved
in turning a server back on. This setup cost is in the form of a time delay and a power penalty,
since the server consumes peak power during the entire duration of the setup time. An open
question in data centers is whether it pays (from a delay perspective and a power perspective) to
turn servers off when they are idle.
Model
Abstractly, we can model a server farm with setup costs using the M/M/k queueing system, with
a Poisson arrival process with rate λ, and exponentially distributed job sizes, denoted by random
variable S ∼ Exp(µ). Let ρ = λ

µ
denote the system load, where 0 ≤ ρ < k. Thus, for stability,

we require λ < kµ. In this model, a server can be in one of four states: on, idle, off, or in setup.
A server is in the on state when it is serving jobs. When the server is on, it consumes power
Pon. If there are no jobs to serve, the server can either remain idle, or be turned off, where there
is no time delay to turn a server off. If a server remains idle, it consumes non-zero power Pidle,
which is assumed to be less than Pon. If the server is turned off, it consumes zero power. So
0 = Po f f < Pidle < Pon.
To turn on an off server, the server must first be put in setup mode. While in setup, a server
cannot serve jobs. The time it takes for a server in setup mode to turn on is called the setup time,
and during that entire time, power Pon is consumed. We model the setup time as an exponentially
distributed random variable, I, with rate α = 1

E[I] .
We model our server farm using an M/M/k with a single central First Come First Served (FCFS)
queue, from which servers pick jobs when they become free. Fig. 1 illustrates our server farm
model. Every server is either on, idle, off, or in setup mode.
We consider the following three operating policies:

1. ON/IDLE: Under this policy, servers are never turned off. Servers all start in the idle
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mode, and remain in the idle mode when there are no jobs to serve. All servers are either
on or idle. We model this policy by using the M/M/k queueing system. The response time
analysis is well known, and the analysis of power consumption is straightforward, since it
only requires knowing the expected number of servers which are on as opposed to idle.

2. ON/OFF: Under this policy, servers are immediately turned off when not in use. How-
ever, there is a setup cost (in terms of delay and power) for turning on an off server. At any
point in time there are i ≤ k on servers, and j ≥ i jobs in the system, where k is the total
number of servers in the system. The number of servers in setup is then min{ j − i, k − i}.
The above facts follow from the property that any server not in use is immediately switched
off. In more detail, there are three types of jobs: those who are currently running at an on
server (we call these “running” jobs), those that are currently waiting for a server to setup
(we call these “setting up” jobs), and those jobs in the queue who couldn’t find a server
to setup (we call these “waiting” jobs). An arriving job will always try to turn on an off
server, if there is one available, by putting it into setup mode. Later arrivals may not be
able to turn on a server, since all servers might already be on or in setup mode, and hence
will become “waiting” jobs. Let B be denote the first (to arrive) of the “setting up” jobs, if
there is one, and let C be the first of the “waiting” jobs, if there is one. When a “running”
job, A, completes service, its server, sA, is transferred to B, if B exists, or else to C, if C
exists, or else is turned off if neither B nor C exists. If sA was transferred to B, then B’s
server, sB, is now handed over to job C, if it exists, otherwise sB is turned off. This will
become clearer when we consider the Markov chain model for the ON/OFF policy.

3. ON/OFF/S T AG: This model is known as the “staggered boot up” model in data centers,
or “staggered spin up” in disk farms [2, 3]. The ON/OFF/S T AG policy is the same as
the ON/OFF policy, except that in the ON/OFF/S T AG policy, at most 1 server can be
in setup at any point of time. Thus, if there are i on servers, and j jobs in the system,
then under the ON/OFF/S T AG policy, there will be min{1, k − i} servers in setup, where
k is the total number of servers in the system.The ON/OFF/S T AG is believed to avoid
excessive power consumption.

Of the above policies, the ON/OFF policy is the most difficult to analyze. In order to analyze
this policy, it will be useful to first analyze the limiting behavior of the system as the number of
servers goes to infinity. We will analyze two models with infinite servers:

4. ON/OFF(∞): This model can be viewed as the ON/OFF policy model with an infinite
number of servers. Thus, in this model, we can have an infinite number of servers in setup.

5. ON/OFF(∞)/kS T AG: The ON/OFF(∞)/kS T AG is the same as the ON/OFF(∞), ex-
cept that in the ON/OFF(∞)/kS T AG, at most k servers can be in setup at any point of
time.

The infinite server models are also useful for modeling large data centers, where the number of
servers is usually in the thousands [4, 5]. Throughout this paper, we will use the notation Tpolicy

(respectively, Ppolicy) to denote the response time (respectively, power consumption), where the
placeholder “policy” will be replaced by one of the above policies, e.g., ON/OFF.
Prior work
Prior work on server farms with setup costs has focussed largely on single servers. There is very
little work on multi-server systems with setup costs. In particular, no closed-form solutions are
known for the ON/OFF and the ON/OFF(∞). For the ON/OFF/S T AG, Gandhi and Harchol-
Balter have obtained closed-form solutions for the mean response time [6], but no results are
known for the distribution of response time.



