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ABSTRACT
The M/M/k/setup model, where there is a penalty for turn-
ing servers on, is common in data centers, call centers and
manufacturing systems. Setup costs take the form of a time
delay, and sometimes there is additionally a power penalty,
as in the case of data centers. While the M/M/1/setup was
exactly analyzed in 1964, no exact analysis exists to date for
the M/M/k/setup with k > 1.

In this paper we provide the first exact, closed-form analy-
sis for the M/M/k/setup and some of its important variants
including systems in which idle servers delay for a period of
time before turning off or can be put to sleep. Our analysis
is made possible by our development of a new technique, Re-
cursive Renewal Reward (RRR), for solving Markov chains
with a repeating structure. RRR uses ideas from renewal re-
ward theory and busy period analysis to obtain closed-form
expressions for metrics of interest such as the transform of
time in system and the transform of power consumed by
the system. The simplicity, intuitiveness, and versatility of
RRR makes it useful for analyzing Markov chains far be-
yond the M/M/k/setup. In general, RRR should be used
to reduce the analysis of any 2-dimensional Markov chain
which is infinite in at most one dimension and repeating to
the problem of solving a system of polynomial equations.
In the case where all transitions in the repeating portion of
the Markov chain are skip-free and all up/down arrows are
unidirectional, the resulting system of equations will yield a
closed-form solution.
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1. INTRODUCTION
Setup times (a.k.a. exceptional first service) are a funda-

mental component of computer systems and manufacturing
systems, and therefore they have always played an impor-
tant role in queueing theoretic analysis. In manufacturing
systems it is very common for a job that finds a server idle to
wait for the server to “warm up” before service is initiated.
In retail and hospitals, the arrival of customers may necessi-
tate bringing in an additional human server, which requires
a setup time for the server to arrive. In computer systems,
setup times are once again at the forefront of research, as
they are the key issue in dynamic capacity provisioning for
data centers.
In data centers, it is desirable to turn idle servers off, or

reallocate the servers, to save power. This is because idle
servers burn power at 60–70% of the peak rate, so leaving
servers on and idle is wasteful [4]. Unfortunately, most com-
panies are hesitant to turn off idle servers because the setup
time needed to restart these servers is very costly; the typi-
cal setup times for servers is 200 seconds, while a job’s ser-
vice requirement is typically less than 1 second [16, 6]. Not
only is the setup time prohibitive, but power is also burned
at peak rate during the entire setup period, although the
server is still not functional. Thus it is not at all obvious
that turning off idle servers is advantageous.
Many ideas have been proposed to minimize the num-

ber of times that servers in a data center must undergo
setup. One major line of research involves load prediction
techniques [16, 21, 5, 12]. In the case where load is unpre-
dictable, research has turned to looking at policies such as
delayedoff, which delay turning off an idle server for some
fixed amount of time, in anticipation of a new arrival [14, 11,
9]. Another line of research involves reducing setup times
by developing low power sleep modes [11, 19].
Surprisingly, for all the importance of setup times, very

little is known about their analysis. The M/G/1 with setup
times was analyzed in 1964 by Welch [26]. The analysis
of an M/M/k system with setup times, which we refer to
as M/M/k/setup, however, has remained elusive, owing
largely to the complexity of the underlying Markov chain.
(Fig. 1 shows an M/M/k/setup with exponentially distribut-
ed setup times.) In 2010, various analytical approximations
for the M/M/k/setup were proposed in [10]. These approx-
imations work well provided that either load is low or the



setup time is low. The M/M/∞/setup was also analyzed
in [10] and found to exhibit product form. Other than the
above, no progress has been made on the M/M/k/setup.
Even less is known about the M/M/k/setup/delayedoff,
where idle servers delay for a finite amount of time be-
fore turning off, or the M/M/k/setup/sleep, where idle
servers can either be turned off (high setup time, zero power)
or put to sleep (lower setup time, low power). Section 3 de-
scribes these models in greater detail. Section 2 describes
related prior work, including existing methods for solving
general Markov chains with a repeating structure.

This paper is the first to derive an exact, closed-form so-
lution for the M/M/k/setup, the M/M/k/setup/delayedoff,
and the M/M/k/setup/sleep. We obtain the Laplace trans-
form of response time, the z-transform of power consump-
tion, and other important metrics for all of the above models.

