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Abstract
Meeting service level objectives (SLOs) for tail latency is an
important and challenging open problem in cloud computing
infrastructures. The challenges are exacerbated by burstiness
in the workloads. This paper describes PriorityMeister – a sys-
tem that employs a combination of per-workload priorities
and rate limits to provide tail latency QoS for shared net-
worked storage, even with bursty workloads. PriorityMeister
automatically and proactively configures workload priorities
and rate limits across multiple stages (e.g., a shared storage
stage followed by a shared network stage) to meet end-to-
end tail latency SLOs. In real system experiments and un-
der production trace workloads, PriorityMeister outperforms
most recent reactive request scheduling approaches, with
more workloads satisfying latency SLOs at higher latency
percentiles. PriorityMeister is also robust to mis-estimation
of underlying storage device performance and contains the
effect of misbehaving workloads.

1. Introduction
Providing for end-to-end tail latency QoS in a shared net-
worked storage system is an important problem in cloud
computing environments. Normally, one might look at tail
latency at the 90th or 95th percentiles. However, increas-
ingly, researchers and companies like Amazon and Google
are starting to care about long tails at the 99th and 99.9th
percentiles [4, 5, 24]. This paper addresses tail latencies even
at the 99.9th and 99.99th percentiles.

Meeting tail latency SLOs is challenging, particularly for
bursty workloads found in production environments. First, tail
latency is largely affected by queueing, and bursty workloads
cause queueing for all workloads sharing the underlying

Copyright c© 2014 by the Association for Computing Machinery, Inc. (ACM). Permis-
sion to make digital or hard copies of all or part of this work for personal or classroom
use is granted without fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and the full citation on the
first page. Copyrights for components of this work owned by others than ACM must
be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from permissions@acm.org.
SOCC ’14, November 03 - 05 2014, Seattle, WA, USA.
Copyright 2014 ACM 978-1-4503-3252-1/14/11. . . $15.00.
http://dx.doi.org/10.1145/2670979.2671008

0 100 200 300 400 500 600
time (s)

0
20
40
60
80

100
120
140
160
180

nu
m

 re
qu

es
ts

requests
PM
Cake(reactive)

(a) synthetic trace – low burstiness
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Figure 1. Illustration of the effect of request burstiness on
latency SLO violations. The two graphs show time series data
for a real trace, (b), and a synthetic trace with less burstiness,
(a), each colocated with a throughput-oriented batch workload.
Each graph has three lines: the number of requests in a 10-second
period (blue), the number of SLO violations using a state-of-the-
art reactive approach (red), and the number of SLO violations
using PriorityMeister (green). The reactive approach (Cake [21]) is
acceptable when there is little burstiness, but incurs many violations
when bursts occur. PriorityMeister (PM) provides more robust
QoS behavior. Details of the system setup, traces, algorithms, and
configurations are described later in the paper. These graphs are
provided up front only to illustrate the context and contribution of
the new approach.

infrastructure. Second, the end-to-end latency is affected by
all the stages in a request (e.g., accessing storage, sending
data over network), and queues may build up at different
stages at different times.

Much of the prior work on storage scheduling is limited
to the easier problem of sharing storage bandwidth [9–11,
18, 20, 22]. Sharing bandwidth is easier than latency QoS
because bandwidth is an average over time that is not affected
by transient queueing. Some prior work targets latency QoS,
but most of this work is focused on the average latency [8,
12, 15, 16]. Looking at the average can mask some of the
worst-case behaviors that often lead to stragglers.

Recent work in the last couple years, Cake [21], has
considered tail latency QoS at the 99th percentile. Cake
works by using reactive feedback-control based techniques.
However, reactive approaches such as Cake do not work well
for bursty workloads because bursts can cause a lot of SLO
violations before one can react to them. Fig. 1 illustrates this



point; analysis and more experiments appear later. Fig. 1(a)
shows that when the request rate (blue line) is not bursty,
Cake meets latency SLOs with infrequent violations (red line).
Fig. 1(b), on the other hand, shows that when the workload is
much burstier as in a real trace, Cake has periods of significant
SLO violations. The difficulties in meeting latency SLOs are
further compounded when dealing with multiple stages since
the end-to-end latency is composed of the sum of all stage
latencies.

This paper introduces PriorityMeister (PM), a proactive
QoS system that achieves end-to-end tail latency SLOs across
multiple stages through a combination of priority and token-
bucket rate-limiting. PriorityMeister works by analyzing each
workload’s burstiness and load at each stage. This, in turn, is
used to calculate per-workload token-bucket rate limits that
bound the impact of one workload on the other workloads
sharing the system. As we will see in Sec. 3.2, a key idea in
PriorityMeister is to use multiple rate limiters simultaneously
for each workload at each stage. Using multiple rate limiters
simultaneously allows us to better bound the burstiness of
a workload. With a good bound on the burstiness for each
workload, we build a model to estimate the worst-case per-
workload latency. Our model is based on network calculus,
an analysis framework for worst-case queueing estimation.

Rate limiting alone is insufficient because workloads have
different latency requirements and different workload bursti-
ness. Thus, workloads need to be treated differently to meet
their latency SLOs and bound the impact on other workloads.
PriorityMeister uses priority as the key mechanism for dif-
ferentiating latency between workloads. Note that priority is
used to avoid delaying requests from workloads with tight la-
tency requirements rather than to prioritize workloads based
on an external notion of importance. Manually setting priority
is typical, but is laborious and error-prone. Indeed, simulta-
neously capturing the effect of each workload’s burstiness on
lower priority workloads is hard. Our analytical model for
latency allows PriorityMeister to quickly search over a large
space of priority orderings at each stage to automatically set
priorities to meet SLOs.