/ Performance Evaluation 00 (2013) 1–22 4

Results
For the ON/OFF/S T AG, we provide the first analysis of the distribution of response time. In
particular, we prove that the distribution of response time can be decomposed into the sum of
response time for the ON/IDLE and the setup time (see Section 4). For the ON/OFF(∞),
we provide closed-form solutions for the limiting probabilities, and also observe an interesting
decomposition property on the number of jobs in the system. These can then be used to derive
the mean response time and mean power consumption in the ON/OFF(∞) (see Section 5). For
the ON/OFF, we come up with closed-form approximations for the mean response time which
work well under all ranges of load and setup times, except the regime where both the load and
the setup time are high. Understanding the ON/OFF in the regime where both the load and
the setup time are high is less important, since in this regime, as we will show, it pays to leave
servers on (ON/IDLE policy). Both of our approximations for the ON/OFF are based on the
truncation of systems where we have an infinite number of servers (see Section 6). Finally, we
analyze the limiting behavior of server farms with setup costs as the number of jobs in the system
becomes very high. One would think that all k servers should be on in this case. Surprisingly,
our derivations show that the limit of the expected number of on servers converges to a quantity
that can be much less than k. This type of limiting analysis leads to yet another approximation
for the mean response time for the ON/OFF (see Section 7).
Impact/Application
Using our analysis of server farms with setup costs, we answer many interesting policy design
questions that arise in data centers. Each question is answered both with respect to mean response
time and mean power consumption. These include, for example, “Under what conditions is it
beneficial to turn servers off, to save power? (ON/IDLE vs. ON/OFF)”; “Does it pay to limit
the number of servers that can be in setup? (ON/OFF vs. ON/OFF/S T AG)”; “Can one create a
superior strategy by mixing two strategies with a threshold for switching between them?”; “How
are results affected by the number of servers, load, and setup time?” (see Section 8).

2. Prior work

Prior work on server farms with setup costs has focussed largely on single servers. There is very
little work on multi-server systems with setup costs.
Single server with setup costs: For a single server, Welch [7] considered the M/G/1 queue
with general setup times, and showed that the mean response time can be decomposed into
the sum of mean response time for the M/G/1 and the mean of the residual setup time. In
[8], Takagi considers a multi-class M/G/1 queue with setup times and a variety of queueing
disciplines including FCFS and LCFS, and derives the Laplace-Stieltjes transforms of the waiting
times for each class. Other related work on a single server with setup costs includes [9, 10, 11,
12].
Server farms with setup costs: For the case of multiple servers with setup times, Artalejo et
al. [13] consider the ON/OFF/S T AG queueing system with exponential service times. They
solve the steady state equations for the associated Markov chain, using a combination of differ-
ence equations and Matrix analytic methods. The resulting solutions are not closed-form, but
can be solved numerically. In [14], the authors consider an inventory control problem, that in-
volves analyzing a Markov chain similar to the ON/OFF/S T AG. Again, the authors provide
recursive formulations for various performance measures, which are then numerically solved for
various examples. Finally, Gandhi and Harchol-Balter recently analyze the ON/OFF/S T AG
queueing system [6] and derive closed-form results for the mean response time and mean power
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consumption. However, [6] does not analyze the distribution of the response times for the
ON/OFF/S T AG, as we do in this paper. Importantly, to the best of our knowledge, there is
no prior work on analyzing the ON/OFF(∞) or the ON/OFF. We provide the first analysis of
these systems, deriving closed-form solutions and approximations for their mean response time
and mean power consumption.

3. ON/IDLE

In the ON/IDLE model (see Section 1), servers become idle when they have no jobs to serve.
Thus, the mean response time, E

[
TON/IDLE

]
, and the mean power consumption, E

[
PON/IDLE

]
, are

given by:

E
[
TON/IDLE

]
=

π0 · ρk

k! ·
(
1 − ρk

)2 · kµ
+

1
µ
, where π0 =

 k−1∑
i=0

ρi

i!
+

ρk

k! ·
(
1 − ρk

) 
−1

(1)

E
[
PON/IDLE

]
= ρ · Pon + (k − ρ) · Pidle (2)

In Eq. (2), observe that ρ is the expected number of on servers, and (k−ρ) is the expected number
of idle servers.

4. ON/OFF/ST AG

In data centers, it is common to turn idle servers off to save power. When a server is turned
on again, it incurs a setup cost, both in terms of a time delay and a power penalty. If there is a
sudden burst of arrivals into the system, then many servers might be turned on simultaneously,
resulting in a huge power draw, since servers in setup consume peak power. To avoid excessive
power draw, data center operators sometime limit the number of servers that can be in setup at
any point of time. This is referred to as “staggered boot up”. The idea behind staggered boot up
is also employed in disk farms, where at most one disk is allowed to spin up at any point of time,
to avoid excessive power draw. This is referred to as “staggered spin up” [2, 3]. While staggered
boot up may help reduce power, its effect on the distribution of response time is not obvious.
We can represent the staggered boot up policy using the ON/OFF/S T AG Markov chain, as
shown in Fig. 2, with states (i, j), where i represents the number of servers on, and j represents
the number of jobs in the system. Note that when j > i and i < k, we have exactly one of the (k−i)
servers in setup. However, when i = k, there are no servers in setup. In [6], Gandhi and Harchol-
Balter obtained the limiting probabilities, πi, j, of the ON/OFF/S T AG Markov chain using the
method of difference equations (see [15] for more information on difference equations), provided
for reference in Lemma 1 below.
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Lemma 1. [6] The limiting probabilities, πi, j, for the ON/OFF/S T AG are given by:

πi, j =
π0,0 · ρi

i!

(
λ

λ + α

) j−i

if 0 ≤ i < k and j ≥ i (3)

πk, j =
π0,0 · ρk

k!