Our solution is made possible by our development of a new
technique for solving Markov chains with a repeating struc-
ture – Recursive Renewal Reward (RRR). RRR is based on
using renewal reward theory to obtain the metrics of interest,
while utilizing certain recursion theorems about the chain.
Unlike matrix-analytic methods [17], RRR does not require
finding the “rate” matrix. Another feature of RRR is that
it is simple enough to be taught in an elementary stochastic
processes course.

In general, RRR should be able to reduce the analysis
of any 2-dimensional Markov chain which is finite in one
dimension, say the vertical dimension, and infinite (with re-
peating structure) in the other (horizontal dimension) to the
problem of solving a system of polynomial equations. Fur-
ther, if in the repeating portion all horizontal transitions
are skip-free and all vertical transitions are unidirectional,
the resulting system of equations will be at most quadratic,
yielding a closed-form solution (see Section 10 and Fig. 6
for more details). We thus anticipate that RRR will prove
useful to other researchers in analyzing many new problems.

2. PRIOR WORK
The few papers that have looked at the M/M/k/setup are

discussed in Section 1. For the M/M/k/setup/delayedoff,
only iterative matrix-analytic approaches have been used [9].
No analysis exists for M/M/k/setup/sleep. We now discuss
papers that have considered repeating Markov chains and
have proposed techniques for solving these. We then com-
ment on how these techniques might or might not apply to
the M/M/k/setup.

2.1 Matrix-analytic based approaches
Matrix-analytic methods are a common approach for an-

alyzing Markov chains with repeating structure. Such ap-
proaches are typically numerical, generally involving itera-
tion to find the rate matrix, R. These approaches do not,
in general, lead to closed forms or to any intuition, but are
very useful for evaluating chains under different parameters.

There are cases where it is known that the Rmatrix can be
stated explicitly [17]. This typically involves using a com-
binatorial interpretation for the R matrix. As described
in [17], the class of chains for which the combinatorial view is
tractable is narrow. However, in [25], the authors show that
the combinatorial interpretation extends to a broader class
of chains. Their class does not include the M/M/k/setup,
however, which is more complicated because the transition
(setup) rates are not independent of the number of jobs in

system. Much research has been done on improving matrix-
analytic methods to make the iteration faster. An example
is [24], which develops a fast iterative procedure for find-
ing the rate matrix for a broader class of chains than that
in [25]. The authors in [24] also provide an explicit solution
for the rate matrix in terms of infinite sums.

2.2 Generating function based approaches
Generating functions have also been applied to solve chains

with a repeating structure. Like matrix-analytic methods
these are not intuitive: Generating function approaches in-
volve guessing the form of the solution and then solving for
the coefficients of the guess, often leading to long computa-
tions. In theory, they can be used to solve very general
chains (see for example [1]). We initially tried applying
a generating function approach to the M/M/2/setup and
found it to be incredibly complex and without intuition.
This led us to seek a simpler and more intuitive approach.

2.3 M/M/k with vacations
Many papers have been written about the M/M/k system

with vacations, see for example [28, 27, 23, 18]. While the
Markov chain for the M/M/k with vacations looks similar to
the M/M/k/setup, the dynamics of the two systems are very
different. A server takes a vacation as soon as it is idle and
there are no jobs in the queue. By contrast, a setup time is
initiated by jobs arriving to the queue. In almost all of the
papers involving vacations, the vacation model is severely
restricted, allowing only a fixed group of servers to go on
vacation at once. This is very different from our system in
which any number of servers may be in setup at any time.
The model in [18] comes closest to our model, although the
authors use generating functions and assume that all idle
servers are on vacation, rather than one server being in setup
for each job in queue, which makes the transitions in their
chain independent of the number of jobs.

2.4 Restricted models of M/M/k with setup
There have been a few papers [2, 3, 10] that consider a very

restricted version of the M/M/k/setup, wherein at most one
server can be in setup at a time. There has also been prior
work [20] that considers an M/M/k system wherein a fixed
subset of servers can be turned on and off based on load. The
underlying Markov chains for all of these restricted systems
are analytically tractable and lead to very simple closed-
form expressions, since the rate at which servers turn on is
always fixed. Our M/M/k/setup system is more general,
allowing any number of servers to be in setup. This makes
our problem much more challenging.

2.5 How our work differs from all of the above
To the best of our knowledge, we are the first to derive ex-

act closed-form results for the M/M/k/setup problem, with
k > 1. Our solution was made possible by our new RRR
technique. RRR results in exact solutions, does not require
any iteration, and does not involve infinite sums. Impor-
tantly, RRR is highly intuitive and very easy to apply. Us-
ing RRR, we go much further than the M/M/k setup, deriv-
ing exact closed-form results for important variants such as
the M/M/k/setup/delayedoff and the M/M/k with multiple
types of setups, neither of which has been solved analyti-
cally.



