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Abstract

We consider the problem of computing the average

packet delay in a general dynamic packet-routing net-

work with Poisson input stream, during steady-state.

Any packet-routing network can be formulated as a

queueing network, where each server has a constant ser-

vice time and the packets are served in a �rst-come-�rst

served (FCFS) order. If each server had exponentially-

distributed service time, queueing theory techniques

could be used to determine the expected packet delay.

However, it is not known how to compute the average

packet delay for all but the simplest networks with con-

stant time servers.

It has been conjectured that to get an upper bound on

expected packet delay in the constant service network,

one can simply replace each constant time server with

an exponential server of equal mean service time.

We prove that for a large class of networks, this con-

jecture is true, but that there exists a network for which

it is false. This large class of networks is the Markovian

queueing networks. Markovian queueing networks are

important because they include many packet-routing

networks where the packets are routed to random des-

tinations.

1 Introduction

Many parallel and distributed applications require pack-

ets to be routed in a network. As packets move along

their routes, they are delayed by other packets. In com-

puting performance bounds for a given network and
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routing scheme, it is useful to be able to determine the

time by which the average packet is delayed.

There are two general classi�cations of packet-routing

networks: static and dynamic. Static packet-routing

refers to the case where the packets to be routed are all

present in the network when the routing commences.

In dynamic packet-routing, packets arrive at the net-

work at random times and the routing proceeds in a

continuous fashion. In this paper we will be interested

in the dynamic case, in steady state, with Poisson input

stream.

Most theoretical research has concentrated on ana-

lyzing delays in the static case. The dynamic case ap-

pears more di�cult to deal with using conventional tech-

niques. The most commonly used technique for bound-

ing the delay in packet-routing networks is to use Cher-

no� bounds to bound the maximum number of packets

which could possibly need to traverse a given edge dur-

ing a window of time (w.h.p.). Examples of research

on static packet-routing networks are [Lei90], [Lei92],

[VB81], [Val82], [Ale82], [Upf84], [GL85], [ALMN90],

[CS86]. All of these are speci�c to a particular net-

work and a particular routing scheme. They mostly

concentrate on the problem of permutation routing, and

use the Cherno� bound approach. Some research on

static packet-routing networks applies to general net-

works (see [LMR88] [PU87]). This research concentrates

on worst-case bounds. There are very few theoretical re-

sults for dynamic packet-routing networks. A few are

[Lei90],[KL95], and [CS86]. [Lei90] and [KL95] assume

a discrete Poisson arrival steam (a new packet is born at

each node of the network at every second with probabil-

ity p). [CS86] assume a new permutation arrives every

T seconds. Both these results are network and rout-

ing scheme speci�c, and although their bounds are very

strong, the analysis is very involved. Lastly, since in

most of the above routing schemes packets are �rst sent

to intermediate random destinations, there's been a lot

of research which concentrates on computing delays for

the case where the �nal destinations are random (see

for example [Lei90], [Val82], [Lei92], [KL95]). Again,



except for [Lei90] and [KL95] all these results are for

the static case.

For computing delays in dynamic packet-routing net-

works, queueing theory provides a huge body of use-

ful results which apply to any network con�guration

and routing scheme. Unfortunately, these results rely

on a few unrealistic assumptions (the most unrealis-

tic being independent exponentially distributed service

times), and therefore people are reluctant to make use

of them. In this paper we discuss when the assump-

tion of independent exponential service times can be

replaced by (the much more realistic) constant service

times. More speci�cally (see Section 1.3.3):

� Packet-routing networks may be described as

queueing networks with constant-time, FCFS

servers, where each server in the queueing network

corresponds to an edge (or any other bottleneck) in

the packet-routing network.

� We prove that if the queueing network is

Markovian, replacing constant time servers with

exponentially-distributed time servers of equal

mean service time increases average packet delay.

Since queueing networks with FCFS, exponential

time servers are easily solvable for average delay,

we therefore have an upper bound on the average

delay in any packet-routing network.

� We show there exists a (Non-Markovian) queueing

network for which replacing constant time servers

with exponential time servers (of equal mean ser-

vice time) decreases average packet delay.

1.1 De�nition of Packet-Routing Net-

work

A packet-routing network consists of nodes with wires

connecting the nodes, as shown in Figure 1. Pack-

ets arrive continuously from outside the network at the

nodes of the network. Each packet is born with a path.