((
λ

λ + α

) j−k

+
λ + α

kµ − (λ + α)

[(
λ

λ + α

) j−k

−
(
ρ

k

) j−k
])

if j ≥ k (4)

where π0,0 =

(
1 − λ

λ + α

)
·
 k∑

i=0

ρi

i!
+
ρk

k!
λ

kµ − λ


−1

(5)

Below, we show that the limiting probabilities from Lemma 1 can be used to derive the distri-
bution of the response time for the ON/OFF/S T AG, and simultaneously we prove a beautiful
decomposition result: The response time for the ON/OFF/S T AG can be decomposed into the
sum of two independent random variables, one being the response time for the ON/IDLE sys-
tem, and the other the exponential setup time, I. This decomposition result is counter-intuitive
since not all jobs will experience the setup time.

Theorem 1. For the ON/OFF/S T AG, with exponentially distributed setup time I ∼ Exp(α),
we have:

TON/OFF/S T AG
d
= I + TON/IDLE (6)

where TON/IDLE is the random variable representing the response time for the ON/IDLE system,
and is independent of the setup time, I.

Proof: In order to derive the distribution of response times for the ON/OFF/S T AG, we’ll first
derive the z-transform of the number of jobs in queue1, N̂Q(z). Then, we’ll use this to obtain
T̃Q(s), the Laplace-Stieltjes transform for the time in queue of the ON/OFF/S T AG.
Using Lemma 1, the limiting probabilities for the number of jobs in queue for the ON/OFF/S T AG
can be expressed as:

Pr[NQ = i] = π0,i + π1,1+i + π2,2+i + . . . + πk,k+i

= π0,0

 k∑
j=0

ρ j

j!

 βi +
π0,0ρ

k(λ + α)
k!(kµ − λ − α)

(
βi −

(
ρ

k

)i
)

where β = λ
λ+α

N̂Q(z) =

∞∑
i=0

Pr[NQ = i] · zi =

∞∑
i=0

π0,0

 k∑
j=0

ρ j

j!

 βizi +

∞∑
i=0

π0,0ρ
k(λ + α)

k!(kµ − λ − α)

(
βi −

(
ρ

k

)i
)

zi

=

π0,0

 k∑
j=0

ρ j

j!


1 − βz +

π0,0ρ
k(λ + α)λz

k!(kµ − λz)(λ + α − λz)

At this point, we have derived the z-transform of the number of jobs in the queue, which we
will now convert to the Laplace-Stieljes transform of the waiting time in queue. By PASTA,

1Note that the queue is the waiting room for the jobs. Thus, jobs receiving service are not part of the queue.
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Figure 2: Markov chain for the ON/OFF/S T AG.

an arrival sees the steady state number in the queue, which is the same, in distribution, as the
number of jobs seen by a departure in the queue (a departure from the queue refers to a job
going into service). However, the jobs left behind by a departure are exactly the ones that arrived
during the job’s time spent in the queue. Thus we have N̂Q(z) = T̃Q(λ(1 − z)), or equivalently,
T̃Q(s) = N̂Q(1 − s

λ
). This gives us:

T̃Q(s) =
π0,0(λ + α)

s + α


k∑

j=0

ρ j

j!
+
ρk(λ − s)

k!(kµ − λ + s)

 = π0,0(λ + α)
s + α

{
ρk

k!

(
λ − s

kµ − λ + s
− λ

kµ − λ

)
+

α

(λ + α)π0,0

}
After a few steps of algebra, the above equation simplifies to:

T̃Q(s) =

(
α

s + α

) {
(1 − PQ) + PQ

kµ − λ
kµ − λ + s

}
= Ĩ · T̃QON/IDLE (s) (7)

where PQ is the probability of queueing in the ON/IDLE system. Thus:

TQON/OFF/S T AG

d
= I + TQON/IDLE

=⇒ TON/OFF/S T AG
d
= I + TON/IDLE
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Figure 3: Markov chain for the ON/OFF(∞).

Lemma 2. [6] The mean power consumption in the ON/OFF/S T AG is given by:

E
[
PON/OFF/S T AG

]
= Pon

ρ + λ

λ + α
− π0,0ρ

kλ

k! · α ·
(
1 − ρk

)  where π0,0 is given by Eq. (5)

5. ON/OFF(∞)

Many data centers today, including those of Google, Microsoft, Yahoo and Amazon, consist of
tens of thousands of servers [4, 5]. In such settings, we can model a server farm with setup costs
as the ON/OFF(∞) system, as shown in Fig. 3. For this model, we make an educated guess for
the limiting probabilities.

Theorem 2. For the ON/OFF(∞) Markov chain, as shown in Fig. 3, the limiting probabilities
are given by:

πi, j =
π0,0 · ρi

i!

j−i∏
l=1

λ

λ + lα
, i ≥ 0, j ≥ i, and π0,0 = e−ρ

 ∞∑
j=0

j∏
l=1

λ

λ + lα


−1

=
e−ρ

M
(
1, 1 + λ

α
, λ
α

) , (8)

where M(a, b, z) =
∞∑

n=0

(a)n

(b)n

zn

n!
is Kummer’s function [16], and (a)n = a(a + 1) · · · (a + n − 1), (a)0 = 1.

Proof: The correctness of Eq. (8) can be verified by direct substitution into the ON/OFF(∞)
Markov chain.
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The product-form solution in Eq. (8) implies that the number of jobs in service is independent
from the number in the queue, where the number in service is Poisson distributed with mean ρ
and the number in the queue is distributed as:

Pr[NQON/OFF(∞) = j] =
1

M(1, 1 + λ
α
, λ
α

)

j∏
l=1

λ

λ + lα
, with mean E

[
NQON/OFF(∞)

]
=

1
1 + α

λ

M(2, 2 + λ
α
, λ
α

)

M(1, 1 + λ
α
, λ
α

)
.