Figure 1: M/M/k/setup Markov chain. Each state is
denoted by the pair (i, j), where i is the number of on
servers, and j is the number of jobs in the system.
The number of servers in setup is min{j − i, k − i}.

3. MODEL
In our model jobs arrive according to a Poisson process

with rate λ and are served at rate μ = 1
E[S]

, where S denotes

the job size and is exponentially distributed. For stability,
we assume that k · μ > λ, where k is the number of servers
in the system.

3.1 M/M/k/setup
In the M/M/k/setup system, each of the k servers is in one

of three states: off, on (being used to serve a job), or setup.
When a server is on or in setup, it consumes peak power of
Ppeak watts. When a server is off, it consumes zero power.
Thus, when servers are not in use, they are immediately
turned off to save power. Every arriving job that comes into
the system picks an off server, if one exists, and puts it into
setup mode; the job then joins the queue. We use I to denote
the setup times, with E[I] = 1

α
. Unless stated otherwise,

we assume that setup times are exponentially distributed.
When a job completes service at a server, say server s1, and
there are no remaining jobs left in the queue, then server
s1 is immediately turned off. However, if the queue is not
empty, then server s1 is not turned off, and the job at the
head of the queue is directed to server s1. Note that if the
job at the head of the queue was already waiting on another
server, say server s2, in setup mode, the job at the head
of the queue is still directed to server s1. At this point, if
there is a job in the queue that did not setup an off server
on arrival (because there were no off servers), then server s2
continues to be in setup for this job. If no such job exists in
the queue, then server s2 is turned off.

The Markov chain for the M/M/k/setup system is shown
in Fig. 1. Each state is denoted by the pair (i, j), where i is
the number of on servers, and j is the number of jobs in the
system. Thus, the number of servers in setup is min{j−i, k−
i}. Note that the Markov chain is infinite in one dimension.

3.2 M/M/k/setup/delayedoff
The M/M/k/setup/delayedoff system is the same as the

M/M/k/setup system, except that idle servers are not im-
mediately turned off. Specifically, when a job completes
service at a server, say server s1, and there are no remain-
ing jobs in the queue, s1 remains waiting in the idle state

Figure 2: M/M/k/setup/delayedoff Markov chain.
Each state is denoted by the pair (i, j), where i is the
number of on or idle servers, and j is the number
of jobs in the system. If i < j, then the number of
servers in setup is min{j − i, k − i}, and there are no
idle servers. If i > j (gray shaded states), the number
of idle servers is (i − j), and there are no servers in
setup. If i = j, no servers are idle or in setup.

for an exponentially distributed amount of time with mean
twait = 1

β
. If a new job arrives while server s1 is waiting,

the job is immediately directed to s1, which is already on.
However, if no jobs arrive during server s1’s waiting period,
then server s1 is turned off. Intuitively, a higher twait re-
sults in lower response time, since servers are on longer, but
may also increase power usage, since idle servers consume
significant power.
The Markov chain for the M/M/k/setup/delayedoff sys-

tem is shown in Fig. 2. The chain is the same as that for
M/M/k/setup, except for the new gray shaded states which
represent states with idle servers. As before, each state is
denoted by the pair (i, j), where i is the number of on or
idle servers, and j is the number of jobs in the system. For
the M/M/k/setup/delayedoff system, each server can be in
one of four states: off, on (busy), idle, or setup. If i < j,
then the number of servers in setup is min{j− i, k− i}, and
there are no idle servers. If i > j (gray shaded states), the
number of idle servers is (i− j), and there are no servers in
setup. If i = j, no servers are idle or in setup.

3.3 M/M/k/setup/sleep
The M/M/k/setup/sleep is motivated by servers with sleep

modes [11, 19], which allow an idle server to either be turned
off or put to sleep. When a server is turned off, it consumes
zero power. However, turning on an off server requires an
exponentially distributed setup time, with rate α. By con-
trast, when a server is sleeping, it consumes some non-zero
power, Psleep watts, which is usually much smaller than the
idle power, Pidle watts [11, 19]. When a sleeping server
is turned on, it requires an exponentially distributed setup
time, with rate ω > α. Thus, there is a tradeoff between
turning off an idle server vs putting it to sleep.
One simple idea that leverages sleep states is to desig-

nate some subset of the k servers, say the first s servers,
to “sleep” when idle, whereas the remaining (k − s) servers
are turned off when idle. An interesting question is what
is a good value of s. To answer this question we introduce
the M/M/k/setup/sleep model, which is the same as the



Figure 3: M/M/k/setup/sleep Markov chain. Each
state is denoted by the pair (i, j), where i is the num-
ber of on servers, and j is the number of jobs in the
system. The number of servers in fast setup is s,
which in this case is s = 2. The number of servers in
setup is min{j − i, k− i}. If i < s (gray shaded states),
the first (s − i) servers setting up have a fast setup
rate, ω, while the other servers in setup have a slow
setup rate, α.