PriorityMeister also supports different per-workload pri-
orities and rate limits at each stage (as opposed to a single
priority throughout). Rather than having one workload that is
highest-priority throughout and a second that is lower prior-
ity throughout, where the first workload meets its SLO and
the second doesn’t, we can instead have both workloads be
highest-priority at some stages and lower priority at others.
Since a workload may not need the highest priority every-
where to meet its SLO, this mixed priority scheme potentially
allows more workloads to meet their SLOs.

PriorityMeister makes the following main contributions.
First, we develop an algorithm for automatically determin-
ing the priority and rate limits for each of the workloads at
each stage to meet end-to-end latency SLOs. PriorityMeister
achieves these goals by combining network calculus with the

Scheduler Latency SLO Multi-resource
Argon [20] No No
SFQ(D) [11] No No
AQuA [22] No No
mClock [10] No No
PARDA [9] No Yes
PISCES [18] No Yes
Maestro [16] Average latency No
Triage [12] Average latency No
Façade [15] Average latency No
pClock [8] Average latency No
Avatar [25] 95th percentile No
Cake [21] 99th percentile Yes
PriorityMeister > 99th percentile Yes

Table 1. Comparison of storage schedulers.

idea of using multiple rate limiters simultaneously for a given
workload. Second, we build a real QoS system consisting of
network and storage where we demonstrate that PriorityMeis-
ter outperforms state of the art approaches like Cake [21]. We
also compare against a wide range of other approaches for
meeting SLOs and show that PriorityMeister is better able
to meet tail latency SLOs (see Fig. 5, Fig. 6, and Fig. 11),
even when the bottleneck is at the network rather than storage
(see Fig. 9). Third, we show that PriorityMeister is robust to
mis-estimation in storage performance (see Fig. 10), varying
degrees of workload burstiness (see Fig. 7), and workload
misbehavior (see Fig. 8). Fourth, we come up with a simple
approach as a starting point for PriorityMeister, which we
call bySLO, and we find that it performs surprisingly well,
also outperforming Cake (see Fig. 11).

2. Previous Work
PriorityMeister is different from prior work in two main ways.
First, it is designed specifically for meeting tail latency SLOs
in multi-tenant storage environments. Second, PriorityMeis-
ter generalizes to multiple resources including network and
storage. Table 1 compares existing schedulers and Priori-
tyMeister.

Tail latency: Most of the prior work on storage schedul-
ing has focused on the easier problem of sharing storage
bandwidth [9–11, 18, 20, 22]. Of the ones that focus on la-
tency, most of them target the average latency [8, 12, 15, 16].
We are only aware of two storage schedulers, Cake [21] and
Avatar [25], that investigate tail latency behavior.

Cake [21] is a reactive feedback-control scheduler that
adjusts proportional shares to meet 99th percentile latency
SLOs. Our goals are similar, but we take a different approach
and overcome some of Cake’s limitations. Cake only handles
one latency-sensitive workload with one throughput-oriented
workload. PriorityMeister can handle multiple latency and
throughput SLOs, and it automatically tunes all of its system
parameters. Furthermore, PriorityMeister can deal with the



burstiness found in production storage traces, and it can meet
higher percentile latency SLOs (e.g., 99.9%), both of which
are not possible using a reactive approach.

While Cake addresses multiple resources for HBase (CPU)
and HDFS (storage), it requires a mechanism to dynamically
adjust proportional shares that is not readily available for
networks. Instead, PriorityMeister uses priority, which is a
much simpler mechanism and has support in many network
switches. We tried extending Cake to use network rate limits
as a proxy for proportional shares, but it turned out to hurt
more than help.

Avatar [25] is an Earliest Deadline First (EDF) scheduler
with rate limiting support. While Avatar shows tail latency
performance, only the 95th percentile is evaluated (in simula-
tion). Our work focuses on higher tail latencies (e.g., 99.9%),
and we perform our evaluation on actual hardware. Avatar
finds that rate limiting is important for providing performance
isolation, but it does not address how to set the rate limits, and
its rate limiting model is not configurable for workloads of
varying burstiness. PriorityMeister analyzes workload traces
to automatically configure rate limits, and it can work with
workloads of varying burstiness. Lastly, the focus in Avatar
is solely on storage, and the solution does not generalize to
networks since EDF relies on having a single entity that can
timestamp and order requests.

Multi-resource: A few recent papers have started to
investigate the challenges with multi-resource scheduling [6,
7, 9, 18, 19, 21]. Providing QoS across multiple resources
is particularly relevant for end-to-end latency SLOs since
latency is cumulative across all the resource stages (e.g.,
storage, CPU, network, etc). One could imagine using two
different QoS systems for storage and network, but it is not
obvious how to determine SLOs for each stage based on a
given total end-to-end SLO. PriorityMeister is a single QoS
system that understands both storage and network and can
automatically configure the system to meet end-to-end latency
SLOs. Our multi-resource QoS architecture is most similar
to that of IOFlow [19]. IOFlow introduces a new software-
defined storage architecture for both storage and network
QoS, but does not address how to configure the system to
meet latency SLOs. Our work is complementary to IOFlow
and can be thought of as a policy that could be built on top of
IOFlow’s architecture.