Thus, by Little’s law:

E
[
TON/OFF(∞)

]
=

1
µ
+

1
λ

E[NQON/OFF(∞) ], E
[
PON/OFF(∞)

]
= Pon

(
ρ + E[NQON/OFF(∞) ]

)
(9)

6. ON/OFF: Approximations based on the ON/OFF/(∞)

Under the ON/OFF model, we assume a fixed finite number of servers k, each of which can be
either on, off, or in setup. Fig. 4 shows the ON/OFF Markov chain, with states (i, j), where i
represents the number of servers on, and j represents the number of jobs in the system. Given
that j ≥ i and i ≤ k, we have exactly min{ j − i, k − i} servers in setup. Since the Markov chain
for the ON/OFF (shown in Fig. 4) looks similar to the Markov chain for the ON/OFF/S T AG
(shown in Fig. 2), one would expect that the difference equations method used to solve the
ON/OFF/S T AG should work for the ON/OFF too. While we can solve the difference equa-
tions for the ON/OFF, the resulting πi, j’s do not lead to simple closed-form expressions for
the mean response time or the mean power consumption. A more detailed explanation of why
the ON/OFF is not tractable in closed-form via difference equations is given in [6]. In this
section, we will try to approximate E

[
TON/OFF

]
and E

[
PON/OFF

]
by simple closed-form expres-

sions. While Matrix-analytic methods could, in theory, be used to solve the chain in Fig. 4,
having closed-form approximations is preferable for two reasons: (i) We often care about large
k, in which case the Matrix-analytic methods are very cumbersome and time consuming, and
(ii) Our closed-form expressions give us insights about the ON/OFF system (which would not
have been obtainable via Matrix analytic methods), that we exploit in Section 7 to derive further
properties of the ON/OFF.
A major goal in analyzing the ON/OFF is to define regimes (in terms of load and setup times)
for which it pays to turn servers off when they are idle. Consider the regime where both the load
is high and the setup time is high. In this regime, we clearly do not want to turn servers off when
they are idle, since it takes a long time to get a server back on, and new jobs are likely to arrive
very soon.2 We are most interested in understanding the behavior of the ON/OFF in regimes
where it is useful, namely, either the load is not too high, or the setup cost is not too high.
In Section 6.1, we first approximate the ON/OFF system using a ON/OFF(∞) system, where
we truncate the number of jobs to be less than k. We find that this approximation works surpris-
ingly well for low loads, but does not work well when the load is high. Then, in Section 6.2,

2For a single server, we can easily prove that if both the load is high and the setup time is high, then turning the
server off when idle only increases the mean power consumption (and trivially, increases the mean response time). For

the mean power consumption, we have E
[
PON/IDLE

]
= ρPon + (1 − ρ)Pidle and E

[
PON/OFF

]
= ρPon + (1 − ρ)

1
α

1
α +

1
λ

Pon.

Thus E
[
PON/OFF

] ≥ E
[
PON/IDLE

] ⇐⇒ α
λ ≤

Pon−Pidle
Pidle

, which is true when the setup time is high and the load (or λ) is
high.
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Figure 4: Markov chain for the ON/OFF.

we approximate the ON/OFF system using a truncated version of the ON/OFF(∞)/kS T AG
system, where we have an infinite number of servers, but at most k servers can be in setup simul-
taneously. We find that this approximation works very well in any regime where either the load
is not too high or the setup cost is not too high. Thus, this latter approximation gives us a good
estimate of the ON/OFF in all regimes where it can be useful. Our emphasis in this section is
on evaluating the accuracy of our approximations. We defer discussing the intuition behind the
results to Section 8, where we focus on applications of our research.

6.1. Truncated ON/OFF(∞)
Consider the Markov chains for the ON/OFF (shown in Fig. 4) and the ON/OFF(∞) (shown
in Fig. 3). The two Markov chains are exactly alike for j < k. Thus, we can approximate the
πi, j’s for the ON/OFF using the πi, j’s for the ON/OFF(∞) from Eq. (8), for j < k. Further,
when the load in the system is low, we expect the number of jobs in the system to be less than k,
with high probability. Thus, approximating the ON/OFF using the ON/OFF(∞), truncated to
j < k should yield a good approximation for mean response time and mean power consumption.
Under this assumption, we have the following limiting probabilities for the ON/OFF:

πi, j =
π0,0 · ρi

i!

j−i∏
l=1

λ

λ + lα
, for i ≥ 0, i ≤ j < k, where π0,0 =

 k−1∑
i=0

k−1∑
j=i

ρi

i!

j−i∏
l=1

λ

λ + lα


−1

(10)
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Using the above limiting probabilities, we can compute the approximations:

E
[
TON/OFF

] ≈ 1
λ

k−1∑
i=0

k−1∑
j=i

j · πi, j and E
[
PON/OFF

] ≈ Pon

k−1∑
i=0

k−1∑
j=i

j · πi, j.

Fig. 5 shows our results for E
[
TON/OFF

]
and E

[
PON/OFF

]
based on the approximation in Eq. (10).

