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Abstract

We consider the problem of determining the proba-

bility distribution on the queue sizes in a general obliv-

ious packet-routing network. We assume packets con-

tinuously arrive at each node of the network according

to a Poisson Process with rate �. We also assume that

an edge may be traversed by only one packet at a time,

and the time to traverse an edge is an exponentially

distributed random variable with mean 1.

We show that the queueing-theoretic solution to the

problem requires solving a large system of simultane-

ous equations.

We present a simple combinatorial formula which

represents the solution to the system of queueing equa-

tions. This combinatorial formula is especially simple

and insightful in the case of greedy routing to random

destinations.

We use the formula to obtain results including: the

probability distribution on the queue sizes, the ex-

pected queue sizes, and the expected packet delay (all

as a function of � and n) in the case of an n�n array

network and a torus network with greedy randomized

routing.

1 Introduction

1.1 Setup

De�nition 1 An oblivious routing scheme R

speci�es for any (source, destination) pair exactly one

acyclic path from the source to the destination.

Let R be any oblivious packet routing scheme.

LetN be any network with the following properties:

� N consists of m processors with directed wires

between some pairs of processors.

� New packets arrive at processor i according to a

Poisson Process with rate r

i

. That is, the time

between arrivals is exponential with rate r

i

.

�
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� A packet contains a destination �eld and a data

�eld.

� Packets are routed from their source (origination

processor in N ) to their destination processor ac-

cording to R.

� The time it takes for a packet to move through

an edge has distribution D and mean 1.

� Only one packet may be on a particular directed

edge at a time. If two packets require the same

edge, contention is resolved via First-Come-First-

Serve (FCFS).

We consider the problem of determining the queue

buildup on the edges of N .

1.2 Previous History

In the above problem, if D is exponential, we can

convert N with routing scheme R into a Jackson

Queueing Network Q, where the nodes of Q corre-

spond to the edges of N . Since the Jackson Queue-

ing Network Q is a product-form network, we can use

queueing formulae to obtain the exact probability dis-

tribution on the queue sizes at the nodes of Q. The

problems with this approach are:

1. The Jackson Queueing Network requires that D

be exponential, whereas in most real-world net-

works D is constant.

2. Using the Jackson Queueing Formulae requires

�rst solving a very large system of simultaneous

equations. Without �rst solving all these simul-

taneous equations, we have no information as to

which edges have the greatest queue buildup, or

what that queue buildup is.

Leighton's work [11] addresses the above problem

where D is constant equal to 1. In this case, determin-

ing the queue sizes is much more di�cult. Leighton's

analysis requires complex probabilistic reasoning and

also the assumption that the packets are serviced in

a Farthest-First order, rather than FCFS. Leighton's

results are for the case where N is a

p

N �

p

N array

or torus, each packet has a random destination, and

r

i

= �, 8i. Unfortunately, the results are much more

limited than results typically obtained using queueing
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theory.

1

Mitra and Cieslak [12] study expected delay times

on the Omega Network where packets arrive accord-

ing to a Poisson Process with rate �. They assume the

edge service time distribution,D, is exponential. They

are therefore able to translate their problem into a

product-form queueing network. What is interesting

about their work is their extensive experimental sim-

ulations comparing the case of D = Exponential with

mean 1 to the case of D = Constant with mean 1.

These simulations show that the expected delay when

the service times are exponential is always an upper

bound on the expected delay when the service times

are constant. Furthermore, the expected delay with

exponential service times never exceeds the expected

delay with constant service times by more than a fac-

tor of 2.

Stamoulis and Tsitsklis[17] also take advantage of

queueing theory. Their results are restricted to layered

networks. They prove that for any layered network

with Markovian routing, there is a product-form net-

work (using processor-sharing scheduling) whose aver-

age delay upper bounds the average delay for the same

network when the edge service times are constant and

packets are serviced by FCFS. They show that the hy-

percube and buttery networks are both layered net-

works and so they are able to obtain upper bounds on

the average delay in the hypercube and buttery (un-

der greedy routing) by applying the queueing theory

formulae for product-form queueing networks.