Other related work: The Bobtail [24] paper also investi-
gates the problem of tail latencies in the cloud, and the au-
thors find a root cause of bad CPU co-scheduling. Our work
is complementary to theirs, and our work has the potential of
incorporating CPU QoS in the future. HULL [1] addresses
the problem of delays from long network switch queues by
rate limiting and shifting the queueing to the end hosts. Xu
et al. [23] also address this problem, but do so using network
prioritization. Both papers allow low bandwidth workloads to
quickly pass through the network switch, but do not address
how to deal with higher bandwidth workloads with differ-

ent end-to-end latency SLOs. PriorityMeister draws upon
the field of network calculus for modeling workloads and
uses concepts such as arrival curves and service curves [14].
Our latency analysis is similar to a recent theory paper by
Bouillard et al. [3].

3. Architecture
PriorityMeister provides QoS on a per-workload basis. Each
workload runs on a client VM and accesses storage at a
server VM. An application with multiple client VMs can be
represented as multiple workloads with the same SLO.

Workloads consist of a stream of requests from a client to
a server and back, where each request is characterized by an
arrival time, a request size, and a request offset. A request
comprises three stages: the network request from the client
to server, the storage access at the server, and the network
reply from the server back to the client. For each of the
network stages, there are queues at each machine and network
switch egress port. For the storage stage, there is a queue at
each storage device. Each stage has independent priorities
and rate limits for each workload, which are determined by
PriorityMeister.

3.1 PriorityMeister system design
Fig. 2 shows the QoS components in our system in green.
We have local QoS enforcement modules at each of the
clients and servers to control access to storage and networking
resources. Each enforcement module is independent and only
needs to act upon QoS parameters received from our global
controller. This allows PriorityMeister to take advantage of
global information. Our system architecture is similar to that
in IOFlow [19], which has been shown to scale and tolerate
controller failure.

The two primary QoS parameters that PriorityMeister
automatically configures for each enforcement module are
priority and rate limits. Prioritization is our key mechanism
for providing latency differentiation among the workloads.
We use strict priority to provide good latency to the workloads
that require low latency. To prevent starvation, we use rate
limiting and only honor priority when workloads are within
their rate limits. As we will see in Sec. 3.2, PriorityMeister
is unusual in that we deploy multiple rate limiters for each
workload at each stage.

Our rate limiters are built upon a leaky token bucket
model that is parameterized by a rate and a token bucket
size. When a request arrives, tokens are added to the token
bucket based on the request. For networks, the number of
tokens added corresponds to the number of transmitted bytes
for the request. For storage, the number of tokens added
corresponds to the estimated amount of time for the storage
device to process the request. The estimation is performed
by the storage estimator (see Sec. 4.2). If there is space in
the bucket to add tokens without exceeding the configured
token bucket size, then the request is allowed to continue.
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Figure 2. QoS components in PriorityMeister (green). The PriorityMeister global controller automatically configures our local storage
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Figure 3. PriorityMeister controller dataflow diagram.

Otherwise, the request is queued until there is sufficient space.
Space becomes available as tokens continuously leak from
the bucket at the configured rate.

3.2 PriorityMeister controller design
Fig. 3 shows the design of our PriorityMeister controller.
Users provide their goal, which can be a latency SLO or
throughput SLO, a representative trace of application access
patterns, and the location of their client and data (e.g., client &
server IP addresses). The trace can be automatically captured

as the application is running, or a power user can select a
more representative set of access patterns using application-
specific knowledge. A latency SLO is a value that specifies
the maximum acceptable latency of a request. A throughput
SLO is a value that specifies the total time in which the given
trace of requests should complete.

We now discuss how PriorityMeister sets rate limits. We
start with a thought experiment. Consider a workload, W, that
needs to be high priority to meet its SLO. By giving W high
priority, lower priority workloads will clearly have increased
latency. Constraining the rate (r) and token bucket size (b)
for workload W will limit the negative effect of W on lower
priority workloads. Suppose we wish to have W run in an
unfettered manner. There are many rate limiter (r,b) pairs for
W that are high enough such that W is unaffected by them.
W will only notice these (r,b) constraints if W “misbehaves”
in the sense that it deviates markedly from its representative
trace of access patterns. Fig. 4(a) depicts the set of (r,b) pairs
that allow W to run in an unfettered manner, provided it
doesn’t misbehave. So from W’s perspective, any of these
(r,b) pairs are acceptable. However, lower priority workloads
are affected differently by picking the green X (r,b) pair as
opposed to the red X (r,b) pair. In Fig. 4(b), note that using
larger token bucket sizes (e.g., green X) leads to higher tail
latencies when W misbehaves. In Fig. 4(c), note that using
higher rates (e.g., red X) causes the low priority workload
to starve when W misbehaves. Using smaller bucket sizes
and lower rates on W would help lower priority workloads,
but such an (r,b) pair does not exist for W in Fig. 4(a). The
key idea in PriorityMeister is to limit W by all (r,b) pairs
in the shaded area of Fig. 4(a), which gives us the benefit
of small bucket sizes and low rates. Specifically, we pick
multiple (r,b) pairs along the border, such as the X’s shown,
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Figure 4. How token bucket parameters (rate, bucket size) limit the effect of a misbehaving high priority workload on lower
priority workloads. In this experiment, we run 3 workloads together on the same disk. We cause the high priority workload to misbehave
by inducing a large 40 sec burst of work in the middle of the trace. Fig. 4(a) shows the eligible set of (r,b) parameters for the high priority
workload without the misbehavior (Workload B in Table 2). Fig. 4(b) and Fig. 4(c) show the effect, respectively, on the medium priority
and low priority workload when the high priority workload misbehaves. Each colored X in Fig. 4(a) corresponds to a similarly colored line
in Fig. 4(b) and Fig. 4(c). The similarly colored lines show the effect on the lower priority workloads when the misbehaving high priority
workload is limited by the corresponding rate limit parameters. By using only one rate limiter (one X) on the high priority workload, the lower
priority workloads are not able to meet their SLOs (dashed line). PriorityMeister allows both lower priority workloads to meet their SLOs by
using multiple rate limiters simultaneously (blue line).

and deploy these rate limiters simultaneously for W. That is,
a request is queued until tokens can be added to all of its
token buckets.

