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1 Introduction

In every sport, playo�s and tournaments are used

to select the best among a set of competing players or

teams. In this paper we consider the optimal design

of such systems. We seek designs that are optimally

e�cient, in the sense that they minimize the number

of rounds or the number of games needed to select the

best player with a stated probability. Our models re-


ect the fact that the better player in games between

two players or teams does not always win. As a con-

sequence, the problems we consider are not equivalent

to choosing the smallest of n elements in the standard

comparison model.

We assume that there are n players. There is an

initially unknown one-to-one correspondence between

the set of players and the index set f1; 2; � � � ; ng. The

player corresponding to index j is called Player j.

Player 1 is the best player in the following sense: in

any game between Player 1 and Player j, Player 1

wins with probability p

1j

; where p

1j

> 1=2; draws are

not allowed. The goal is to determine the identity of

Player 1 with probability at least 1��, where � is a

given constant. The games are played in roundswhere,

in each round, each player participates in at most one

game. We seek to minimize the number of rounds (or,

in some cases, the expected number of rounds) needed

to achieve the goal. A secondary objective is to mini-

mize the number of games.
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We consider three di�erent models, which di�er in

their assumptions about the outcomes of games that

do not involve Player 1.

The Adversary Model This model assumes that

the outcomes of all games that do not involve Player

1 are under the control of an adversary; i.e., they are

completely unpredictable.

The Strong Transitivity Model This model as-

sumes that there is a �xed ranking of the players such

that a higher-ranked player always has at least a 50

percent chance of beating a lower-ranked player and,

for any �xed player, the stronger the opponent, the

lower the probability of winning. These assumptions

have been widely adopted in connection with certain

problems of statistical inference using paired compar-

isons [D]. We formalize this as follows:

� There is a matrix (p

ij

) such that, whenever Player

i faces Player j, Player i wins with probability p

ij

, where p

ij

� 0 and p

ij

+ p

ji

= 1.

� p

ij

� 1=2 whenever i < j.

� If i < j < k then p

ik

� max(p

ij

; p

jk

); this prop-

erty is called strong transitivity.

The Discriminating Model This is a special

case of the strong transitivity model in which the

matrix P is discriminating: i.e., if i < j then, for

k = 1; 2; � � � ; n � 1;

p

ki

p

kj

�

p

k+1;i

p

k+1;j

. This condition can

be interpreted as saying that, the weaker the common

opponent k, the greater the signi�cance of a loss to

Player k in distinguishing between Player i and Player

j. The condition holds for a number of natural con-

crete assumptions about the matrix P , including the

following: Player i has a strength �

i

, and his perfor-

mance in any given game is a normal random vari-

able with mean �

i

and standard deviation 1. When

two players meet the one with the higher performance

wins.

Observe that the adversary model is the most gen-

eral. The strong transitivity model is a special case of

the adversary model, and the discriminating model is

a special case of the strong transitivity model.

In each of the three models we may assume either
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known win probabilities - i.e., that the row (p

1j

)

is known to the algorithm - or unknown win prob-

abilities - i.e., that the row (p

1j

) is unknown to the

algorithm. Note that, even in the case of known win

probabilities, the algorithm is provided with no infor-

mation about the win probabilities for games that do

not involve Player 1, even though these probabilities

are well-de�ned in the strong transitivity and discrim-

inating models.

Thus we have six cases to consider, corresponding

to three possible models for the outcomes of games,

and, within each of these, two possible assumptions

about the knowledge available to the algorithms. We

designate a case by an ordered pair in which the �rst

component (ADV, TRANS or DISC) indicates the

model for the outcomes of games and the second com-

ponent (K or U) indicates whether the win probabili-

ties are known or unknown. Thus (ADV, K) denotes

the adversary model with known win probabilities. In

each of the six cases we allow our algorithms to be

randomized, and restrict attention to algorithms that,

for all choices of �, n and (p

1j

), select Player 1 with

probability at least 1��.