1.3 Synopsis of Paper

In this paper we assume D is exponential. However,

we show by simulation that the queue sizes obtained

when D is exponential are an upper bound on the

queue sizes when D is constant.

Since D is exponential, queueing theory is applica-

ble and we can convert N with routing scheme R into

a Jackson Queueing NetworkQ and compute the prob-

ability distribution on the queue size at the nodes of

Q. A major practical drawback to using queue-

ing theory when m, the number of processors

in N , is large is that determining the queue size

at the nodes of Q requires �rst setting up and

solving as many as O(m

4

) simultaneous equa-

tions. This system of equations determines the total

arrival rate (rate of ow into a node from outside the

network as well as from the node's neighbors) at each

node of Q.

1

For both array networks and torus networks, Leighton

proves that if the arrival rate of packets is at most 99% of net-

work capacity, then in any window of T steps, the maximumob-

served queue size is O

�

1 +

log T

logN

�

with probability 1�O(

1

TN

).

Much research has been done speci�cally into how

to solve the system of simultaneous equations that

arise from queueing theory. Wallace [19] presents an

extensive survey of methods used to solve the system

of equations for the total arrival rate at each node. All

the methods however still require a signi�cant amount

of work and some give only approximate solutions.

Also, even if one is interested only in the queue size

at a particular node, one must solve the entire system

of equations.

In this paper we eliminate the need to set

up and solve the system of equations associated

with using queueing theory. We derive a simple

combinatorial formula for the total arrival rate at each

node. In the special case where packets are routed to

random destinations (as is done in the �rst half of any

randomized routing algorithm [18]) and where r

i

= �,

8i, our combinatorial formula states that:

(Total arrival rate into a node of Q)

=

�

m

�(no. paths through the node consistent with R)

where a path is consistent with R if it is a path spec-

i�ed by R.

This formula seems so intuitive that we are sur-

prised none of our references, including the following

major queueing texts [16], [20], [8] [1], [2] and the foun-

dational queueing papers [6], [7], [5] make this obser-

vation. Perhaps the reason that this combinatorial

relation hasn't been noticed before is that queueing

theory, although extremely popular for communica-

tion and scheduling problems (see for example [9] and

[14]), hasn't been applied nearly as much to random-

ized routing on networks.

Besides its importance from a computational point

of view, the above combinatorial formula is very im-

portant because of the insight it gives us into the queue

lengths. The queue size at a node of Q increases with

the total arrival rate at the node. Since the total ar-

rival rate at a node is proportional to the number of

paths consistent withR through the node, we see that

the queue size is greatest for nodes which have a lot

of R-consistent paths through them.

Although our results apply to any network in which

packets are routed via an oblivious routing scheme, as

examples we look at the array network and the torus

network and analyze them in the case where the des-

tinations are random and where R is greedy routing.

We choose this setup speci�cally because it is similar

to the scenario analyzed by Leighton

2

. [11]

2

Although [10] and [15] also derive results on queue sizes for

the array, they only analyze permutation routing.
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Since for an array the number of greedy paths

through a node increases as the Euclidean distance

of the node from the center of the array decreases,

we see by our combinatorial formula that the queue

sizes in the array increase as we look at nodes closer

to the center of the array. In the case of a torus, the

nodes are indistinguishable, so the number of greedy

paths through each node is the same, and therefore so

is the queue size. For both the array and torus,

we use the combinatorial formulas for total ar-

rival rate to obtain very simple formulas for the

probability distribution on the queue sizes, the

expected queue sizes, and the average packet

delay, as a function of �.