For example, in the routing scheme of Figure 1, pack-

ets with path A �! B �! C �! are born at a

rate of one every 10 seconds, and packets with path

B �! C �! B �! C �! are born at a rate of one ev-

ery 20 seconds, etc. Most literature considers the edges

(wires) of the packet-routing network to be the bottle-

necks. Speci�cally, it takes some constant time to tra-

verse an edge (this constant may be di�erent for each

edge), and only one packet may traverse the edge at a

time. The packets traverse the edge in a FCFS (�rst-

come-�rst-served) order. This causes a packet to be de-

layed when it arrives at an edge that is currently being

used. The nodes of the network serve only to route the

packets from one edge to the next. In our analysis, it
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Figure 1: A packet-routing network

is equally easy to assume the nodes of the network also

form bottlenecks (in the same way as the edges).

In this paper we'll be interested in computing the time

an average packet is delayed by waiting in queues.

1.2 Queueing Network De�nitions and

Background

A queueing network N consists of servers with edges

connecting the servers, as shown in Figure 2. It's behav-

ior is very similar to our de�nition of a packet-routing

network, except that time is only spent at the servers,

and no time is spent on the edges. (Thus packets queue

up at the servers of N ). Packets arrive continuously at

the servers of N , and each packet has a path associated

with it which it follows. A queueing network is de�ned

by 3 parameters:

service-time distribution The service time associ-

ated with a server is a random variable from a dis-

tribution. (Note the distribution| or just its mean

| may be di�erent for each server).

resolution protocol The order in which packets are

served in case of conict at a server.

outside arrival process In this paper, whenever we

speak of a queueing network, we will assume that

outside arrivals occur at each server according to a

Poisson process.
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Figure 2: A queueing network

A Markovian queueing network is a special case of a

queueing network. In a Markovian queueing network,

when a packet �nishes serving at a server i, the proba-

bility that it next moves to some server j (or leaves the

network) depends only on where the packet last served

and is independent of its previous history (or route). In

this case the packets appear indistinguishable. Thus a

Markovian queueing network can simply be described

by a directed graph with probabilities on the edges.

1

Given a queueing network N , we de�ne N

C,FCFS

(re-

spectively, N

E,FCFS

) to be queueing network N where

each server has a constant (respectively, exponentially

distributed) service time with the same mean as the cor-

responding server in N , and the packets are served in a

First-Come-First-Served order.

1.2.1 Recasting a packet-routing network P as

a queueing network N

C,FCFS

Observe that every packet-routing network P may be

described as a queueing network of type N

C,FCFS

as

follows: Corresponding to each bottleneck in P, we cre-

ate a server in N . For example, the edges of the packet-

routing network are bottlenecks, so we create one server

in N corresponding to each edge in P. Each server has

a FCFS order of service, since only one packet at a time

may traverse an edge in P. Each server has constant

service time equal to the time required to traverse the

corresponding edge in P.

Thus from now on, we will never refer to packet-

routing networks again, but rather we will only ad-

dress how to compute delays in queueing networks of

type N

C,FCFS

. Unfortunately, it is not known how to

1

Note an equivalent, but more elegant, way to de�ne a queue-

ing networkN is to say that each outside arrival toN is associated

with some class. A packet of class ` moves from server i to server

j next with probability p

`

ij

. The special case of a Markovian

network N is de�ned as a network with only one class of packets.

compute average packet delay for all but the simplest

N

C,FCFS

networks, since N

C,FCFS

networks don't have

product-form. However, N

E,FCFS

is a product-form net-

work (more speci�cally it's a classed Jackson queueing

network, see [BS93]) and therefore the average packet

delay is easy to determine for networks of this type (see,

for example, [Wal89] [BS93]).

The objective of this paper is therefore to

bound the average delay of N

C,FCFS

(which we

care about) by the average delay of N

E,FCFS

(which we know how to compute).

1.3 In This Paper We Show ...

1.3.1 Overall Goal

Our overall goal is to identify for which N

AvgDelay(N

C,FCFS

) � AvgDelay(N

E,FCFS

) (1)

1.3.2 Previous Work on Goal

All previous work seems to indicate (1) holds for all

queueing networks N .