In the case of known win probabilities it is possible

to de�ne a nonuniform algorithm that is \pointwise

optimal"; i.e., for every �xed choice of the (known)

win probabilities (p

1j

), it minimizes the worst-case

expected number of rounds. Let T

ADV

(�; n; (p

1j

)),

T

TRANS

(�; n; (p

1j

)) and T

DISC

(�; n; (p

1j

)) denote

the worst-case expected running time of this pointwise

optimal algorithm in the cases (ADV,K), (TRANS,K)

and (DISC,K) respectively.

In the three cases involving unknown win proba-

bilities no such pointwise optimal algorithm exists,

and thus a more elaborate de�nitional framework is

required in order to describe the complexity of the

problem in all cases. The function F (�; n; (p

1j

)) is

called an upper bound on complexity if, for every choice

of �, n and (p

1j

), there is an algorithm that runs

within an expected number of rounds bounded above

by F (�; n; (p

1j

)) , a lower bound on complexity if, for

every choice of �, n and (p

1j

), every algorithm re-

quires an expected number of rounds greater than or

equal to F , and an existential lower bound on complex-

ity if for every algorithm there exists a choice of �, n

and (p

1j

) for which the expected number of rounds is

at least F (�; n; (p

1j

)).

1.1 Main Results

Let a

j

= p

1j

�

1

2

and let �

i

=

P

2

i

j=2

a

j

2

i

�1

. Thus a

j

is

Player 1's advantage against Player j, and �

i

is Player

1's average advantage against Players 2; 3; � � �; 2

i

. We

assume throughout that � �

1

3

.

Observe that lgn is a lower bound on complexity

for all models. This is because the declared champion

of any tournament algorithm, which is correct more

than half the time, must be indirectly compared with

at least

n

2

+ 1 inputs.

For all six cases we demonstrate a lower bound on

complexity of LB =

1

lg(1+

lg(n)

lg(

1

�

)

P

lgn

i=1

1

�

2

i

. We also de-

rive an existential lower bound of

n

16

1

�

2

1

for the case

(ADV,U).

Our upper bounds on complexity are as follows:

Known Win Probabilities

Upper Bound

ADV O

�

lg(

1

�

)

P

lgn

i=1

1

�

2

i

+ lg(

1

�

) lg lg(

1

�

)

1

�

2

1

�

TRANS O

�

lg(

1

�

)

P

lgn

i=1

1

�

2

i

+ lg(

1

�

) lg lg(

1

�

)

1

�

2

1

�

DISC min( O

�

lg(

1

�

)

P

lgn

i=1

1

�

2

i

+ lg(

1

�

) lg lg(

1

�

)

1

�

2

1

�

,

O

�

LB + ln (

1

�

) lg

2

n

�

)

Unknown Win Probabilities

Upper Bound

ADV ?

TRANS O(

P

lgn

i=1

(

1

�

2

i

(lg lg

1

�

i

+ lg

1

�

+ lgn)))

DISC O(

P

lgn

i=1

(

1

�

2

i

(lg lg

1

�

i

+ lg

1

�

+ lgn)))

In Section 3 we prove the lower bound on complex-

ity LB for the case (DISC,K). Since this is the most

favorable case from the point of view of the algorithm,

this lower bound applies to all six cases.

In Section 4 we prove an upper bound on complex-

ity of O

�

lg(

1

�

)

P

lgn

i=1

1

�

2

i

+ lg(

1

�

) lg lg(

1

�

)

1

�

2

1

�

for the

case (ADV,K). Since the adversary model is the least

favorable for the algorithm designer, this upper bound

also applies to the cases (TRANS,K) and (DISC,K).

This upper bound is particularly interesting, as it is

achieved using a variant of a common method of pair-

ing chess players called the Swiss System, in which

players with equal scores are matched whenever pos-

sible. The bound holds within the adversary model,

which makes no assumptions about the outcomes of

matches not involving Player 1, and yet comes within

roughly a lg lgn factor of a lower bound that applies

even under the rather speci�c assumptions of the dis-

criminating model. Thus the result shows that our

variant of the Swiss system is both e�cient and ro-

bust. We note that, even in the symmetric case where

forall j greater than or equal to 2, p

1j

=

1

2

+ �, our al-

gorithm beats any obvious variant of a knockout tour-

nament by a factor of lg lg(n). In the general case,

where the p

1j

values will vary, our algorithm beats
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any obvious knockout variant by a factor of as much

as lg(n) lg lg(n).