M/M/k/setup, except that s ≤ k servers have a fast setup
rate of ω and (k− s) servers have a slow setup rate of α (see
Fig. 3). As we will see later, the tradeoff between mean re-
sponse time and mean power is highly sensitive to the choice
of s (see Figs. 7(c) and 7(d)).

For ease of analysis, we make the following assumptions
about the M/M/k/setup/sleep model: (i) In any group of
servers in setup, we assume that the servers that have a
fast setup rate (ω) complete setting up first. Thus, if we
are in state (i, j) with i < s (gray shaded states in Fig. 3),
the first (s − i) servers in setup will have a fast setup rate.
Note that the i servers already on in state (i, j), with i ≤ s,
are those that had a fast setup rate. Thus, when we have
i ≤ s servers busy, and a server is no longer in use, we
put the server to sleep (as opposed to turning it off). (ii)
If we have i > s servers busy, and a server is no longer
in use, we turn the server off (as opposed to putting it to
sleep). This assumption allows us to save a lot of power
when load goes down since off servers consume zero power.
The above two assumptions are primarily for tractability
of the M/M/k/setup/sleep Markov chain. In practice, ω
is significantly higher than α. In this regime we simulated
an M/M/k/setup/sleep system with and without the above
two assumptions and found the results to be qualitatively
unchanged.

4. THE RECURSIVE RENEWAL REWARD
TECHNIQUE

In this section we provide a high-level description of our
new Recursive Renewal Reward (RRR) technique, which
yields exact, closed-form solutions for a range of Markov
chains, including the M/M/k/setup (see Sections 5, 6 and
7), the M/M/k/setup/delayedoff (see Section 8) and the
M/M/k/setup/sleep (see Section 9).

The RRR technique works by deriving the expected “re-
ward” earned per unit time in a Markov chain, where the

reward could be any quantity of interest. In the context
of our M/M/k/setup problem, the reward earned at time t,
R(t), could be the number of jobs in system at time t, the
square of the number of jobs in system, the current power
usage, the number of servers that are on, or any other re-
ward that can be expressed as a function of the state of the
Markov chain.
To analyze the average rate of earning reward, we des-

ignate a renewal state, say (0, 0),1 which we call the home
state, and then consider a renewal cycle to be the process
of moving from the home state back to the home state. By
renewal-reward theory, the average rate of earning reward is
the same as the mean reward earned over a renewal cycle,
which we denote by R, divided by the mean length of the
renewal cycle, denoted by T .

Average rate of earning =
R
T =

E
[∫

cycle
R(t)dt

]
E
[∫

cycle
1dt

]
For example, if the goal is to find the mean number of jobs,
E[N ], for our chain, we simply define R(t) to be the number
of jobs at time t, which can be obtained from the state of
the Markov chain at time t.
It turns out that the quantities T and R are very easy to

compute! Consider a Markov chain, such as that in Fig. 4
or Fig. 5. The repeating portion of the chain is shown in
gray. There are a finite number of border states which sit
at the edge of the repeating chain and are colored black.
We will see that computing T and R basically reduces to
writing one equation for each border state2. For the case of
T , we will need the mean time to move one step left from
each border state. For the case of R, we will need the mean
reward earned when moving one step left from each border
state. Computing these border state quantities is made very
easy via some neat recursion theorems. We demonstrate
this process in the examples below. There are a few details
which we will defer until after these examples. For instance,
in general, it is necessary to also add equations for the non-
repeating portion of the Markov chain. See Sections 7 and
10 for more details on the RRR technique.