For example, the average packet delay is an increas-

ing function of the variance in the service time distribu-

tion for each of the following single queue networks: the

M/G/1 queue, the M/G/1 queue with batch arrivals,

the M/G/1 queue with priorities, and the M/G/k queue,

[Whi83] [Whi80] [Ros89, pp. 353{356].

With respect to networks of queues, [ST91] showed

that for all layered

2

Markovian networks N , N

E,FCFS

has greater average packet delay than N

C,FCFS

. There

are also simulation studies of several non-Markovian

networks N (i.e. general classed networks) which �nd

the average packet delay to be greater for N

E,FCFS

than

for N

C,FCFS

(see [HBB94] [MC86] [HC86]) .

With respect to how tight this upper bound is, in all

of the above simulations the average delay in N

E,FCFS

was never greater than that of N

C,FCFS

by more than

a factor of 3 (this included networks loaded to 99% of

capacity and having 100 servers). However, since the

di�erence increases both with the load and with the

number as servers (see for example Section 2.1 and also

[KL95]), this ratio could be greater for large networks.

The above results have led to a general belief that

greater variance in service times leads to greater aver-

age packet delay [Whi84] [Wal94] [Fer94] [Kle94]. In

Section 2.1, we give some intuition for this. Counterex-

amples to this theory have only been found in the case

where arrivals are not Poisson [Wol77] [Ros78]. For ex-

ample Figure 3 indicates why counterexamples can be

2

A packet-routing network is layered if its corresponding

queueing network is acyclic.
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Figure 3: Non-Poisson (in this case batch-Poisson) ar-

rivals can favor more variance in service distributions.

For example, if three packets arrive in a batch (serving

in the top three servers above), they'll collide at the next

server unless their service-completions are staggered.

found which use batch Poisson arrivals such as those

in [Wol77]. The �nal thing we do in this paper is to

demonstrate a counterexample for the case of Poisson

arrivals.

1.3.3 Our Results

� (Section 2) For all Markovian queueing networks

N ,

AvgDelay(N

C,FCFS

) � AvgDelay(N

E,FCFS

)

Signi�cance of this result: Recall that computing

delays in packet-routing networks when the pack-

ets have random destinations is important because

most randomized routing algorithms consist of two

random routing problems (see the third paragraph

of the introduction). Markovian queueing networks

are important because they include many packet-

routing networks in which the packets have random

destinations. A couple common examples are the

mesh network with greedy routing (packets are �rst

routed to the correct column and then to the cor-

rect row) and the hypercube network with canoni-

cal routing (packets cross each dimension if needed

in order). When the packets have random destina-

tions, rather than choosing the random destination

when the packet is born, we can view the random

destination as being decided a little at a time, by

ipping a coin after each server.

3

This result tells

3

Observe that since the server in the queueing network repre-

sents an edge in the packet-routing network, all we need to know

to determine the probabilities is the server (edge) at which the

packet just �nished serving.

us that we can easily compute an upper bound on

the average delay for any packet-routing network

which can be modeled by a Markovian queueing

networks. Also, Section 1.3.2 cites evidence that

this upper bound is not far from tight in practice.

� (Section 3) There exists (a non-Markovian) net-

work N , s.t.

AvgDelay(N

C,FCFS

) > AvgDelay(N

E,FCFS

)

Signi�cance of this result: The counterexample dis-

proves the widely believed conjecture that for all

networks N

C,FCFS

has better average delay than

N

E,FCFS

(see Section 1.3.2).

2 Upper Bounding Average De-

lay in Markovian Queueing

Networks

In this section we will prove the following theorem:

Theorem 1 For all Markovian queueing networks N ,

AvgDelay(N

C,FCFS

) � AvgDelay(N

E,FCFS

)

[ST91] proved this result for layered Markovian net-

works. Our proof parallels their proof, except that

whereas their proof uses induction on the layers of the

network, we induct on time, thereby obviating the need

for a layered network.

Let N be a Markovian queueing network. De�ne

N

C,PS

to be the queueing network N where each server

has a constant service time with the same mean as the

corresponding server in N and the service order is Pro-

cessor Sharing. (In Processor Sharing, the server is

shared equally by all the packets currently waiting at the

server. So, for example if the service time at the server

is 2, and there are 3 packets waiting at the server, each

packet is being served at a rate of

1

6

). By [BCMPG75]

and [Kel75], we know that the average packet delay in

N

C,PS

is equal to the average packet delay in N

E,FCFS

for all N .