1.4 Outline

In Section 2 we give a brief tutorial on queueing

theory. We will not use any queueing theory beyond

what is contained in this section. In Section 3 we show

how to convert any network N , of the type described

in Section 1:1 with exponential edge-traversal times,

having any associated oblivious routing scheme into a

Jackson Queueing Network, so that we can apply the

formulae from queueing theory. Section 4 relates total

arrival rate into a node to the number of R-consistent

paths through the node. Section 5 and Section 6 apply

our result to arrays and tori respectively. Lastly, Sec-

tion 7 describes our simulations contrasting exponen-

tial edge-traversal times versus constant edge-traversal

times. For the omitted proofs, see [3] and [4].

2 Multiple-Job-Class Open Jackson

Queueing Network Model

The Queueing Network Model we use [2], [5] as-

sumes there are m servers with one processor per

server. There are r classes, or types of packets. Pack-

ets of class l arrive at server i from outside the network

according to a Poisson Process with rate r

(l)

i

. A packet

of class l at server i next moves to server j with prob-

ability p

(l)

ij

. (The queueing network model assumes

a complete directed graph connecting the servers. We

can model a network with fewer edges, by simplymak-

ing some of the edge probabilities zero.) A packet at

server i may also leave the network, with some proba-

bility, rather than continuing to another server. Lastly

the service time at server i is exponentially distributed

with rate �

i

.

We will use the notation n

i

to denote the number

of packets at server i.

Theorem 2 [2] When the queueing network is in

steady state, and if �

i

= 1, 8i, then the probability

that there are n

i

packets queued at server i , p

i

(n

i

), is

given by

p

i

(n

i

) = (1�

^

�

i

)

^

�

n

i

i

(1)

where

^

�

i

=

r

X

l=1

^

�

(l)

i

^

�

(l)

i

= r

(l)

i

+

m

X

j=1

p

(l)

ji

^

�

(l)

j

(2)

and p

i

(n

i

) is independent of p

j

(n

j

); 8i; j.

Here

^

�

i

represents the total arrival rate of packets into

server i from both outside the network and from neigh-

boring servers, and

^

�

(l)

i

is the total arrival rate into

server i of class l packets. Equations 2 are known as

the balance equations, since they balance the rate at

which packets enter and leave a server.

Observe that determining p

i

(n

i

) requires solving

O(m � r) simultaneous equations for the

^

�

(l)

i

's.

Lastly let N

i

be a random variable representing the

number of packets at server i (in steady state). Since

by Theorem 2, N

i

has a distribution which is geomet-

ric times a factor

^

�

i

, we have:

E[N

i

] =

^

�

i

1�

^

�

i

(3)

var(N

i

) =

^

�

i

(1�

^

�

i

)

2

E[N

i

] can also be used to derive the average delay of

packets. Recall Little's Formula states N = AT where

N is the average number of jobs in queue in the entire

system and T is the average delay of a job and A is

the arrival rate of jobs into the system.

For the Jackson Queueing Network above, if r

i

=

P

l

r

(l)

i

= �, then N =

P

i

E[N

i

] and A = �m, so

T =

N

�m

=

P

i

E[N

i

]

�m

(4)

3 Modeling Oblivious Packet Routing

on a Network as a Jackson Queueing

Network

We assume we are given a network N with the fol-

lowing properties:

� N consists of m processors with directed wires

between some pairs of processors.

� New packets arrive at processor i according to a

Poisson Process with rate r

i

.
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� A packet contains a destination �eld and a data

�eld.

� Each packet is routed from its source (origina-

tion processor in N ) to its destination processor

according to an oblivious routing scheme R (in-

dependently of other packets).

� The time it takes for a packet to traverse an edge

is exponentially distributed with mean 1.

� Only one packet may traverse a particular di-

rected edge at a time. If two packets require the

same edge, contention is resolved via First-Come-

First-Serve (FCFS).

In this section we show how to convert any network N

as described above with an associated oblivious packet

routing scheme into a Jackson Queueing Network, Q.

This allows us to use the formulae of Section 2 to deter-

mine the exact probability distribution on the queue

buildup at each edge of N .