In Section 5 we improve the upper bound on com-

plexity for (DISC,K) in the case when the best player's

advantage over the second best player is small.

The remaining sections assume the �rst row is un-

known. In Section 6 we prove an existential lower

bound on complexity for (ADV,U). This lower bound

implies that uniformly e�cient selection procedures

are not possible in the adversary model, when the win

probabilities are unknown.

In Section 7 we prove an upper bound on complex-

ity for (TRANS,U) in the case where there are just two

players. This is used in Section 8 to prove an upper

bound on complexity for (TRANS,U) in the general

case of n players. This upper bound also applies to the

case (DISC,U). Observe that in contrast to the adver-

sary model, e�cient selection procedures are possible

under the strong transitivity and discriminating mod-

els with unknown win probabilities.

In deriving our upper bounds, we have concentrated

on asymptotic results and our constants are sometimes

very large. Nevertheless, we believe that our results

do provide insights into the design of real-world playo�

systems.

2 Previous Results

The problem of selecting the best of n players using

unreliable comparisons was addressed in [RGL], where

Ravikumar, Ganesan and Lakshmanan assume that

the total number of erroneous outcomes is less than

some absolute upper bound e. They show that (e +

1)n�1 comparisons are necessary and su�cient to �nd

the best player.

In [FPRU], Feige, Peleg, Raghavan and Upfal

choose a probabilistic model, assuming that each com-

parison has a �xed probability p of being erroneous,

and that successive comparisons are independent. The

goal is then to select the best player with probabil-

ity at least 1 � �, for some �xed con�dence level

�. They give a parallel algorithm operating within

O(lgn) rounds and O(n) comparisons. Although they

do not point this out, their proof does not depend on

any assumptions about the outcomes of games that do

not involve Player 1, and thus implies an upper bound

on complexity of order lgn for (ADV,K), (TRANS,K)

and (DISC, K) in the case where p

1j

is equal to a

constant greater than 1=2 for all j. These bounds are

optimal up to constant factors.

Previous work on the strong transitivity model has

focused on classical \knockout tournaments", where a

player is eliminated as soon as he or she loses a game,

and a total of (n�1) games are played ([ChuH], [Hw],

[I], [CheH]). The tournament can be represented as

a tree, each leaf containing a player and each internal

node containing the winner of a game between its two

children. Since knockout tournaments are not very

e�cient in selecting the best player with unreliable

games, several authors have considered generalizations

of the knockout tournament in which each node of

the tournament tree represents a match between two

players extending over a series of games, rather than

a single game. Such schemes are studied in [HM].

The present paper seems to be the �rst to give a

lower bound on the number of rounds required to se-

lect the best player with probability 1�� in the strong

transitivity model, and the �rst to consider the adver-

sary and discriminatingmodels at all (although special

cases of the discriminating model are studied in [Br]

and [Th]).

Coping with unreliable information has also been

studied in other contexts. In particular, search-

ing with erroneous comparisons was initiated by

Rivest, Meyer, Kleitman, Winklmann and Spencer

[RMKWS], assuming that the number of errors is less

than e. Pelc [P] studied that problem in the prob-

abilistic model (with �xed error probability p). Pelc

[P], and Aslam and Dhagat [AD] worked on the model

of \linearly bounded errors", where they assume that

there is a constant r such that each initial sequence of

i comparison questions receives at most ri erroneous

answers.

3 A Lower Bound for T

DISC;K

Let LB =

P

lg(n)

i=1

1

�

2

i

lg(1+

lg(n)

lg(

1

�

)

)

.

Theorem 1 If T is the expected number of rounds

used by a tournament algorithm to �nd the best of n

players with con�dence 1��, where the algorithm is

given only the �rst row of the discriminating probabil-

ity matrix, (p

ij

), then T = 
(LB).