We obtain the exact mean response time and mean power consumption of the ON/OFF system
(dashed line in Fig. 5) using Matrix Analytic methods. We set Pon = 240W, which was obtained
via experiments on an Intel Xeon E5320 server, running the CPU-bound LINPACK [17] work-
load. Our approximation seems to work very well, but only for ρ < k

2 . This is understandable
because, when ρ < k

2 , the number of jobs in the system is less than k with high probability,
meaning that πi, j, with j ≥ k are very small. Further, the accuracy of our approximation seems to
decrease as the setup time increases.
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Figure 5: Approximations for the ON/OFF based on the truncated ON/OFF(∞) Markov chain. Figs. (a) and (b) show
our results for mean response time in the cases of low setup time and high setup time respectively. Figs. (c) and (d)
show corresponding results for mean power consumption. We see that our approximations work well only for low loads.
Further, the accuracy of our approximation deteriorates as the setup time increases. Throughout, we set µ = 1 job/sec,
k = 30 and Pon = 240W.
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6.2. Truncated ON/OFF(∞)/kS T AG

Our previous approximation could not model the case where the number of jobs is high, and
hence performed poorly for high loads. To address high loads, we now consider a different
model, the ON/OFF(∞)/kS T AG. For the ON/OFF(∞)/kS T AG system, we have infinitely
many servers, but at most k can be in setup at any time. After we derive the limiting probabilities
for this model, we will then truncate the ON/OFF(∞)/kS T AG model to having no more than k
on servers. We will refer to this approximation as the truncated ON/OFF(∞)/kS T AG.
For the ON/OFF(∞)/kS T AG model, we now derive the limiting probabilities. Observe that α(l)
in Theorem 3 is a constant for l ≥ k.

Theorem 3. For the ON/OFF(∞)/kS T AG, the limiting probabilities for i ≥ 0, j ≥ i are given
by:

πi, j =
π0,0 · ρi

i!

j−i∏
l=1

λ

λ + α(l)
, where α(l) = min{kα, lα}, and π0,0 =

k∑
i=0

∑
j≥i

ρi

i!

j−i∏
l=1

λ

λ + α(l)
(11)

Proof: The correctness of Eq. (11) can be verified by direct substitution into the Markov chain.

For the ON/OFF system, we have a total of k servers. Therefore we now truncate our ON/OFF(∞)/kS T AG
Markov chain to (k + 1) rows. That is, we only consider states (i, j) with i ≤ k. Note that the
truncated ON/OFF(∞)/kS T AG is still not the same as the ON/OFF, because, for example, it
allows k servers to be in setup when there are (k − 1) servers on, whereas the ON/OFF system
allows at most one server to be in setup when (k − 1) servers are on. We now derive the limiting
probabilities for the truncated ON/OFF(∞)/kS T AG model.

Theorem 4. For the truncated ON/OFF(∞)/kS T AG, the limiting probabilities are given by:

πi, j =



π0,0·ρi

i!
∏ j−i

l=1
λ

λ+α(l) if 0 ≤ i < k and j ≥ i(
ρ
k

) j−k+1
πk−1,k−1 +

j−1∑
r=k+1

j−k∑
l= j+1−r

(
ρ

k

)l
πk−1,r

(r − k + 1)α
λ

+

j−k∑
l=1

(
ρ

k

)l
πk−1, j−1 if i = k and k ≤ j ≤ 2k

πk,2k

(
ρ
k

) j−2k
+
πk−1,2k−1λ

kµ−(kα+λ)

[(
λ
λ+kα

) j−2k −
(
ρ
k

) j−2k
]

if i = k and j > 2k

(12)

Proof: The limiting probabilities, πi, j, for 0 ≤ i < k and j ≥ i, and also for the case of i = k,
j = k, are identical to the limiting probabilities of the ON/OFF(∞)/kS T AG model (up to a
normalization constant) and are therefore obtained from Eq. (11).
The limiting probabilities, πi, j, for i = k and k < j ≤ 2k, follow immediately from the balance
principle applied to the set {(k, j), (k, j + 1), . . .}, yielding:

πk, jkµ = πk, j−1λ +

∞∑
l= j

πk−1,lα(l − k + 1) for j = k + 1, k + 2, . . . , 2k

=⇒ πk, j =

(
ρ

k

) j−k+1
πk−1,k−1 +

j−1∑
r=k+1

j−k∑
l= j+1−r

(
ρ

k

)l
πk−1,r

(r − k + 1)α
λ

+

j−k∑
l=1

(
ρ

k

)l
πk−1, j−1 for k < j ≤ 2k
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Figure 6: Approximations for the ON/OFF based on the truncated ON/OFF(∞)/kS T AG Markov chain. Figs. (a) and
(b) show our results for mean response time in the cases of low setup time and high setup time respectively. Figs. (c) and
(d) show corresponding results for mean power consumption. We see that our approximations work well under all cases,
except in the regime where both the setup time is high and the load is high. Throughout, we set µ = 1 job/sec, k = 30
and Pon = 240W.

For the case i = k and j > 2k, the balance equations for states (k, j) form a system of second order
difference equations with constant coefficients. The general solution for this system is given by:

πk, j = πk,2k

(
ρ

k

) j−2k
+C

[(
λ

λ + kα

) j−2k

−
(
ρ

k

) j−2k
]

(13)

where
(
ρ
k

) j−2k
is the (convergent) solution to the homogeneous equations, and C

(
λ
λ+kα

) j−2k
is a

particular solution to the inhomogeneous equations. We can find the value of C by writing down
the balance equation for the state (k, j), where j > 2k. The terms involving πk,2k vanish from the
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balance equation, since
(
ρ
k

) j−2k
is the solution of the homogenous equation. This gives us:

C =

π0,0λρ
k−1 ·

k∏
l=1

λ

λ + lα

(k(µ − α) − λ) · (k − 1)!
=
πk−1,2k−1λ

kµ − (kα + λ)
(14)

Observe that if we derive the πi, j for the special case of a truncated ON/OFF/S T AG with infinite
servers, then we get back the πi, j for the ON/OFF/S T AG, as in Lemma 1. Finally, π0,0 can be

derived using
k∑

i=0

∑
j≥i

πi, j = 1.