4

It is therefore su�cient to prove

5

AvgDelay(N

C,FCFS

) � AvgDelay(N

C,PS

)

= AvgDelay(N

E,FCFS

)

We start by proving the inequality for a single server

network.

4

This powerful theorem is also described more recently in

[Wal89] and [Kle76].

5

Our proof of the inequality is valid for any sequence of outside

arrivals, not just a Poisson arrival stream.



Claim 1 If the sequence of arrivals to a (single server)

FCFS queue is no later than the arrivals to a PS queue,

then the i

th

departure from the FCFS queue occurs no

later than the i

th

departure from the PS queue.

Proof: In both queues, each packet must wait for all

packets with earlier arrivals to depart, but only in the

PS queue must a packet also wait while later arrivals

get service.

To generalize the statement from the single server to

the network, we'll use a coupling argument. Consider

the behavior of the two networks when coupled to run

on the same sample point consisting of:

1. the sequence of outside inter-arrival times at each

server, and

2. the choices for where the j

th

packet served at each

server proceeds next.

Note the above quantities are all independent for a

Markovian network. Also, the j

th

packet to complete

at a particular server in the two networks may not be

the same packet.

Claim 2 For a given sample point, the j

th

service com-

pletion at any server of the FCFS network occurs no

later than the j

th

service completion at the correspond-

ing server of the PS network.

Proof: Assume the claim is true at time t. We show

it's true at time t

0

> t, where t

0

is the time of the next

service completion. We distinguish between outside ar-

rivals to a server (packets arriving from outside the net-

work) and inside arrivals to the server (service comple-

tions), and make the following sequence of observations:

� During [0; t

0

), Claim 2 is true.

� During [0; t

0

), every arrival at any PS server, q,

must have already occurred at the corresponding

FCFS server, q (see Figure 4). (This is true for in-

side arrivals because any inside arrival at PS server

q is, say, the j

th

service completion at some PS

server q

0

, and by the previous observation, the j

th

service completion at FCFS server q

0

is at least as

early. By de�nition of the sample point, the obser-

vation is also true for outside arrivals.)

� Therefore, during [0; t

0

), the i

th

packet to arrive at

any server of the FCFS network arrives no later

than the i

th

arrival at the corresponding server of

the PS network.

� Hence, by Claim 1, we see Claim 2 holds during

[0; t

0

]. This includes the current service completion.

INSIDE ARRIVALS
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Figure 4: Illustration of proof of Claim 2. We consider

the same server q in the FCFS network and the PS net-

work. The arrival stream into PS server q is delayed

relative to the arrival stream into FCFS server q. Of

course, the order of arrivals may be di�erent for the

two queues, but for a Markovian network, packets are

indistinguishable anyway.

By Claim 2, it follows that for any sample point, the

i

th

departure fromN

C,FCFS

occurs no later than the i

th

departure from N

C,PS

. This implies that

E fNumber of packets in N

C,FCFS

at time tg

� E fNumber of packets in N

C,PS

at time tg

So by Little's Law [Wol89, p. 236] we have shown that

AvgDelay(N

C,FCFS

) � AvgDelay(N

C,PS

)

and therefore proved Theorem 1 above.

2.1 How much worse is PS than FCFS?

In section 1.3.2 we stated that simulations indicate that

the average delay in N

C,PS

is always within a factor of

3 of the average delay in N

C,FCFS

. However, in this sec-

tion we will show that when the number of servers, n,

in a network is very large, this di�erence might be much

greater. Consider a queueing network N consisting of

only a single line of n servers, each with service time 1.

Packets arrive only at the �rst server, and leave the net-

work after serving at the nth server. N

C,FCFS

(respec-

tively,N

C,PS

) is the networkN where the service resolu-

tion protocol is FCFS (respectively, Processor-Sharing).

To determine the average delay in each network, con-

sider the delay experienced by a newly-arriving packet

p. In both N

C,FCFS

and N

C,PS

, p is delayed by the

packets it �nds queued up at the �rst server (in N

C,PS



later arrivals also cause p to be delayed, but we ignore

them). The di�erence is that in N

C,FCFS

, these pack-

ets only each delay p by 1 (after that initial delay the

packets are spread out and move in lockstep), whereas

in N

C,PS

, these packets each delay p by n (since the

packets all move in a \clump" down the network).