Proof. (Sketch)

We give a construction which extends any vector

(p

1j

) to an n � n matrix (p

ij

) for which the lower

bound holds (even if the algorithm is given the en-

tire matrix (p

ij

)). For any real � let X(�) be a ran-

dom variable that has the normal distribution with

mean � and standard deviation 1. Given p

1j

, choose

�

1

; �

2

; � � � ; �

n

such that, if X

�

1

and X

�

j

are indepen-

dent, then Pr[x

�

1

< X

�

j

] = p

1j

. Now de�ne the rest

of the matrix (p

ij

) by the rule p

ij

= Pr[x

�

i

< X

�

j

]
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where X

�

i

and X

�

j

are independent. This matrix

of win probabilities has the following interpretation:

whenever Player i participates in a game he draws a

value from the normal distribution with mean �

i

and

standard deviation 1; in each game, the player with

the smaller value wins.

Now we can prove our lower bound using the \little

birdie" principle. Suppose that, in each round, instead

of being told the winner of each game, the algorithm

is told the actual values that the players draw from

their normal distributions. Then, given the extra in-

formation, the algorithm is faced with the following

inference problem: The constants �

1

� �

2

; � � � � �

n

are given. We have n independent random variables

such that, for each i, one of these random variables is

normal with mean �

i

and standard deviation 1, but

we have no knowledge as to which random variable has

which mean. We want to determine, with probability

1��, which random variable has mean �

1

. We pro-

ceed in rounds where, in each round, we draw a sample

from each of the distributions. It is easy to show that,

for any stopping rule, the expected number of rounds

is 
(LB). The theorem follows from this fact.

In the full paper, we show that, even in the case

where the values for the samples are given, rather than

merely the outcomes of the games, any stopping rule

requires T = 
(

P

lg(n)

i=1

1

�

2

i

lg(1+

lg(n)

lg(

1

�

)

)

) samples from each distri-

bution, on the average, to identify the distribution of

minimum mean with con�dence 1��. 2

Corollary 2 The lower bound of Theorem 1 holds in

the strongly transitive and adversary models.

4 An Upper Bound on T

ADV;K

In this section we assume known win probabilities.

We will determine the best player with error � �. The

adversary can answer in any way he likes, provided

that when 1 plays j, 1 wins with probability p

1j

. Our

algorithm is motivated by the Swiss System, a widely

used method of pairing chess players.

Let k be a number such that 2(480 lg(k) lg(

1

�

))

2

+

240 lgk lg

1

�

=

p

k.

Program Best-Player-Against-

Adversary(n;�)

Do until � k players left:

Let m = number of players .

Assign all players a win

score of 0.

Let phase = 1

Do while phase

� t = 480(lgm) lg(

1

�

)

Pair up randomly all

players with an equal

win score, have each

pair play 3

1

�

2

lgm

4

games, and declare as

winner the member of

each pair who has won

the majority of the

games.

The winners of the phase

increase their win

score by 1.

The losers in the phase

keep the same win score.

Any odd (unpaired) player

is assumed to have won

the phase.

phase = phase + 1

Throw out all players whose

win score <

t

2

+

p

3

p

2

p

lgm

p

t,

except for those players

who were ever in a win

score category containing

fewer than 2

4

p

m players

during this stage.

Run a standard knockout tournament

among the remaining k players.

In the comments below, we'll use the term stage to

describe one iteration of the outermost loop. We de-

note the number of players remaining at the beginning

of stage i by m

i

, and we denote the number of phases

in stage i by t

i

= 480(lgm

i

) lg(

1

�

).

Theorem 3 The above algorithm runs

in 11520 lg

1

�

P

lgn

i=1

1

�

2

i

+ 864

1

�

2

1

lg

1

�

lg lg

1

�

rounds and

the probability it fails to determine the best player in

the presence of a malicious adversary is at most �.

Proof. (Sketch)

We establish the following lemmas:
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� In a given stage i, the probability that the best

player fails to survive for the next stage is at most

�

lg(m

i

)

.

� For all w, in stage i, after t

i

phases, the number

of players with exactly w wins is at most

1

2

t

i

�

t

i

w

�

m

i

+ 1

� In any stage i, the number of players who survive

stage i is at most

p

m

i

. So the total number of

stages is at most lg lg(n).