As illustrated in Fig. 3, PriorityMeister begins with our
workload analyzer, which characterizes each workload by
generating the workload’s (r,b) pair region (e.g., Fig. 4(a)).
Next, our prioritizer algorithm searches over the space of pri-
ority orderings to determine workload priorities that will best
meet the workload SLOs. Our algorithm is built on a latency
analysis model, which takes as input a priority ordering and
set of rate limit (r,b) pairs and outputs worst-case bounds on
latency for each workload based on network calculus. Our pri-
oritizer algorithm does not search over all priority orderings;
instead, we develop a simple greedy algorithm for picking
“good” orderings (see Sec. 4.3). This provides an interesting
alternative to having system administrators manually setting
priorities, which is both costly and error prone. Users are
inherently bad at choosing priorities since they may not be
aware of the other workloads in the system. PriorityMeis-
ter chooses priorities automatically using high-level SLOs,
which are much easier for a user to specify.

Lastly, the priorities and the rate limits are sent to the
enforcement modules. Since we proactively analyze workload
bursts, there is no need to run the prioritizer algorithm again
until there is a change in the user requirements (e.g., change
in application access patterns or SLO), or if new workloads
arrive. When there is a change, we will rerun the prioritizer
algorithm and potentially readjust priorities and rate limits.

4. Implementation
The dataflow within PriorityMeister is illustrated in Fig. 3
and is described in detail in this section.

4.1 Workload analysis
The role of workload analysis is to generate rate limits for
each workload such that a workload is not hindered based on
the workload’s representative trace of access patterns. That
is, we calculate the set of (rate, bucket size) pairs along the
border (blue line) in Fig. 4(a). To calculate an (r,b) pair,
we select a rate r and replay the workload’s trace using an
unbounded token bucket with the selected rate. We set the
bucket size b to the maximum token bucket usage, which
corresponds to the minimum token bucket size such that the
workload is unhindered. We do this across a range of rates to
get the entire set of (r,b) pairs.

4.2 Estimator
Estimators are used as part of workload analysis and in our
storage enforcer to determine the number of tokens associated
with a request. They provide a way of abstracting a variety
of request types (e.g., read, write) and request sizes into a
single common metric. PriorityMeister currently supports two
types of estimators: storage and network. For storage, we use
“work” as the common metric, measured in the units of time.
Work denotes the time consumed by a request without the
effects of queueing. For network, we use transmitted bytes as
the common metric, which does not change across different
link bandwidths.

Storage estimator: The storage estimator is responsible
for estimating the amount of storage time consumed by



a request. The estimator does not need to be perfect, as
demonstrated in Sec. 6.5. Rather, it is used for determining
priority settings, which works effectively with approximate
estimates.

Our storage estimator is similar to the table-based ap-
proach in [2]. We profile our storage devices a priori to build
tables for (i) bandwidth and (ii) a base time to service a
request. Our tables are parameterized by request type (e.g.,
read, write), request offset, and distance between subsequent
request offsets (i.e., offset− previous offset). Additionally,
we keep a history of requests to capture sequential accesses,
and we assume a base time of 0 for sequential accesses.
We then estimate the storage time to service a request as
request size
bandwidth +base time.

Network estimator: The network estimator is responsible
for estimating the number of bytes transmitted by a request.
We use a simple estimator based on the request type and
request size and find that it suffices. For read requests, there
is a small request sent to the server and a large response back
from the server. For write requests, there is a large request
sent to the server and a small response back from the server.

4.3 Prioritizer algorithm
The prioritizer algorithm is responsible for finding a priority
ordering that can meet the workload SLOs. That is, we want
to determine priorities for each stage of each workload such
that the workload’s worst-case latency, as calculated by the
latency analysis model, is less than the workload’s SLO.
While the size of the search space appears combinatorial
in the number of workloads, we have a key insight that
makes the search polynomial: if a workload can meet its
SLO with a given low priority, then the particular ordering
of the higher priority workloads does not matter. Only the
cumulative effects of higher priority workloads matter. Thus,
our algorithm tries to assign the lowest priority to each
workload, and any workload that can meet its SLO with
the lowest priority is assigned that priority and removed
from the search. Our algorithm then iterates on the remaining
workloads at the next lowest priority.

If we come to a point where none of the remaining
workloads can meet their SLOs at the lowest priority, then
we take advantage of assigning a workload different priorities
at each stage (e.g., setting a workload to have high priority
for storage but medium priority for network, or vice versa).
Specifically, consider the remaining set of workloads that
have not yet been assigned priorities. For each workload, w,
in this set, we calculate w’s violation, which is defined to be
the latency estimate of w minus the SLO of w, in the case
that w is given lowest priority in the set across all stages. For
that workload, w, with smallest violation, we determine w’s
worst-case latency at each stage. For the stage where w has
lowest latency, we assign w to be the lowest priority of the

remaining set of workloads. We now repeat the process until
all workloads have been assigned priorities at each stage.