Since congestion takes place on the edges of N ,

rather than the nodes, we create one server in Q for

each directed edge in N and set �

i

= 1 for all servers

i in Q. When a packet originates at a processor node

of N , we model it as originating at the server of Q

which corresponds to the �rst edge it must traverse

according to R. Observe that Q may have as many as

O(m

2

) servers.

We now must determine p

ij

for Q, that is the prob-

ability that a packet at server i next moves to server j,

so that the routing algorithm is modeled by the p

ij

's.

For our general setup, p

ij

may not be de�ned, and is

certainly di�cult to compute. Therefore, we will asso-

ciate a class, (source; destination), with each packet

and compute p

(s;d)

ij

, which is very clearly de�ned.

p

(s;d)

ij

=

8

>

>

<

>

>

:

1 if j follows i in the path

speci�ed by R

from s to d

0 otherwise

Note that r

(s;d)

s

, the rate at which packets headed for

d arrive at server s, is also speci�ed by N .

Lastly, we create a server in Q corresponding to

each node in N . We call these destination servers.

Destination servers have service rate equal to in�n-

ity. Packets only enter destination servers if they

have reached their destination. Note that since queues

never form at the destination servers, these servers

may be omitted from the queueing analysis com-

pletely.

We have now de�ned Q to simulate N with rout-

ing algorithm R. By Theorem 2, we can now calcu-

late the p

i

(n

i

), the probability of having n

i

packets

at server i of Q, by �rst solving the system of simul-

taneous equations equations for the

^

�

(s;d)

i

's and then

summing those to obtain the

^

�

i

's. However, since the

number of classes is m

2

and the number of servers in

Q is O(m

2

), we must solve O(m

4

) simultaneous

equations just to obtain

^

�

i

and therefore p

i

(n

i

).

Note that system of equations is linear and has 0=1

coe�cients, however, as pointed out by [19], solving

the equations is still a major task when m is large.

In the next section, we present a simple combinato-

rial formula for

^

�

i

in Q which obviates the need to set

up and solve the O(m

4

) simultaneous equations, and

provides insight into the solution.

4 Total Arrival Rate at i  ! # R-

consistent Paths through i

De�nition 3 Let R be an oblivious routing scheme.

A directed path starting at s and ending at d is con-

sistent with R, or R-consistent, if it is the path

speci�ed by R from s to d.

Theorem 4 Let Q be the queueing network associated

with a network N of the type described in Section 3,

having an oblivious routing scheme R. Then the value

^

�

i

has a simple intuitive meaning: It is the sum of the

frequency of use of each R-consistent path through i.

If the frequencies of use of all paths are the same,

^

�

i

is just the frequency of use of a path times the number

of R-consistent paths through i.

Proof: For the sake of the proof, assume that each

packet has a class (s; d) associated with it, where s

is the packet's source (server at which it entered the

network) and d is the packet's destination. Then

^

�

i

=

X

(s;d)

^

�

(s;d)

i

where

^

�

(s;d)

i

is the total arrival rate of packets into

server i which have source s and destination d.

Since packets are routed in the network according

to R, and since R is oblivious, then for any (s; d) and

any i, if the path from s to d speci�ed by R passes

through i, then

^

�

(s;d)

i

= r

(s;d)

s

, where r

(s;d)

s

is the rate

at which packets arrive at s (from outside) headed for

d. If the path from s to d speci�ed by R doesn't pass

through i, then

^

�

(s;d)

i

= 0. So

^

�

i

=

X

(s;d)

^

�

(s;d)

i
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=

X

(s; d) s.t. i is on

s to d path

speci�ed by R

r

(s;d)

s

=

X

(s; d) s.t. i is on

s to d path

speci�ed by R

rate at which path in R

from s to d is used

=

X

R-consistent

paths through i

rate at which that

path is used

If each path has the same frequency of use, then

^

�

i

= (no. paths through i consistent with R) �

(frequency of use of a path)

Theorem 5 Let N be a network of the type described

in Section 3, for which r

i

= � , 8i, and packets have

random destinations. Let R be an oblivious routing

scheme for N . Let Q be the queueing network associ-

ated with N and R. Then

^

�

i

=

�

m

(no. paths through i consistent with R)

Proof: Each path is traversed with frequency

�

m

.