When we're down to k players, we run a knockout

tournament. A knockout tournament involves pairing

up the k players and then playing T games between

each pair. The member of each pair with the smaller

number of wins is then thrown out, and the process

is repeated with the

k

2

remaining players. We will use

T =

3

2

lg(

2 lg k

�

)

1

�

2

1

in our knockout tournament.

We show:

� Pr[Best player is killed o� during knockout tour-

nament] �

�

2

� The number of rounds for the knockout tourna-

ment = T lgk � 864

1

�

2

1

lg

1

�

lg lg

1

�

.

2

5 Better Upper Bound on T

DISC;K

Let us say that the matrix (p

ij

) is discriminat-

ing if the following inequality holds whenever j > i:

p

k+1;j

p

k+1;i

�

p

kj

p

ki

. This inequality may be interpreted as

follows: if Player i is stronger than Player j, then

the ratio of i's loss probability to j's loss probabil-

ity against a common opponent is an increasing func-

tion of the common opponent's strength. That is, the

weader the common opponent k, the greater the signif-

icance of a loss to Player k in distinguishing between

Player i and Player j.

We mention two commonly used models that lead

to discriminating matrices.

The Bradley-Terry Model[Br] Player i has a

strength �

i

, where �

1

� �

2

� � � � � �

n

, and p

ij

=

�

i

�

i

+�

j

. This model applies when each player is a

Geiger counter and, in any game, the �rst counter to

click wins.

The Thurstone-Mosteller Model[Th] Player i

has a strength s

i

, and his performance in any given

match is a random variable drawn from the normal

distribution with mean s

i

and standard deviation 1.

When two players are matched, the one with the

higher performance is the winner. It follows that p

ij

is just the probability that a normal random vari-

able with variance 2 is less than or equal to s

i

� s

j

.

Thus p

ij

=

1

2

p

2�

R

s

i

�s

j

�1

e

�

x

2

4

dx, and a brief calcula-

tion shows that (p

ij

) is discriminating.

Throughout this section we assume that (p

ij

) is dis-

criminating.

We consider the following algorithm:

Program Best-Player-Discriminating-

Matrix-Algorithm-A(players;�)

Initially, S = f1; 2; � � � ; ng.

Do until jSj = 1

Pair up the players in S

randomly and play a game

between each pair.

Delete from S all players

with at least T losses.

The sole remaining player is

declared the champion.

Theorem 4 The number of rounds required by Algo-

rithm A to determine the best player with probability

1�� is O(LB lgn), where LB is the lower bound from

Section 3.

Proof. (Sketch)

� We use Azuma's Martingale Tail Inequality to

show that the probability that Player 1 gets elim-

inated before Player j does is at most e

�

a

2

1j

T

2

.

� We note that the number of days cannot exceed

T lgn and the number of games cannot exceed

Tn.

� We show that in order to get

P

n

j=2

e

�

a

2

1j

T

2

< �,

it su�ces that T = c � LB. 2

5.1 The Case of Closely Matched Players

We continue to assume that the matrix (p

ij

) is dis-

criminating. We consider the following very simple

algorithm.

Program Best-Player-Discriminating-

Matrix-Algorithm-B(players;�)

Do until n� 1 players have

accrued at least T losses:

On each day, pair the players

randomly and play a game

between each pair.

Declare as winner any player who

has the minimum number of

losses.
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The analysis of Algorithm A applies to this algo-

rithm as well and shows that we can choose T =

O(T

�

). We shall show that the number of days re-

quired for Algorithm B will be O(max(lgn; T )) with

high probability, rather than O(T lgn), provided that

the players are fairly evenly matched, in the sense that

each player has a probability of at least q of losing

against a random player, where q is a �xed positive

constant. Thus we suppose that

1

n�1

P

n

i=2

p

1i

� q.

Theorem 5 If Player 1's probability of losing against

a random player is bounded below by a positive con-

stant q, then Algorithm B requires O(LB) rounds to

determine the best player with probability 1��, where

LB is the lower bound from Section 3 .