We now approximate the mean response time and the mean power consumption for the ON/OFF
system, using the limiting probabilities of the truncated ON/OFF(∞)/kS T AG model:

E
[
TON/OFF

] ≈ 1
λ

k∑
i=0

∞∑
j=i

j · πi, j E
[
PON/OFF

] ≈ Pon ·
 k−1∑

i=0

∞∑
j=i

(min{ j, i + k}) · πi, j + k
∞∑
j=k

πk, j

 (15)

Fig. 6 shows our results for E
[
TON/OFF

]
and E

[
PON/OFF

]
based on the truncated ON/OFF(∞)/kS T AG

approximation. Again, we obtain the mean response time of the ON/OFF system using Matrix
Analytic methods. We see that our approximation works very well under all cases, except in
the regime where both the setup time is high and the load is high. In the regime of high load
and high setup time, the truncated ON/OFF(∞)/kS T AG over estimates the number of servers
in setup. For example, when there are (k − 1) servers on, there should be at most 1 server
in setup. However, the truncated ON/OFF(∞)/kS T AG allows up to k servers to be in setup.
Thus, the truncated ON/OFF(∞)/kS T AG ends up with a lower mean response time than the
ON/OFF. Using a similar argument, we expect the mean power consumption of the truncated
ON/OFF(∞)/kS T AG to be higher than the mean power consumption of the ON/OFF, for the
case when the load is high and the setup time is high.

7. ON/OFF: Asymptotic approximation as the number of jobs approaches infinity

Thus far, we have approximated the ON/OFF model by using the truncated ON/OFF(∞) model
and the truncated ON/OFF(∞)/kS T AG model, both of which have a 2-dimensional Markov
chain. If we can approximate the ON/OFF model by using a simple 1-dimensional random
walk, then we might get very simple closed-form expressions for the mean response time and the
mean power consumption. To do this, we’ll need a definition:

Definition 1. For the ON/OFF, ON(n) denotes the expected number of on servers, given that
there are n jobs in the system,

ON(n) =

k∑
i=0

i · πi,n

k∑
i=0

πi,n

(16)
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Figure 7: Markov chain depicting the number of jobs in the ON/OFF, in terms of ON(n).

In terms of ON(n), the number of jobs in the ON/OFF can be represented by the random walk
in Fig. 7. The remainder of this section is devoted to determining ON(n).
For n < k, we can use the limiting probabilities from the ON/OFF(∞) model to approximate
ON(n), since the Markov chains for both the ON/OFF and the ON/OFF(∞) are similar for
n < k, where n denotes the number of jobs in the system. Thus, we can approximate ON(n) for
1 ≤ n < k by Eq. (16), where πi,n is given by Eq. (8).
Now, consider ON(n)|n→∞. One would expect that all k servers should be on when there are
infinitely many jobs in the system. Surprisingly, we find that this need not be true.

Theorem 5. For the ON/OFF, we have:

ON(n)|n→∞ = min
{

k,
λ + kα
µ

}
(17)

where ON(n) denotes the expected number of servers on, given that there are n jobs in the system.

Proof: Consider the ON/OFF Markov chain for states (i, n), where n > k, as shown in Fig. 8.
Using spectral expansion [18], we have that

πi,n ∼ Cviwn as n→ ∞, (18)

for some constant C, where w is the largest zero on (0, 1) of the determinant of the (k + 1)-
dimensional fundamental matrix A(x) and v = (v0, . . . , vk) is a non-null vector satisfying vA(w) =
0. The nonzero entries of A(x) are located on the diagonal and sub-diagonal, and are defined as

A(x)i,i = λ − (λ + iµ + (k − i)α)x + iµx2, A(x)i,i+1 = (k − i)αx, i = 0, 1, . . . , k.

The determinant of the fundamental matrix A(x) has exactly (k + 1) zeros in (0, 1), denoted by
wi, i = 0, . . . , k, where each wi is the unique root on (0, 1) of the quadratic equation

w(λ + iµ + (k − i)α) = λ + iµw2.

Using some algebra, we can show that if α ≥ kµ−λ
k , then wk is the largest zero, with corresponding

non-null vector v = (0, . . . , 0, 1). Thus ON(n)|n→∞ = k. On the other hand, if α < kµ−λ
k , then

w0 =
λ
λ+α

is the largest eigenvalue. In this case, we can solve for v by substituting πi,n = viwn
0

into the balance equation for state (i, n) shown in Fig. 8:

vi = vi−1
(λ + kα) · (k − i + 1)

i(kµ − kα − λ) = v0

(
k
i

) (
λ + kα

kµ − kα − λ

)i

for i > 0 (19)
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Figure 8: Markov chain for the ON/OFF, showing the state (i, n), for n > k.

Thus, by substituting Eqs. (18) and (19) in Eq. (16), we have:

ON(n)|n→∞ = lim
n→∞

 k∑
i=0

πi,n


−1

·
k∑

i=0

i · πi,n

=

v0

(
kµ

kµ − kα − λ

)k−1

· v0k(λ + kµ)
kµ − kα − λ ·

(
kµ

kµ − kα − λ

)k−1

=
λ + kα
µ

We now combine the above two cases to conclude that ON(n)|n→∞ = min
{
k, λ+kα

µ

}
.