5 Example 1: Greedy Routing on Ar-

rays

Let N be an n� n network of processors arranged

as a doubly-directed array, where

� New packets arrive at processor i of N according

to a Poisson Process with rate �.

� A packet contains a destination �eld which is a

random processor in the array and a data

�eld. (This assumption comprises the �rst half of

any randomized routing algorithm [18]).

� The time it takes for a packet to traverse an edge

is exponentially distributed with mean 1.

� Only one packet may traverse a particular di-

rected edge at a time. If two packets require the

same edge, contention is resolved via First-Come-

First-Serve (FCFS).

Let R be the following greedy routing algorithm

forN : First the packet is routed to the correct column

(as speci�ed by its destination) and then to its correct

row. Observe that R is an oblivious routing scheme.

Then by the method of Section 3, we can model

N with routing algorithm R by a Jackson Queueing

Network, Q. We don't even need to specify the pa-

rameters of Q, but rather we can immediately jump

to Theorem 5 and compute

^

�

i

in Q. By Theorem 5,

^

�

i

= (number of greedy paths through i) �

�

n

2

We introduce some notation. Let the rows and

columns of N be numbered from 0 to n�1 with (0; 0)

being in the upper, lefthand corner. Recall that there

is a server in Q for each node and directed edge of N .

There are 4 edges directed out of node (i; j) in N . We

use the notation P

ijL

; P

ijR

; P

ijU

; P

ijD

to denote the

4 servers in Q corresponding to the 4 directed edges

out of processor (i; j) in N . We use the notation P

ijC

to denote the destination (i; j) server. (L:left, R:right,

D:down, U:up, C:center). We use the notation P

ijS

as

shorthand for fP

ijS

: S 2 fR;L; U;Dgg.

Theorem 6 The total arrival rate of packets at server

P

r;c;S

in Q is

^

�

P

row;col;R

=

�

n

(col + 1)(n� col � 1)

^

�

P

row;col;L

=

�

n

(n� col)col

^

�

P

row;col;U

=

�

n

(n� row)row

^

�

P

row;col;D

=

�

n

(row + 1)(n� row � 1)

Proof: We determine the number of greedy paths

through P

r;c;R

. All greedy paths through P

r;c;R

must

have a destination to the right of (r; c). There are

n(n � c � 1) such possible destinations. Addition-

ally since the algorithm routes packets to the correct

column before changing rows, the only possible path

sources are the c + 1 sources (r; 0); (r; 1); : : : ; (r; c).

Thus there are a total of (c + 1)n(n � c � 1) paths

through P

r;c;R

. So

^

�

P

r;c;R

is

�

n

2

(c + 1)n(n� c� 1).

The arguments for P

r;c;L

; P

r;c;U

; P

r;c;D

are similar.

Given the total arrival rates, we can now easily

compute the probability distribution on the number of

packets queued at each server of Q, using Formula 1 .

For example,

Pr[k packets queued at P

r;c;R

]

= (

�

n

(c+ 1)(n � c+ 1))

k

� (1�

�

n

(c+ 1)(n� c + 1))
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Theorem 7 We de�ne N

(r;c)

to be the sum of the

number of packets queued at P

r;c;R

, P

r;c;L

, P

r;c;U

, and

P

r;c;D

.

E[N

(r;c)

] =

n

�

(

1

b+ x

2

� x

+

1

b+ (x+ 1)

2

� (x + 1)

+

1

b+ y

2

� y

+

1

b+ (y + 1)

2

� (y + 1)

)� 4

where b =

n

�

�

n

2

�1

4

and x and y are the horizontal

and vertical distance of (r; c) from the center of the

array.