4.4 Latency analysis model
The latency analysis model estimates worst-case latencies for
the workloads under a given priority ordering and workload
rate limits. The model we use in our system is based on the
theory of network calculus. The main concepts in network
calculus are arrival curves and service curves. An arrival
curve α(t) is a function that defines the maximum number
of bytes that will arrive in any period of time t. A service
curve β (t) is a function that defines the minimum number
of bytes that will be serviced in any period of time t. For
clarity in exposition, we describe the latency analysis model
in terms of bytes, but our solution works more generally in
terms of tokens, which is bytes for networks and storage
time for storage. Network calculus proves that the maximum
horizontal distance between a workload’s arrival curve and
service curve is a tight worst-case bound on latency. Thus,
our goal is to calculate accurate arrival and service curves for
each workload.

In our rate-limited system, an arrival curve αw(t) for
workload w is formally defined αw(t) = minm

i=1(ri ∗ t + bi)
where workload w has m rate limit pairs (r1, b1), ..., (rm, bm).
The challenge is calculating an accurate service curve, and
we resort to using a linear program (LP) for each workload w.
Our approach is similar to the technique used in [3], which
has been proven to be correct. To calculate the service curve
βw(t) for workload w, we build a worst-case scenario for
workload w by maximizing the interference on workload w
from higher priority workloads. Instead of directly calculating
βw(t), it is easier to think of the LP for the inverse function
β−1

w (y). That is, t = β−1
w (y) represents the maximum amount

of time t that it takes workload w to have y bytes serviced.
We use the following set of variables in our LP: tq

in, tq
out ,

Rq
k , R′qk . For each queue q, tq

in represents the start time of the
most recent backlog period before time tq

out . That is, queue
q is backlogged (i.e., has work to do) during the time period
[tq

in, t
q
out ]. Note that queue q may be backlogged after tq

out , but
not at time tq

in. Rq
k represents the cumulative number of bytes

that have arrived at queue q from workload k at time tq
in. R′qk

represents the cumulative number of bytes that have been
serviced at queue q from workload k at time tq

out . Throughout,
k will represent a workload of higher priority than w.

The constraints in our LP are as follows:
Time constraints: For each queue q, we add the constraint
tq
in ≤ tq

out to ensure time is moving forward. For all queues q
and for all queues q′ that feed into q, we add the constraint
tq′
out = tq

in to relate times between queues.
Flow constraints: For each queue q and for each workload k
in queue q, we add the constraint Rq

k ≤ R′qk . Since the queue
is empty, by construction, at the start of the backlog period
(tq

in), all the bytes that have arrived (Rq
k) by time tq

in must have
been serviced. Consequently, this constraint ensures that the



cumulative number of bytes serviced is non-decreasing over
time.
Rate limit constraints: We need to constrain the extent to
which other workloads, k, can interfere with workload w.
For a particular workload k, let (r1, b1), ..., (rm, bm) be its
rate limit parameters, and let q∗ be workload k’s first queue.
Then for each queue q containing workload k, we add the
constraints R′qk −Rq∗

k ≤ ri ∗ (tq
out − tq∗

in )+bi for each rate limit
pair (ri,bi). These constraints apply rate limits to each of the
relevant time periods for workload k, and are added for each
workload k.
Work conservation constraints: For each queue q, we need
to ensure that bytes are being serviced when there is a
backlog. Let Bq be queue q’s bandwidth. Since each queue
q is backlogged during time period [tq

in, t
q
out ] by construction,

the queue must be servicing requests at full bandwidth speed
between tq

in and tq
out , which yields the constraint ∑k(R

′q
k −

Rq
k) = Bq ∗ (tq

out − tq
in) where we sum over the workloads k in

queue q.
Objective function: The LP’s goal is to maximize the amount
of time needed for workload w to have y bytes serviced. Let q1
and qn be the first and last queues of workload w respectively.
We add the constraint R′qn

w −Rq1
w = y to ensure that y bytes

are serviced. Then, our objective function is to maximize
tqn
out − tq1

in .

4.5 Storage enforcer
Storage enforcement is responsible for scheduling requests
at each of the storage devices. Our current implementation
exposes storage as NFS mounts, and our storage enforcer is
built as an interposition layer on top of NFS. Since NFS is
based on SunRPC, we were able to hook into NFS at the RPC
layer without needing to resort to kernel modification. Our
storage enforcer creates queues for each workload and per-
forms arbitration between the different workloads based on
the priorities and rate limits assigned by the PriorityMeister
global controller.

4.6 Network enforcer
Network enforcement is responsible for prioritizing and rate
limiting network traffic from each of the workloads. We
build our network enforcer on top of the existing linux
Traffic Control (TC) infrastructure. The TC infrastructure
allows users to build arbitrary QoS queueing structures for
networking. Since Hierarchical Token Bucket (HTB) queues
can only support two rate limiters, we chain multiple HTB
queues together to represent the multiple rate limiters for
each workload. We then use DSMARK to tag the packets
with DSCP flags (i.e., the TOS IP field), which instruct the
network switch on how to prioritize packets. Our network
switches support 7 levels of priority for each port, and using
these priorities simply requires enabling DSCP on the switch.
To get prioritization on the host as well as the switch, we lastly
add a PRIO queue. To identify and route packets through the

correct TC queues, we use filtering based on the source and
destination addresses, which are different per VM.

4.7 Network reprioritization algorithm
Since networks can only support a limited number of priority
levels, we also include an extra step after the prioritizer
algorithm to adjust the priorities to fit within the supported
priority levels. We sort the workloads as determined by the
prioritizer and then partition the workloads among the number
of supported priority levels. We determine the best partition
points by running the latency analysis model and minimizing
∑workload w

violationw
SLOw

.

5. Experimental Setup
In our experiments, a workload corresponds to a single client
VM that makes requests to a remote NFS-mounted filesystem.
Each workload has a corresponding trace file containing its
requests. The goal of each experiment is to investigate the
tail latency when multiple workloads are sharing storage
and network, so each of our experiments use a mixture of
workloads.