Observe that the condition in Eq. (17) suggests that when the setup time is high relative to the
service time, then the system throughput is less than kµ. This follows from the fact that a server
in setup mode will most likely not get a chance to turn on because another server will complete
servicing a job first, and the setting up job will be transferred there.
Now that we have ON(n) for 1 ≤ n < k and n → ∞, we can try and approximate ON(n)
for n ≥ k, using a straight line fit, with points ON(k − 2) and ON(k − 1), and enforcing that
ON(n) ≤ min

{
k, λ+kα

µ

}
. Given the above approximation for ON(n), we can immediately solve the

random walk in Fig. 7 for E
[
TON/OFF

]
and E

[
PON/OFF

]
. Fig. 9 shows our results for E

[
TON/OFF

]
and E

[
PON/OFF

]
based on the random walk in Fig. 7. We see that our approximation for ON(n)

works very well under all cases, except in the regime where both the setup time is high and the
load is high. We also considered an exponential curve fit for ON(n) in the region n ≥ k. We
found that such a curve fit performed slightly better than our straight line fit.

8. Application

In data centers today, both response time and power consumption are important performance
metrics. However, there is a tradeoff between leaving servers idle and turning them off. Leaving
servers idle when they have no work to do results in excessive power consumption, since idle
servers consume as much as 60% of peak power [1]. On the other hand, turning servers off
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Figure 9: Approximations for the ON/OFF based on the ON(n) approximation. Figs. (a) and (b) show our results for
mean response time in the cases of low setup time and high setup time respectively. Figs. (c) and (d) show corresponding
results for mean power consumption. We see that our approximations work well under all cases, except in the regime
where both the setup time is high and the load is high. Throughout, we set µ = 1 job/sec, k = 30 and Pon = 240W.

when they have no work to do incurs a setup cost (in terms of both a time delay and peak power
consumption during that time).
We start by revisiting three specific data center policies we defined earlier:

1. ON/IDLE: Under this policy, servers can either be on (consuming power Pon), or idle
(consuming power Pidle). This policy was analyzed in Section 3.

2. ON/OFF: Under this policy, analyzed in Sections 6 and 7, servers are turned off when not
in use and later incur a setup cost (time delay and power penalty).

3. ON/OFF/STAG: This is the staggered boot up policy analyzed in Section 4, where at most
one server can be in setup at a time.

In evaluating the performance of the above policies, we use the approximations and closed-
form results derived throughout this paper, except for the case of high setup time and high load,
where we resort to Matrix analytic methods. Unless otherwise stated, assume that we are using
the approximation in Section 7 for the ON/OFF. In our comparisons, we set Pon = 240W,
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Pidle = 150W and Po f f = 0W. These values were obtained via our experiments on an Intel Xeon
E5320 server, running the CPU-bound LINPACK [17] workload.

8.1. Comparing different policies

An obvious question in data centers is “Which policy should be used to reduce response times
and power consumption?” Clearly, no single policy is always superior. In this subsection, we’ll
compare the ON/IDLE, ON/OFF and ON/OFF/S T AG policies for various regimes of setup
time and load.
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Figure 10: Comparison of E[T ] and E[P] for the policies ON/IDLE, ON/OFF and ON/OFF/S T AG. Throughout, we
set µ = 1 job/sec, k = 30 and Pon = 240W.

Fig. 10 shows the mean response time and mean power consumption for all three policies. With
respect to mean response time, the ON/IDLE policy starts out at E[T ] = 1

µ
for low values of ρ,

and increases as ρ increases. We observe a similar trend for the ON/OFF/S T AG policy, since,
by Eq. (6), E

[
TON/OFF/S T AG

]
= E

[
TON/IDLE

]
+ 1
α

. For the ON/OFF policy, we see a different
behavior: At high loads, the mean response time increases due to queueing in the system. But
for low loads, the mean response time initially drops with increasing load. This can be reasoned
as follows: When the system load is extremely low, almost every arrival encounters an empty
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system, and thus every job must incur the setup time. As the load increases, however, the setup
time is amortized over many jobs: A job need not wait for a full setup time because some other
server is likely to become available.
For mean power consumption, it is clear that E

[
PON/OFF/S T AG

]
< E

[
PON/OFF

]
, since at most

one server can be in setup for the ON/OFF/S T AG policy. Also, we expect E
[
PON/OFF

]
<

E
[
PON/IDLE

]
, since we are turning servers off in the ON/OFF policy. However, in the regime

where both the setup time and the load are high, E
[
PON/OFF

]
> E

[
PON/IDLE

]
, since in this regime,

the ON/OFF policy wastes a lot of power in turning servers on, confirming our intuition from
Section 6.
Based on Fig. 10, we advocate using the ON/OFF policy in the case of low setup times, since
the percentage reduction afforded by ON/OFF with respect to power, when compared with
ON/IDLE, is higher than the percentage increase in response time when using ON/OFF com-
pared to ON/IDLE. For low setup times, the ON/OFF/S T AG policy results in slightly lower
power consumption than the ON/OFF policy, but results in much higher response times. For the
case of high setup times, the ON/IDLE policy is superior to the ON/OFF policy when the load
is high. However, when the load is low, the choice between ON/IDLE and ON/OFF depends
on the importance of E[T ] over E[P].