Proof: The proof uses Formula 3 plus some algebraic

manipulation. See Appendix A for details.

Speaking very loosely, Theorem 7 tells us that given

a node with horizontal distance x and vertical distance

y from the array center, the expected sum of the queue

lengths on edges out of the node is proportional to

1

x

2

+

1

y

2

. Note the relationship to the Euclidean distance of

the node from the center of the array.

Theorem 8 In order for the network to reach steady

state, we must have

� <

4

n

Proof: Recall from formula 3, the expected queue size

at server i of Q, E[N

i

] =

^

�

i

1�

^

�

i

. This becomes in�nite

when

^

�

i

= 1. Since by Theorem 6,

^

�

i

�

�

n

�

n

2

�

n

2

, we

require � <

4

n

.

This bound agrees with that derived from bisection

arguments by Leighton [11].

We know fromTheorem 6 that the maximumqueue

size occurs at the array center. What is the probability

distribution on the maximum queue size in the array?

Theorem 9 If the arrival rate � is p fraction of the

maximum capacity, i.e. � =

4p

n

, then

Pr[k packets at P

n

2

;

n

2

;L

] = p

k

(1� p)

Proof: From Theorem 6 and Formula 1.

Observe that Theorem 9 is approximately true for

P

n

2

;

n

2

;R

; P

n

2

;

n

2

;U

; P

n

2

;

n

2

;D

as well.

Theorem 10 If the arrival rate � is p fraction of the

maximum capacity, i.e. � =

4p

n

, then

E[N

n

2

;

n

2

] =

4p(n

2

� 1)

n

2

(1� p) + p

�!

n!1 4

�

p

1� p

�

Theorem 11 If the arrival rate � is p fraction of the

maximum capacity, i.e. � =

4p

n

, then the average delay

of a packet is

T

:

= n

1

p

0

@

1

p

q

1

p

� 1

tan

�1

1

q

1

p

� 1

� 1

1

A

Proof: The proof combines Formula 4 with our com-

binatorial formula for expected queue size, given in

Theorem 7. See Appendix B for details.

6 Example 2: Greedy Routing on a

Torus

Let N be an n � n network of processors arranged

as a doubly-directed torus, having the same properties

as the array network of Section 5.

Let R be the following greedy routing algo-

rithm: A packet �rst moves within its row to the cor-

rect destination column by taking the shortest route

to the column (either left or right �

n

2

steps). Then,

the packet moves within that column to its destina-

tion again by taking the shortest route (either up or

down �

n

2

steps). If n is even, for destinations exactly

n

2

nodes away (that is, equally close either direction)

Up and Right have preference. Let Q be the Jack-

son Queueing Network corresponding to N with R,

as described in Section 3.

We now state without proof results for the torus

network, of the same type as we proved for the array

network. The proofs are analogous, and are further

simpli�ed by the fact that the nodes of a torus are

indistinguishable.

Observe the interesting correlation between Theo-

rem 10 and Theorem 15. This shows that the expected

queue size at the center node of the array equals the

expected queue size at every node of the torus, when

the same fraction of maximum load p is used.

Theorem 12 For an n � n torus, where n is even,

the total arrival rate of packets at P

r;c;S

in Q is

^

�

P

r;c;R

=

�

8

(n+ 2)

^

�

P

r;c;L

=

�

8

(n� 2)

^

�

P

r;c;U

=

�

8

(n+ 2)

^

�

P

r;c;D

=

�

8

(n� 2)

E[N

(r;c)

] =

2(n+ 2)

8

�

� (n+ 2)

+

2(n� 2)

8

�

� (n� 2)

6



If n is odd the total arrival rate of packets at P

r;c;S

in Q is

^

�

P

r;c;S

=

�

8

(n �

1

n

)

E[N

(r;c)

] = 4

n

2

� 1

8n

�

� (n

2

� 1)

It is interesting to observe that the total arrival rates

computed above for the torus are the same as the total

arrival rates in the case of a ring.