5. M/M/1/SETUP
In this section we illustrate the RRR technique by apply-

ing it to the simple M/M/1/setup system, whose Markov
chain is shown in Fig. 4. Here, the state of the system is rep-
resented as (i, j), where i ∈ {0, 1} is the number of servers
on and 0 ≤ j < ∞ is the number of jobs in the system. In
general, i represents the depth (or row number) of the state,
and j represents the level (or column number) of the state.
We start by deriving E[N ], the mean number of jobs, and
then move to more complex metrics. We choose the renewal
state to be (0, 0) and we define the reward earned at time t,
R(t), to be N(t), the number of jobs in the system at time
t. As explained in Section 4, all we need is T and R.

5.1 Deriving T via TL
0,1 and TL

1,1

1In principle any state can be chosen as the renewal state,
but some states allow for an easier (or shorter) analysis.
2Several techniques in the literature such as matrix-analytic
methods [17] and stochastic complementation [22] also deal
with border states, although none of them involve renewal-
reward theory.



Figure 4: M/M/1/setup Markov chain with the re-
peating portion highlighted in gray and the border
states shaded black.

T is the mean time to get from our home state (0, 0) back
to (0, 0). This can be viewed as 1

λ
, the mean time until we

leave (0, 0) (which takes us to (0, 1)) plus the mean time to
get home from (0, 1). We make the further observation that
the mean time to get home from (0, 1) is equal to TL

0,1 (using
notation from Table 1), the mean time to move left one level
from (0, 1) (since moving left can only put us in (0, 0)). We
thus have:

T =
1

λ
+ TL

0,1 (1)

We now need an equation for TL
0,1 for the border state

(0, 1), which will require looking at the other border state,
(1, 1), as well. Starting with border state (1, 1), it is clear
that TL

1,1 is simply the mean length of an M/M/1 busy pe-
riod, B1. Thus, we have:

TL
1,1 = B1 =

1

μ− λ
(2)

TL
0,1 involves waiting in state (0, 1) for expected time 1

α+λ
,

before conditioning on where we transition to next. If we go
to state (1, 1) we need an additional TL

1,1. However if we go
to state (0, 2) we need to add on the time to move one step
left from (0, 2) (which by Fig. 4 takes us to (1, 1)) and then
an additional TL

1,1. That is:

TL
0,1 =

1

λ+ α
+

α

λ+ α
· TL

1,1 +
λ

λ+ α

(
TL
0,2 + TL

1,1

)
(3)

It is now time to invoke one of our recursion theorems, which
holds for any M/M/k/setup chain:

Theorem 1 (Recursion theorem for mean time)
For the M/M/k/setup, the mean time to move one step left
from state (i, j), TL

i,j , is the same for all j ≥ k.

Thm. 1 follows from the fact that the repeating portion of
the Markov chain is identical for all states in a given row.
The full proof of Thm. 1 (along with the proofs of all other
theorems) is presented in Appendix A.

Using Thm. 1, we replace TL
0,2 in Eq. (3) with TL

0,1 to get:

TL
0,1 =

1

λ+ α
+

α

λ+ α
· TL

1,1 +
λ

λ+ α

(
TL
0,1 + TL

1,1

)
(4)

Finally, noting that TL
1,1 = B1 from Eq. (2), we have that:

TL
0,1 =

1

λ+ α
+

α

λ+ α
·B1 +

λ

λ+ α

(
TL
0,1 +B1

)

=⇒ TL
0j = TL

0,1 =
1 + (λ+ α)B1

α
(5)

Variable Description

T Mean length of the renewal cycle

R Mean reward earned during a renewal cycle

TL
i,j

Mean time until we first move one level left
of (i, j), starting from (i, j)

RL
i,j

Mean reward earned until we first move
one level left of (i, j), starting from (i, j)

pLi→d
Probability that after we first move one level
left from state (i, j), we are at depth d

Bk Mean length of an M/M/k busy period

Table 1: Variables used in our analysis of E[N ].

Substituting TL
0,1 from above into Eq. (1) gives us T :

T =
μ(λ+ α)

λα(μ− λ)
(6)

5.2 Deriving R via RL
0,1 and RL

1,1

R denotes the reward earned in moving from (0, 0) back
to (0, 0). Observing that we earn 0 reward in state (0, 0)
(because there are no jobs in the system in that state), and
observing that from state (0, 0) we can only next move to
(0, 1), we have (using notation from Table 1):

R = RL
0,1 (7)

It now remains to compute the reward earned in moving one
step left from (0, 1), which will require looking at the other
border state, (1, 1), as well.

To do this, we invoke another recursion theorem, which
again holds for any M/M/k/setup system:

Theorem 2 (Recursion theorem for mean reward)
For the M/M/k/setup, the mean reward earned in moving
one step left from state (i, j + 1), RL

i,j+1, satisfies RL
i,j+1 =

RL
i,j +TL

i,j for all j ≥ k, where the reward tracks the number
of jobs in the system.