Proof. (Sketch) We show by Cherno� bounds that

there exists a constant a such that if competitions were

allowed to run for an(max(lgn; LB) days, then with

probability 1��, all players would accrue at least T

losses. 2

Theorem 6 The condition that Player 1's probability

of losing against a random player is bounded below by

a positive constant q can be achieved in O(lg

2

n ln(

1

�

))

rounds with probability 1��.

Proof. (Sketch) As long as Player 1's average prob-

ability of losing against the remaining players is less

than q, then we can eliminate a constant fraction of the

remaining players in a subtournament of lgn rounds.

2

6 A Lower Bound on T

ADV;U

We will show that, when Players 2 : : :n are al-

lowed to choose adaptively their winning probabilities

amongst each other and when we do not know the best

player's winning probabilities, we can not e�ciently

determine the best player. This corresponds to a situ-

ation where many dishonest, possibly mediocre, play-

ers are trying to prevent us from learning the identity

of the honest best player.

Theorem 7 There exists no algorithm which, in the

presence of a malicious adversary and without knowing

the best player's winning probabilities, can identify the

best player, with con�dence 1 � � for � <

1

3

, within

n

16

1

�

2

1

rounds for all values of n and �

1

.

Proof. (Sketch)

Suppose there exists an algorithmA which will out-

put the best player, with probability at least 1 � �,

within

n

16

1

�

2

1

rounds.

We consider two scenarios:

1. First, we consider a situation where Player 1's

winning probabilities against players 2 : : :n are

all equal to 1 and players 2 : : :n having winning

probability

1

2

amongst each other. In this sce-

nario, algorithm A will output Player 1 within

n

4

rounds with probability at least 1��.

2. We now consider a situation where Player 1's ad-

vantages over players 2 : : :n are the same and

equal to 
 = �

lg(n)

<

1

4n

.

The adversary's strategy is to choose a second

best player, Player 2, and give that player prob-

ability 1 of beating players 3 : : :n. For 3 � i <

j � n, the adversary lets Player i beat Player j

with probability

1

2

. So long as the best player can

not be discriminated from players 3 : : :n, the al-

gorithm will announce (incorrectly) that Player 2

is the best player within

n

4

rounds. 2

7 Upper Bound on T

TRANS;U

for only

Two Players

Throughout this section we assume the strong tran-

sitivity model.

7.1 Playing the Two Players Against

Each Other

In this subsection we consider the following prob-

lem: Given two unequal players with unknown relative

strengths, determine, quickly and with high probability,

which player is the better player. In this subsection,

we will show that one can determine the better player

correctly within

12

�

2

(2 lg lg (

1

�

)+lg (

4

�

)) games between

the two players, with probability at least 1��, where

� is the advantage of one player over the other. Note

that � is not part of the given information.

We start by observing that the above problem is

the same as the problem of determining whether a

biased coin is biased up or down, where we are not

given the bias, �, of the coin. Our goal for the coin is

to determine the correct answer as quickly as possible

with probability 1��.

This problem was �rst addressed in [Fa] where Far-

rell proved that

limsup

�!0

�

2

�

1

lg lg �

� (Expected Number of 
ips) � c;

where c is a constant.

Our algorithm works by guessing di�erent values

for the bias of the coin. In stage i, the guess is that

the bias is �

i

=

1

2

i

. Given this guess, we 
ip the coin

T

i

times. If the coin behaves as though it has bias +�

i

during these T

i


ips, we output that the bias is UP. If

6



the coin behaves as though it has bias ��

i

during these

T

i


ips, we output that the bias is DOWN. Otherwise,

we proceed with stage i+ 1, in which the guess of the

bias is halved.

Program

Determine Coin Bias Direction(�)

Initially i = 1.

Let �

i

=

1

2

i

.

Let T

i

=

3

2

�

1

�

2

i

ln (

4i

2

�

).

Flip coin T

i

times.

If number of heads � T

i

(

1

2

+ �

i

),

output: UP.

If number of heads � T

i

(

1

2

� �

i

),

output: DOWN.

Else: i = i+ 1. Return to step 1.