3 A Non-Markovian Counterex-

ample

In this section, we demonstrate an N for which

AvgDelay(N

C,FCFS

) > AvgDelay(N

E,FCFS

)

More speci�cally, de�ning N

C,PS

as in Section 2, we will

demonstrate a network N for which

AvgDelay(N

C,FCFS

) > AvgDelay(N

C,PS

)

= AvgDelay(N

E,FCFS

)

For some insight into why it is counterintuitive that

such a network N exists, see Section 2.1.

3.1 Network Description

Let N be the queueing network shown in Figure 5. The

servers in N either have service time 1 or �, as shown.

The only outside arrivals are into the top server. Packets

arrive from outside N according to a Poisson Process

with rate � =

1

n

3

, where n is the number of servers of

mean service time 1 in N . Half the arriving packets are

of type solid and half are of type dashed (by \type" we

mean class). Packets of type solid are routed straight

down, only passing through the time 1 servers. Packets

of type dashed are routed through the dashed edges,

i.e. through all the � servers and through every other

1-server.

3.2 Intuition

We will compare the average delay in N

C,FCFS

with

the average delay in N

C,PS

, as shown in Figure 6, by

comparing the average delay experienced by an arriving

packet p at N

C,FCFS

and N

C,PS

. Throughout our ar-

gument, we implicitly use PASTA (Poisson Arrivals See

Time Averages).

The intuition behind the analysis is as follows: Since

� is so low, usually for either network, p will see no

other packets during its traversal of the network. In this

case N

C,FCFS

behaves identically to N

C,PS

. With some

probability, however, one other packet will be present in

the network during p's traversal of the network. The ex-

pected delay on p in this case is greater for the N

C,FCFS

network than for the N

C,PS

network. Figure 7 shows us
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Figure 6: N

C,FCFS

and N

C,PS

networks

why: Consider �rst N

C,FCFS

. Suppose q is of type solid

and some packet p of type dashed enters N

C,FCFS

within

n

2

seconds after q. Then p will eventually catch up to q,

and from this point on, q will delay p by one second at

every other server throughout the rest of the N

C,FCFS

.

That is, p will be delayed by �(n) seconds. Now ob-

serve that the same scenario would only cause a delay

of at most 2 seconds in N

C,PS

, because when p catches

up to q, it will only interfere with q for two servers and

then p will pass q forever. A worse situation for N

C,PS

is the case where p meets up with another packet of the

same type as p during its traversal (since in that case

p is clearly delayed by �(n)). Observe, however, that

this scenario can only happen if the two packets both

arrived at N

C,PS

within a second of each other. This oc-

curs with such low probability for our choice of small �

that the scenario's a�ect on average delay is negligible.

Lastly, we have to consider the case that two or more

packets are present in the network during p's traversal

of the network. The expected delay on p in this case

is greater for the N

C,PS

network than for the N

C,FCFS

network, but this case occurs with such low probability

that its e�ect on p's delay is also negligible.

3.3 The details

De�ne

P

kn

i

= Prfi arrivals in the last kn secondsg:

Recall that arrivals are Poisson with rate � = 1=n

3

,

where n is the number of servers of mean service time

1. So,

P

kn

i

�

k

i

n

2i

P

kn

i

= �

�

1

n

2i

�

, for �xed i; k

By PASTA, the expected delay a newly arriving

packet experiences is equal to the average packet de-

lay for the network. We will compute an upper bound

on the delay an arrival experiences in N

C,PS

and a lower

bound on the delay an arrival experiences in N

C,FCFS

.

We will show

lowerbound

�

E

�

Delay on arrival

in N

C,FCFS

��

> upperbound

�

E

�

Delay on arrival

in N

C,PS

��

:

3.3.1 Upperbound

E fDelay on arrival in N

C,PS

g

Let p represent an arriving packet in N

C,PS

.
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Figure 7: Example illustrating how a packet, p, of type

dashed and a packet, q, of type solid clash repeatedly in

N

C,FCFS

, but only twice in N

C,PS

.