8.2. Mixed strategies: Achieving the best of both worlds
By the above discussions, ON/IDLE is superior for reducing E[T ], whereas ON/OFF is often
superior for reducing E[P]. However, by combining these simple policies, we now show that it
is actually possible to do better than either of them. We propose a strategy where we turn an idle
server off only if the total number of on and idle servers exceeds a certain threshold, say t. We
refer to this policy as the ON/IDLE(t) policy. Note that ON/IDLE(0) is the ON/OFF policy,
and ON/IDLE(k) is the ON/IDLE policy. To evaluate the ON/IDLE(t) policy, we use Matrix
analytic methods.
Fig. 11 shows the effect of t on E[T ] and E[P]. As t increases from 0 to k, E[T ] decreases
monotonically from E

[
TON/OFF

]
to E

[
TON/IDLE

]
, as expected. By contrast, under the right setting

of t, E[P] for the ON/IDLE(t) policy can be significantly lower than both E
[
PON/OFF

]
and

E
[
PON/IDLE

]
, as shown in Fig. 11 (d), where the power savings is over 20%. This observation

can be reasoned as follows: When t = 0, we have the ON/OFF policy, which wastes a lot of
power in turning servers on. As t increases, the probability that an arrival finds all servers busy
decreases, and thus, less power is wasted in turning servers on. However, as t approaches k,
the ON/IDLE(t) policy wastes power by keeping a lot of servers idle. At t = k, we have the
ON/IDLE policy, which keeps all k servers on or idle, and hence wastes a lot of power. We
define t∗ to be the value of t at which we get the lowest power consumption for the ON/IDLE(t)
policy. For example, for the scenario in Fig. 11 (d), t∗ = 17. Thus, we expect the ON/IDLE(t∗)
policy to have a lower power consumption than both ON/OFF and ON/IDLE.

8.3. Large server farms
It is interesting to ask whether the tradeoff between ON/IDLE and ON/OFF that we witnessed
in Section 8.1 becomes more or less exaggerated as the size of the server farm (k) increases. Us-
ing Matrix analytic methods to analyze cases where k is very large, say k = 100, is cumbersome
and time consuming, since we have to solve a Markov chain with 101 rows. In comparison, our
approximations yield immediate results, and hence we use these to analyze the case of large k.
Additionally, we compare the performance of the ON/IDLE(t∗) policy, defined in Section 8.2,
with the performance of the ON/IDLE, ON/OFF, and the ON/OFF/S T AG policies.
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Figure 11: Comparison of E[T ] and E[P] as a function of the threshold, t, for the ON/IDLE(t) policy. Throughout, we
set µ = 1 job/sec, k = 30, ρ = 15, and Pon = 240W.

Fig. 12 shows the effect of k on E[T ] and E[P] for the policies ON/IDLE, ON/OFF, ON/OFF/S T AG,
and ON/IDLE(t∗) where load is always fixed at ρ = 0.5k. Comparing the ON/IDLE and
ON/OFF policies, we see that the difference between E

[
PON/OFF

]
and E

[
PON/IDLE

]
increases

with k, and the difference between E
[
TON/OFF

]
and E

[
TON/IDLE

]
decreases with k. Thus, for high

k, the ON/OFF policy is superior to the ON/IDLE policy. We also tried other values of ρk , such
as 0.1 and 0.9. As the value of ρk increases (or, as load increases), the superiority of ON/OFF
over ON/IDLE decreases, and in the limit as ρ → k, both policies result in similar E[T ] and
E[P]. Now, consider the ON/IDLE(t∗) policy. The mean response time for ON/IDLE(t∗) is
almost as low as the mean response time for ON/IDLE policy, and its mean power consumption
is at least as low as the best of the ON/OFF and the ON/IDLE policies, and can be far lower
as witnessed in Fig. 11 (d). In all cases, we find that the E[T ] for ON/OFF/S T AG is much
worse than the other policies, and the E[P] for ON/OFF/S T AG is only slightly better than the
ON/IDLE(t∗) policy.
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Figure 12: Comparison of E[T ] and E[P] for the policies ON/IDLE, ON/OFF, ON/OFF/S T AG, and ON/IDLE(t∗)
as a function of k. Throughout, we set µ = 1 job/sec, ρk = 0.5 and Pon = 240W.

9. Conclusion

In this paper we consider server farms with a setup cost, which are common in manufacturing
systems, call centers and data centers. In such settings, a server (or machine) can be turned off to
save power (or operating costs), but turning on an off server incurs a setup cost. The setup cost
usually takes the form of a time delay, and sometimes there is an additional power penalty as
well. While the effect of setup costs is well understood for a single server, multi-server systems
with setup costs have only been studied under very restrictive models and only via numerical
methods.
We provide the first analysis of server farms with setup costs, resulting in simple closed-form
solutions and approximations for the mean response time and the mean power consumption.
We also consider variants of server farms with setup costs, such as server farms with staggered
boot up, where at most one server can be in setup at any time. For this variant, we prove that
the distribution of response time can be decomposed into the sum of the response time for a
server farm without setup, and the setup time. Another variant we consider is server farms with
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infinitely many servers, for which we prove that the limiting probabilities have a product-form:
the number of jobs in service is Poisson distributed and is independent of the number of jobs in
queue (waiting for a server to setup).
Additionally, our analysis provides us with interesting insights on server farms with setup costs.
For example, while turning servers off is believed to save power, we find that under high loads,
turning servers off can result in higher power consumption (than leaving them on) and far higher
response times. Furthermore, the tradeoff between keeping servers on and turning them off
changes with the size of the server farm; as the size of the server farm is increased, the advan-
tages of turning servers off increase. We also find that mixed policies, whereby a fixed number
of servers are maintained in the on or idle states (and the others are allowed to turn off ), greatly
reduce power consumption and achieve near-optimal response time when setup time is high. Fi-
nally, we prove an asymptotic bound on the throughput of server farms with setup costs: as the
number of jobs in the system increases to infinity, the throughput converges to a quantity less
than the server farm capacity, when the setup time is high.
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