Theorem 8 With probability at least 1��, the above

algorithm outputs the correct direction of bias for a

coin of bias �� using at most

12

�

2

(2 lg lg (

1

�

) + lg (

4

�

))

coin 
ips.

Proof. (Sketch)

There are two sources of error in the above algo-

rithm.

1. The algorithm returns an incorrect output.

2. The algorithm requires more than lg(

1

�

) stages.

To bound error of the �rst type, we use Cherno�

bounds to show that the error in stage i (i.e. the

probability that the algorithm answers UP to a coin

which is biased DOWN, or vice-versa, during stage i )

is �

�

2i

2

. Consequently, the total error over all stages

of the algorithm is �

�

4

P

1

i=1

1

i

2

�

�

2

.

To bound error of the second type we use Cherno�

bounds to show that the probability that the number

of stages exceeds lg(

1

�

) + 1 is less than

�

2

.

7.2 Playing the Two Players Against

Other Players

In this subsection we are given n players: two dis-

tinguished players, A and B, and n � 2 other play-

ers, other players. We are not given any informa-

tion about the relative strengths of any of the play-

ers. Our goal is to determine which of A and B

is the better player. We present an algorithm that

determines which of A and B is the better player,

with probability 1��, by having A and B each play

12

�

2

(2 lg lg (

1

�

) + lg (

4

�

)) rounds against random oppo-

nents chosen from among other players and where �

is the di�erence in the average winning probabilities

of A and B. Once again, we note that � is not part of

the given information.

Program Best-of-2-Players

(A;B; other players;�)

Initially i = 1.

Let �

i

=

1

2

i

.

Let T

i

=

3

2

�

1

�

2

i

ln (

2i

2

�

).

A and B each play T

i

rounds,

where in each round,

A and B play different

randomly chosen opponents.

If (A's wins - B's wins) � T

i

�

i

,

output: A: better player

If (B's wins - A's wins) � T

i

�

i

,

output: B: better player

Else: i = i + 1. Return to step 1.

Theorem 9 With probability at least 1��, the above

algorithm outputs the identity of the better player

within at most

12

�

2

(2 lg lg (

1

�

) + lg (

4

�

)) rounds, where

the average winning probability of the better player is �

+ the average winning probability of the worse player.

Proof.

The proof follows the same structure as that of the

previous subsection, except that a Cherno� bound for

sums of identically distributed 3-valued random vari-

ables, rather than for Bernoulli trials, is required be-

cause A and B are distinguished based on their per-

formance against other players. 2

8 An Upper Bound on T

TRANS;U

Throughout this section we assume the strong tran-

sitivity model.

We assume that we are given n players with no in-

formation about their relative strengths, and we must

determine, as quickly as possible, which player is best

with con�dence at least 1��.

The algorithm which we describe runs in lg(n)

stages. In stage i, we e�ectively run

�

2

lg(n)�i+1

2

�

Best-

of-2-Players algorithms in parallel until we can elim-

inate half the remaining players.
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Program Best-Player-Unknown-Strengths

(players;�)

Do for i = 1 to lg(n): (i designates

the stage number).

Initialize each remaining

player's record at 0 wins

and 0 losses.

Play randomly-paired rounds

among all remaining players.

After each round, Player y is

said to be dominated if

there exists some player

z

y

, such that the program

Best-of-2-Players

(y; z

y

; players � fy; z

y

g;

�

4n

)

would at this point declare z

y

to be a better player than y.

If at least half of all players

are dominated, then remove

all dominated players.

Output the one remaining player.

Theorem 10 With probability at least 1 ��, Best-

Player-Unknown-Strengths(players;�) outputs

the best player within

P

lg(n)

i=1

12

�

2

i

(2 lg lg(

1

�

i

) + lg(

16n

�

))

rounds.

Proof. (Sketch) There are two sources of error

� In some stage, more than

R

i

=

12

�

2

lg n�i�1

(2 lg lg(

1

2�

lg n�i�1

) + ln(

16n

�

)) rounds

are played

� Player 1 gets eliminated

We show:

1. In stage i, Pr[<

1

2

of all remaining players are

eliminated within R

i

rounds]�

�

2

i

�

1

4

. This is

shown by observing that the best player's average

winning probability over the bottom half of all

remaining players is high.