Clearly, p may only be delayed by packets which are

in N

C,PS

during the time p is in N

C,PS

. Note that if k

packets are in N

C,PS

, they may take up to time kn to

clear the system. So, if we call p's arrival time 0, packet

p may be delayed if one of the following occur:

� 1 other packet arrives during (�n; n).

� 2 other packets arrives during (�2n; 2n).

� 3 other packets arrives during (�3n; 3n).

� etc.

We will compute the expected delay on p due to each

of the above events, and then we'll sum these. This

will be an overcount, but that's o.k. because we're just

upperbounding.

E

�

Delay on p caused by 1 other

packets arriving in (�n; n)

�

= E

�

Delay on p caused by 1 packet

of same type arriving in (�n; n)

�

+E

�

Delay on p caused by 1 packet

of opposite type arriving in (�n; n)

�

= Pr

�

same type

arrival

�

�E

�

Delay

�

�

�

�

same type

arrival

�

+Pr

�

opp. type

arrival

�

�E

�

Delay

�

�

�

�

opp. type

arrival

�

= �

�

1

n

2

�

��

�

1

n

� n

�

(delayed by n only if packet

arrived in (�1; 1))

+�

�

1

n

2

�

��(1)

(opposite type packet causes

at most delay of �(1))

= �

�

1

n

2

�

Similarly,

E

�

Delay on p caused by 2 other

packets arriving in (�2n; 2n)

�

� Pr

�

2 packets

arrive in (�2n; 2n)

�

�Max

�

Delay

�

�

�

�

2 arrivals

in (�2n; 2n)

�

= �

�

1

n

4

�

�O(2n) = �

�

1

n

3

�

And,

E

�

Delay on p caused by 3 other

packet arriving in (�3n; 3n)

�

= �

�

1

n

6

�

�O(3n) = �

�

1

n

5

�



To compute an upper bound on E fDelay on pg, we

sum the above terms. From the above computations its

clear that the delay on p from the remaining summands

not shown above is negligible. We �nd that

E fDelay on pg = O

�

1

n

2

�

3.3.2 Lowerbounding

E fDelay on arrival in N

C,FCFS

g

Let p represent an arriving packet in N

C,FCFS

. Assume

p arrives at N

C,FCFS

at time 0. To lowerbound the

E fDelay on p in N

C,FCFS

g, we consider only the de-

lay on p caused by 1 packet arriving during (�n; n).

Observe that if 1 packet (other than p) arrived during

(�n; n), and if the packet was of a di�erent type than p,

then p and the packet would meet, and the delay caused

to p (if p is dashed) is �(n).

E

�

Delay on p caused by 1 other

packet arriving in (�n; n)

�

= Prf1 other arrives during (�n; n)g

�E fDelay j 1 arrival in (�n; n)g

= �

�

1

n

2

�

��(n) (see Intuition Section)

= �

�

1

n

�

Thus,

E fDelay on pg = 


�

1

n

�

4 Conclusion and Future Work

We started this paper by formulating any dynamic

packet routing network as a queueing network of type

N

C,FCFS

. Since queueing theory only provides us with

results on N

E,FCFS

, our goal became to bound the aver-

age delay of N

C,FCFS

by the average delay of N

E,FCFS

:

AvgDelay(N

C,FCFS

) � AvgDelay(N

E,FCFS

) (2)

We �rst proved that (2) holds for all Markovian queue-

ing networks. This result was signi�cant because many

packet-routing networks where the packets have random

destinations can be formulated as Markovian queueing

networks. We then gave a counterexample showing that

(2) does not always hold, contrary to popular belief.

There are three natural open questions raised by these

results. Let S be those networks for which (2) holds.

The �rst is \How large is the set S?" We know S

contains more than just Markovian networks. For in-

stance it's easy to prove that S contains the network

N which consists of just a single server, where each in-

coming packet serves once, goes back to the end of the

queue, and then serves a second time. Also, simulations

suggest S contains many other non-Markovian networks

(see Section 1.3.2). In fact, the di�culty in constructing

a network not in S leads us to speculate that almost all

networks are in S.

This leads us to the second question of \How tight

an upper bound is N

E,FCFS

on N

C,FCFS

with respect to

average delay?", both in practice and theoretically.

Lastly, \For the networks not in S, how far o� is the

AvgDelay(N

C,FCFS

) from the AvgDelay(N

E,FCFS

)?"
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