5.1 Traces
We evaluate our system implementation using a collection
of real production (described in [13]) and synthetic storage
traces. Each trace contains a list of requests parameterized
by the arrival time, request size, request type (e.g., read,
write), and request offset. Table 2 provides a description of
all the traces used in our evaluation. We show the estimated
load on the storage and network, as well as the squared
coefficient of variation of the inter-arrival times (C2

A), which
gives one notion of burstiness. For the synthetic traces, a C2

A
of 1 indicates a Poisson arrival process, and higher values
indicate more bursty arrival patterns.

As illustrated in [17], there are vast differences when
replaying traces in an open loop vs. closed loop fashion.
To properly represent end-to-end latency and the effects of
queueing at the client, we replay traces in an open loop
fashion. Closed loop trace replay masks a lot of the high
tail latencies since much of the queueing is hidden from the
system. Closed loop trace replay is designed for throughput
experiments, and we use this form of replay solely for our
throughput-oriented workload (Workload L).

5.2 SLOs
Each workload in a given experiment has its own latency SLO,
which is shown in the results section as a dashed horizontal
line. The SLO represents the maximum end-to-end latency
that a workload considers acceptable. The end-to-end latency
is defined as the difference between the request completion
time and the arrival time from the trace, which includes all
queueing time experienced by the client.

Not all requests in a workload will necessarily meet its
SLO, so we also use the metric of a latency percentile to



Workload
label

Workload source Estimated
storage load

Estimated
network load

Interarrival
Variability, C2

A
Workload A DisplayAds production trace 5% 5% 1.3
Workload B MSN storage production trace 5% 5% 14
Workload C LiveMaps production trace 55% 5% 2.2
Workload D Exchange production trace (behaved) 10% 5% 23
Workload E Exchange production trace (misbehaved) > 100% 15% 145
Workload F Synthetic low burst trace 25% 5% 1
Workload G Synthetic high burst trace 25% 5% 20
Workload H Synthetic very high burst trace 25% 5% 40
Workload I Synthetic medium network load trace 1 35% 20% 1
Workload J Synthetic medium network load trace 2 45% 25% 1
Workload K Synthetic ramdisk trace N/A 35% 3.6
Workload L Synthetic large file copy N/A N/A N/A

Table 2. Workload traces used in our evaluation.

measure how many requests failed its SLO. For example,
meeting the SLO for the 99th percentile means that at least
99% of the workload’s requests had a latency under the
desired SLO.

5.3 Policies
In our experiments, we compare 5 QoS approaches: Pro-
portional fair-share (ps), Cake [21], Earliest Deadline First
(EDF), prioritization in order by SLO (bySLO), and Priori-
tyMeister (PM).

Proportional sharing (ps). We use proportional sharing
as a strawman example of a system without latency QoS,
where each workload gets an equally weighted share of
storage time, and no network QoS is used. We do not expect
ps to be good at meeting latency SLOs.

Cake [21]. We implement the algorithm found in the re-
cent Cake paper as an example of a reactive feedback-control
algorithm. Cake works by dynamically adjusting proportional
shares to meet latency SLOs. We use the same control pa-
rameters as found in the paper except for the upper bound
SLO-compliance parameter, which we increase to improve
the tail latency performance. To avoid any convergence is-
sues, we only measure performance for the second half of
the trace in all of our experiments. Since the Cake paper only
supports a single latency sensitive workload, we attempt to
extend the Cake algorithm to support multiple latency sen-
sitive workloads by assigning a weight to each workload,
which is adjusted using the Cake algorithm.

We also try another extension to Cake to support network
QoS. Since networks do not have an easy way of dynamically
updating proportional shares, we use rate limits as a proxy for
proportional shares. We assign a weight to each workload as
before and use a DRF-like [6] algorithm to assign rate limits
based on the weights. Our initial experiments indicate that
this rate limiting hurts more than it helps, so our results in
Sec. 6 drop this extension, and we do not use network QoS
with a Cake model.

Earliest Deadline First (EDF). We implement an EDF
policy in our storage enforcer, and we configure the deadlines
for each workload as the workload’s SLO. There is no
straightforward way of extending an EDF policy to networks,
so we do not use network QoS with this policy.

Prioritization by SLO (bySLO). We also investigate a
simple policy, that we have not seen in prior literature, where
we simply assign workload priorities in order of the workload
latency SLOs. That is, we assign the highest priority to the
workload with the lowest SLO. This is supported for both
network and storage. We find in Sec. 6.5 that this simple
policy does surprisingly well, and we recommend bySLO as
a simple way of getting started as a stand-in for our prioritizer
algorithm.

PriorityMeister (PM). PriorityMeister is our primary pol-
icy that we compare against the other policies. Its architecture
(Sec. 3) and implementation (Sec. 4) are described earlier.

5.4 Experimental testbed
All experimental results are collected on a dedicated rack of
servers. The client and storage nodes are all Dell PowerEdge
710 machines, each configured with two Intel Xeon E5520
processors, 16GB of DRAM, and 6 1TB 7200RPM SATA
disk drives. Ubuntu 12.04 with 64-bit Linux kernel 3.2.0-22-
generic is used for the host OS, and virtualization support
is provided by the standard kvm package (qemu-kvm-1.0).
Ubuntu 13.10 with 64-bit linux kernel 3.11.0-12-generic is
used as the guest operating system. We use the standard NFS
server and client that comes with these operating systems to
provide remote storage access. The top-of-rack switch is a
Dell PowerConnect 6248 switch, providing 48 1Gbps ports
and 2 10Gbps uplinks, with firmware version 3.3.9.1 and
DSCP support for 7 levels of priority.