Theorem 13 In order for the network to reach steady

state, we must have

� <

8

n

Theorem 14 If the arrival rate � is p fraction of the

maximum capacity, i.e. � =

8p

n

, then (assuming n is

odd)

Pr[k packets at P

r;c;S

] = (1� p +

p

n

2

)p

k

(1�

1

n

2

)

k

Theorem 15 If the arrival rate � is p fraction of the

maximum capacity, i.e. � =

8p

n

, then (assuming n is

odd)

E[N

r;c

] = 4

p(n

2

� 1)

n

2

(1� p) + p

�!

n!1 4

�

p

1� p

�

Theorem 16 If the arrival rate � is p fraction of the

maximum capacity, i.e. � =

8p

n

, then (assuming n is

odd)

T =

N

n

2

�

= 4

n

2

� 1

8n� �(n

2

� 1)

�!

n!1

n

2

�

1

1� p

7 Simulations: Exponential Service

Times vs. Constant Service Times

Our entire paper has assumed that the edge traver-

sal times in our network N are exponentially dis-

tributed with mean 1. In real-world applications, how-

ever, the edge traversal times are usually constant.

We conjecture that the queue buildup when the edge-

traversal times are exponential with mean one is an

upper bound on the queue buildup when the edge-

traversal times are constant with mean one. In this

section we show experimentally that this is indeed the

case for the array network.

We ran our simulations for various values of n, the

array size, and p, the fraction of maximum load. For

any particular n and p, we used exactly the same (ran-

dom) arrival pattern for both exponential and con-

stant service times. We adapted Fuat C. Baran's

implementation of the Minimal Standard Pseudo-

Random Number Generator (A = 16807) proposed by

Park and Miller (see [13]) for a pseudo-random num-

ber generator.

Simulations began with all queues empty, and ran

until the growth of the total queue size slowed down, at

which point it was assumed the network had reached

steady state. Once the network achieved steady state,

we computed the expected queue size at a processor by

averaging the queue size at the processor over several

time steps. For high p's the total queue size continued

to increase slowly never reaching the theoretical size.

We believe that the simulations may take a very long

time to reach steady state, explaining why the results

are lower than predicted.

Table 1 shows the mean queue size at the center

node of di�erent size array networks with di�erent

loads.

3

(For even n, the mean of the queue sizes at the

four center nodes is given.) The top entry in each cell

is the theoretical queue size for exponential service.

The middle entry is the result of a simulation with

exponential service, and the bottom entry is a simu-

lation with constant service. The exponential simu-

lation agrees quite well with the prediction. Observe

that the expected queue size when the service time is

exponential is an upper bound on the expected queue

size the service time is constant.

Tables 2, 3, and 4 present the mean queue sizes for

all nodes in the case of p = :95 and n = 5. Table 2 is

predicted sizes for exponential service time. Table 3 is

the result of simulationswith exponential service time,

and Table 4 is the result of simulations with constant

service. (1097 in the fourth column of the �rst row of

table 3 is not, unfortunately, a misprint.)
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A Proof of Theorem 7

Proof: Recall we number rows and columns

0; : : : ; n� 1. The center of the array is at (

n�1

2

;

n�1

2

).

Let x = col(P ) �

n�1

2

and y = row(P ) �

n�1

2

, the x

and y o�sets of the node from the center of the array.

So col(P ) = x +

n�1

2

and row(P ) = y +

n�1

2

. Note

that when n is even, the center of the array as well as

the o�sets are fractions.