2. Pr[ Player 1 is eliminated in stage i] �

�

2

i

�

1

2

. 2

9 Future Work

The functions T

ADV

, T

TRANS

and T

DISC

are

known only up to a factor of �(lg lgn). It would be of

interest to determine their precise growth rates or, at

least, to determine whether they all grow at the same

rate.

We suspect that the winner of a playo� or a tourna-

ment is often not the best player, but is seldom among

the weaker players. Thus, it would be of interest to

study within, say, the strong transitivity model, the

complexity of playo� systems which, with high prob-

ability, select as champion a player who is not neces-

sarily the best, but is among the k best.

Throughout this paper we have assumed that a

player cannot be replicated; i.e., that he or she can

participate in only one game per round. The case of

replicatable players is also of interest. Consider, for

example, the problem of selecting the best of n chess

programs where, on any day, m games can be played

concurrently, but there is no restriction on the number

of games in which a given program may participate.

For this problem it would be of interest to analyze

\survival of the �ttest" strategies, in which each pro-

gram has a \weight" which grows when it wins and

shrinks when it loses, and the number of games in

which a program participates on a given day is pro-

portional to its weight.

10 Acknowledgements

We would like to thank Sridhar Rajagopalan, Troy

Shahoumian, David Freedman and Manuel Blum for

helpful conversations and useful suggestions.

References

[AD] J. A. Aslam and A. Dhagat. \Searching in the

presence of linearly bounded errors", Symp. on

Theory of Computing 1991, 486-493.

[Br] R. A. Bradley. \Some Statistical Methods In

Taste Testing and Quality Evaluation". Biomet-

rics, 1953, 9, pp. 22- 38.

[CheH] R. Chen and F. K. Hwang. \Stronger play-

ers win more balanced knockout tournaments".

Graphs and Combinatorics 4, 95-99 (1988).

[ChuH] F. K. Chung and F. K. Hwang. \Do Stronger

Players Win More Knockout Tournaments?" J.

of the Amer. Statistical Assoc., 1978, (73) 363,

Theory and Methods Section.

[D] H. A. David. \The Method of Paired Compar-

isons". Gri�n and Co., Oxford University Press

(1963).

[Fa] R. H. Farrell. \Asymptotic Behavior of Expected

Sample Size in Certain One Sided Tests". Annals

of Mathematical Statistics, (35) 1964, p.36-72.

[FPRU] U. Feige, D. Peleg, P. Raghavan and E. Up-

fal. \Computing with Unreliable Information". In

Symposium on Theory of Computing, 1990, 128-

137.

[HM] B. R. Handa and V. Maitri. \On a knockout

selection procedure". Sankhya: the Indian J. of

Statistics, 1984, 46, A, Pt 2, 267-276.

8



[Hw] F. K. Hwang, Z. Z. Lin, Y. C. Yao. \Knockout

tournaments with diluted Bradley-Terry prefer-

ence schemes". J. Statist. Planning and Inference,

1991, 28, 99-106.

[I] R. B. Israel. \Stronger players need not win more

knockout tournaments". J. of the Amer. Statist.

Association, 1981, 76, 376, Theory and Models

Section.

[P] A. Pelc. \Searching with known error probabil-

ity". Theoretical Computer Science 63: 185-202,

1989.

[RGL] B. Ravikumar, K. Ganesan and K. B. Lak-

shmanan. \ On selecting the largest element in

spite of erroneous information ". Lecture Notes

in Computer Science, ICALP 1987, 88-99.

[RMKWS] R. L. Rivest, A. R. Meyer, D. J. Kleit-

man, K. Winklmann and J. Spencer. \Coping

with errors in binary search procedures", Journal

of Computer and System Sciences, 20: 396-404,

1980.

[Th] L. L. Thurstone. \The Method of Paired Com-

parisons for Social Values," J. Abnorm. Soc. Psy-

chol., 1927, 21, 384- 400.

9