6. Experimental Results
This section evaluates PriorityMeister (PM) in comparison
to other state of the art policies across multiple dimen-
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Figure 5. PriorityMeister (PM) is the only policy that satisfies all SLOs across all %iles. In this experiment, we replay three latency-
sensitive workloads derived from production traces (Workloads A, B, and C, from Table 2) sharing a disk with with a throughput-oriented
workload (Workload L; not shown) that represents a file copy. Each of the colored horizontal dashed lines correspond to the latency SLO of the
similarly colored workload. Each subgraph shows a different request latency percentile. Each group of bars shows the latency of the three
workloads under each scheduling policy (described in Sec. 5.3).

sions. Sec. 6.1 demonstrates the ability of PriorityMeister
in meeting tail latency SLOs on a set of production work-
load traces [13]. We find that PriorityMeister is able to take
advantage of its knowledge of workload behaviors to meet
all the SLOs whereas the other policies start to miss some
SLOs above the 99th percentile tail latency. Sec. 6.2 investi-
gates the differences between proactive (PriorityMeister) and
reactive (Cake [21]) approaches, as we vary the burstiness
of a workload. As burstiness increases, reactive approaches
have a harder time adapting to the workload behavior and
meeting SLOs. PriorityMeister is able to quantify the bursti-
ness of workloads and safely prioritize workloads to meet
SLOs. Sec. 6.3 then proceeds to show that PriorityMeister’s
prioritization techniques are safe to workload misbehavior
through its automatic configuration of rate limits.

In Sec. 6.4, we investigate scenarios when the bottleneck
shifts from storage to network. We show that PriorityMeis-
ter’s techniques continue to work when the network becomes
a bottleneck, whereas the other state of the art policies do not
generalize to networks. We conclude with a sensitivity study
in Sec. 6.5. First, we show that PriorityMeister works with

simple storage estimators and is robust to estimator inaccu-
racy. Second, we show that PriorityMeister can work under
different SLO requirements. Surprisingly, we also find that
the simpler bySLO policy, which we haven’t seen in litera-
ture, does well in many cases. We believe that bySLO is a
simple way of getting started, but there are still some cases
where prioritizing by SLO does not work, as detected and
corrected for by PriorityMeister.

6.1 PriorityMeister tail latency performance
Fig. 5 plots tail latency performance across multiple poli-
cies, colocated workloads, and tail latency percentiles. Pri-
orityMeister (PM) is the only policy that meets SLOs for
all workloads across all percentiles. In this experiment, we
show a typical example where the storage is a bottleneck.
We replay three traces derived from production workloads,
combined with a throughput-oriented workload (Workload
L; not shown) that represents a file copy, all sharing a single
disk. All policies satisfy the throughput requirement, but not
all policies meet latency SLOs (dashed lines), especially at
high percentiles.
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Figure 6. Request latency at different percentiles for each policy. Same experiment as in Fig. 5 with a more descriptive representation.
It is easy to see that PriorityMeister (PM) is the only policy that doesn’t violate any SLOs (dashed lines).
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Figure 7. Increased levels of burstiness affect both PriorityMeister (PM) and Cake, but PM meets the SLO at the 99th-%ile for
inter-arrival burstiness levels up to C2

A = 40.

Fig. 6 shows a more descriptive representation of the la-
tency (y-axis) at different percentiles (x-axis). It is essentially
a representation of the CDF in log scale to focus on the tail
behavior, with higher percentiles on the left. The results are
grouped by scheduling policy, and it is easy to see that Priori-
tyMeister is the only policy that doesn’t violate any SLOs.

So why do the other policies fail? Proportional sharing
(ps) is a strawman example of not using latency QoS and
is expected to fail. Cake [21] suffers from a combination of
three effects. First, reactive algorithms by design only react

to problems. These approaches do not work when targeting
higher tail latencies where we cannot miss SLOs. Second, the
burstiness found in production traces exposes the aforemen-
tioned shortcomings of reactive approaches. Third, there are
more parameters to dynamically adjust when colocating more
than one latency sensitive workload. Since the workloads are
bursty at potentially different times, it is not clear whether the
parameters will even converge. Although the Cake paper only
targets a single latency sensitive workload, we were hoping
that it could be generalized to a few workloads, but we were
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Figure 8. PriorityMeister is the only policy that isolates the effect of the misbehaving Workload D on Workload C.
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Figure 9. When workloads induce a bottleneck on server network egress, PM is the only policy that meets all SLOs across all
latency %iles.

unable to successfully do so with our workloads. EDF and
bySLO are both policies that only take into account the SLO
of a workload. By not considering the burstiness and load
of workloads, they sometimes make bad prioritization deci-
sions. For example, bySLO prioritizes Workload C, which
has a high load that has a large impact on the other work-
loads. PriorityMeister accounts for the load and burstiness of
workloads to determine better priority orders as seen in this
experiment.

6.2 Coping with burstiness
In Fig. 7, we perform a micro-benchmark on the effect of
burstiness on proactive (PriorityMeister) and reactive (Cake)
approaches. As burstiness increases, it is harder to meet
SLOs for all policies, but our proactive approach consistently
does better. To make a fairer comparison between these ap-
proaches, we only use a single latency sensitive workload
and throughput-oriented workload as in the Cake paper [21].
To vary the burstiness of a workload, we synthetically gen-
erate random access traces where we control the distribution
of inter-arrival times. As a reference point, we do see that
Cake meets the 99th percentile for the low burstiness trace.
However, as the burstiness increases, Cake continues to do
worse, even dropping below 96%. PriorityMeister is better

able to cope with the burstiness by prioritizing the latency
sensitive workload, though there are cases (e.g., Fig. 7(c)),
as expected, where it is not possible to meet SLOs at the tail.
This is because burstiness inherently increases the queueing
and latency of a workload.