Rewriting the formulas from Theorem 6 in terms of

x and y gives

^

�

P

r;c;R

=

�

n

�

n� 1

2

+ (x+ 1)

��

n+ 1

2

� (x+ 1)

�

^

�

P

r;c;L

=

�

n

�

n� 1

2

+ x

��

n+ 1

2

� x

�

^

�

P

r;c;U

=

�

n

�

n� 1

2

+ y

��

n+ 1

2

� y

�

^

�

P

r;c;D

=

�

n

�

n� 1

2

+ (y + 1)

��

n+ 1

2

� (y + 1)

�

Using Equation 3 and setting a =

n

2

�1

4

and b =

n

�

� a, we have

E[N

P

r;c;R

] =

a� (x+ 1)

2

+ (x+ 1)

b+ (x+ 1)

2

� (x+ 1)

E[N

P

r;c;L

] =

a� x

2

+ x

b+ x

2

� x

E[N

P

r;c;U

] =

a� y

2

+ y

b+ y

2

� y

E[N

P

r;c;D

] =

a� (y + 1)

2

+ (y + 1)

b+ (y + 1)

2

� (y + 1)

The expected value of the queue at a node is the

sum of expected values of queues at each petal, so

E[N

r;c

] =

X

S

E[N

P

r;c;S

]

=

a� (x+ 1)

2

+ (x + 1)

b+ (x+ 1)

2

� (x+ 1)

+

a� x

2

+ x

b+ x

2

� x

+

a � y

2

+ y

b+ y

2

� y

+

a� (y + 1)

2

+ (y + 1)

b+ (y + 1)

2

� (y + 1)

=

a

b+ (x + 1)

2

� (x+ 1)

�

(x + 1)

2

� (x+ 1)

b+ (x+ 1)

2

� (x+ 1)

+

a

b+ x

2

� x

�

x

2

� x

b+ x

2

� x

+

a

b+ y

2

� y

�

y

2

� y

b + y

2

� y

+

a

b+ (y + 1)

2

� (y + 1)

�

(y + 1)

2

� (y + 1)

b+ (y + 1)

2

� (y + 1)

=

a

b+ (x + 1)

2

� (x+ 1)

+

b

b+ (x+ 1)

2

� (x+ 1)

+

a

b+ x

2

� x

+

b

b+ x

2

� x

+

a

b+ y

2

� y

+

b

b + y

2

� y

+

a

b+ (y + 1)

2

� (y + 1)

+

b

b+ (y + 1)

2

� (y + 1)

� 4

= (a+ b)(

1

b+(x+1)

2

�(x+1)

+

1

b+x

2

�x

+

1

b+y

2

�y

+

1

b+(y+1)

2

�(y+1)

)� 4

=

n

�

(

1

b+(x+1)

2

�(x+1)

+

1

b+x

2

�x

+

1

b+y

2

�y

+

1

b+(y+1)

2

�(y+1)

)� 4

B Proof of Theorem 11

Proof: Let b be de�ned as in Theorem 7.

Let q = 4b� 1 = n(

4

�

� n) and � =

4p

n

.

We apply Formula 4 to determine the average

delay,T , of a packet in Q. Since the arrival rate of

packets into the system is n

2

�,

T =

1

n

2

�

n�1

2

X

x=

�(n�1)

2

n�1

2

X

y=

�(n�1)

2

E[N

x;y

]
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:

=

1

n

2

�

Z
n

2

�n

2

Z
n

2

�n

2

E[N

x;y

]dxdy

=

1

n

2

�

Z
n

2

�n

2

Z
n

2

�n

2

n

�

(

1

b+x

2

�x

+

1

b+(x+1)

2

�(x+1)

+

1

b+y

2

�y

+

1

b+(y+1)

2

�(y+1)

)� 4dxdy

=

4

n�

�

2

p

q

n

�

�

tan

�1

n� 1

p

q

+ tan

�1

n+ 1

p

q

�

� n

�

=

n

p

 

1

2p

p

1

p

�1

�

tan

�1 n�1

n

p

1

p

�1

+ tan

�1 n+1

n

p

1

p

�1

�

� 1

!

:

=

n

p

0

@

1

p

q

1

p

� 1

tan

�1

n

n

q

1

p

� 1

� 1

1

A

= n

1

p

0

@

1

p

q

1

p

� 1

tan

�1

1

q

1

p

� 1

� 1

1

A
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