6.3 Misbehaving workloads
Since PriorityMeister is automatically configuring workload
priorities, a natural question to ask is whether prioritization
is safe. If a workload misbehaves and hogs the bandwidth,
a good QoS system is able to contain the effect and avoid
starving the other well-behaved workloads. PriorityMeister
solves this by using prioritization along with rate limiting.

Fig. 8 demonstrates the effect of rate limiting with a two
workload scenario where Workload D changes from being
well-behaved to misbehaved (Workload E). We set the SLOs
to be high enough for all policies to meet them under normal
conditions (Fig. 8(a), Fig. 8(b)). However, when Workload D
misbehaves and floods the system with requests, Workload C
(Fig. 8(c)) is negatively impacted. PriorityMeister is the only
policy that manages to limit the effect of the misbehaving
Workload D through its rate limiting. This demonstrates that
prioritization is safe with rate limiting since Workload D has
a higher priority in this experiment.
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Figure 10. PriorityMeister is robust to storage latency mis-estimation (see Sec. 6.5). Same experiment as Fig. 5, but with a less
accurate storage estimator. Despite the mis-estimation, results are similar.
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Figure 11. The 6 graphs each show a different permutation of 3 SLO values. 99.9th-%ile latency bar plots are shown for each
permutation. PM meets all SLOs for all permutations, while other policies do not. Note that bySLO does surprisingly well, meeting SLOs in 5
of the 6 experiments.

6.4 Multi-resource performance
With the growing popularity of SSDs and ramdisks, the bot-
tleneck could sometimes be the network rather than storage.
PriorityMeister is designed to generalize to both network and
storage and potentially other resources in the future. Since
network packets can be prioritized in many network switches,
PriorityMeister can operate on existing hardware.

Two common locations for a network bottleneck is at the
server egress and the client ingress. In these experiments, we
use a set of four workloads on servers with a ramdisk and
multiple disks. To focus on the network aspect, each workload
in these experiments runs on a dedicated storage device. For
clarity, we only show three of the workloads where there is

an effect on meeting SLOs. The other workload (Workload
I) has a higher SLO that is satisfied by all policies. Fig. 9
shows an experiment with a server egress bottleneck where
all the workloads are accessing storage devices colocated on a
single machine. Client ingress bottleneck experiment results
are similar, but are not shown due to space constraints. Both
illustrate the need for network traffic conditioning. Without
network QoS (Fig. 9(c)), workloads start missing their SLOs
at the tail. PriorityMeister (Fig. 9(a)) solves this problem by
prioritizing the three shown workloads in a way that is aware
of both storage and network. Since Workload K is the only
workload running on a ramdisk, PriorityMeister realizes that
the storage requests will be fast and that it does not need to
give workload K the highest network priority. By contrast,



the bySLO policy (Fig. 9(b)) simply gives workload K the
highest priority because it has the lowest SLO, causing SLO
violations at the tail latencies of other workloads.

We only show three policies in these experiments since
EDF and Cake do not generalize to networks. EDF would
require a mechanism for timestamping packets and ordering
packets by timestamp, which is not supported in network
switches. Cake would require a mechanism for proportionally
sharing the network, which is difficult to do in a distributed
environment.

6.5 Sensitivity analysis
Estimator inaccuracy. Storage estimation is known to be
a challenging problem, and we are interested in how well
PriorityMeister performs when the estimates are inaccurate.
To demonstrate the robustness to estimator inaccuracy, we
replaced our default storage estimator with a simple estimator
that assumes a constant base time for servicing a request.
Fig. 10 shows the same experiment as in Sec. 6.1, but with
the less accurate estimator. We find that PriorityMeister ends
up selecting the same priority order and producing similar
latency results.

While having more accurate storage estimates is better,
PriorityMeister is not reliant upon having accurate storage es-
timates. PriorityMeister primarily uses estimates in determin-
ing priority orderings. As long as the same priority ordering
is chosen, we expect similar latency performance.

SLO variation. The choice of SLO is dictated by the
user and will certainly have an impact on how the policies
perform. We are interested to see how different SLOs affect
PriorityMeister in comparison to the other policies. To do this,
we rerun the same experiment as in Sec. 6.1 but with different
SLOs for the workloads. Motivated by the bySLO policy, we
pick three SLO numbers and try the 6 (= 3!) permutations for
assigning the SLOs to workloads. Fig. 11 shows the 99.9%
latencies for these experiments. Surprisingly, we find that
bySLO does a reasonable job at meeting SLOs for 5 of the
6 experiments. We believe that bySLO is a simple way of
getting started and can act as a stand-in for our prioritizer
algorithm. However, there are still some cases, as seen in
this last example and earlier examples, where prioritizing by
SLO does not work, and PriorityMeister is able to detect and
correct for this.

7. Conclusion
PriorityMeister combines priorities and rate limits, automat-
ically configured, to provide superior tail latency QoS for
shared networked storage in cloud computing infrastructures.
Previous approaches can work for non-bursty workloads, but
struggle to cope with the burstiness that characterizes most
real environments. Experiments with real workload traces on
a real system show that PriorityMeister can provide even ex-
treme tail latency SLOs, whereas the state-of-the-art previous
approaches cannot.
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