Applying Thm. 2 to the Markov chain shown in Fig. 4, we
have:

RL
1,1 =

1

λ+ μ
· 1 + μ

λ+ μ
· 0 + λ

λ+ μ

(
RL

1,2 +RL
1,1

)
(8)

=
1

λ+ μ
+

λ

λ+ μ

(
(RL

1,1 + TL
1,1) +RL

1,1

)

=
1

λ+ μ
+

λ

λ+ μ

(
(RL

1,1 +B1) +RL
1,1

)

(from Eq. (2))

=⇒ RL
1,1 =

1 + λB1

μ− λ
(9)



Variable Description

Ṙ Mean reward earned (for z-transform) during
a renewal cycle

Ė Mean reward earned (for transform of power)
during a renewal cycle

ṘL
i,j

Mean reward earned (for z-transform) until we
first move one level left of (i, j),
starting from (i, j)

ĖL
i,j

Mean reward earned (for z-transform of power)
until we first move one level left of (i, j),
starting from (i, j)

Table 2: Variables used in our transform analyses.

Similarly, for border state (0, 1), we have:

RL
0,1 =

1

λ+ α
· 1 + α

λ+ α
·RL

1,1 +
λ

λ+ α

(
RL

0,2 +RL
1,1

)

=
1

λ+ α
+

α

λ+ α
·RL

1,1

+
λ

λ+ α

(
(RL

0,1 + TL
0,1) +RL

1,1

)
(from Thm. 2)

=⇒ RL
0,1 =

1 + λTL
0,1 + (λ+ α)RL

1,1

α
. (10)

Substituting RL
0,1 from above into Eq. (7) gives us R:

R =
μ(λ+ α)(μ− λ+ α)

α2(μ− λ)2
(11)

5.3 Deriving E[N]

Since E[N ] = R
T , combining Eq. (6) and Eq. (11), we get:

E[N ] =
R
T =

λ

α
+

λ

μ− λ
(12)

The second term in the right hand side of Eq. (12) can be
identified [15] as the mean number of jobs in an M/M/1
system (without setup). Thus, Eq. (12) is consistent with
the known decomposition property for the M/M/1/setup
system [26].

5.4 Deriving N̂(z) and T̃(s)

Deriving the z-transform of the number of jobs, N̂(z) =
E[zN ], is just as easy as deriving E[N ]. The only difference

is that our reward function is now R(t) = zN(t), where N(t)
is again the number of jobs in the system at time t. Thus

N̂(z) = E[zN ] =
Ṙ
T ,

where Ṙ = E
[∫

cycle
zN(t)dt

]
and T is the same as before.

We will again invoke a recursion theorem which applies to
any M/M/k/setup (using notation from Table 2):

Theorem 3 (Recursion theorem for transform of reward)

For the M/M/k/setup, ṘL
i,j+1 = z · ṘL

i,j , for all j ≥ k, where

Ṙ tracks the z-transform of the number of jobs in the system.

Let us now express Ṙ by conditioning on the first step
from (0, 0):

Ṙ =
1

λ
+ ṘL

0,1 (13)

We again need one equation per border state:

ṘL
1,1 =

1

λ+ μ
· z + λ

λ+ μ

(
z · ṘL

1,1 + ṘL
1,1

)

ṘL
0,1 =

1

λ+ α
· z + α

λ+ α
· ṘL

1,1 +
λ

λ+ α

(
z · ṘL

0,1 + ṘL
1,1

)
Solving the above system and substituting ṘL

0,1 into Eq. (13)

allows us to express Ṙ in closed form. This gives us N̂(z),
after some algebra, as follows:

N̂(z) = E[zN ] =
Ṙ
T =

α(μ− λ)

(μ− λz)(α+ λ− λz)
(14)

To get the Laplace transform of response time, T̃ (s), we
use the distributional Little’s Law [13] (since M/M/1/setup
is a First-In-First-Out system):

T̃ (s) = N̂
(
1− s

λ

)
=

α(μ− λ)

(s+ α)(μ+ s− λ)
(15)

5.5 Deriving P̂(z)

We now derive P̂ (z), the z-transform of the power con-
sumed for the M/M/1/setup. The server consumes zero
power when it is off, but consumes peak power, Ppeak watts,
when it is on or in setup. This time, the reward is simply
the transform of the energy consumed over the renewal cy-

cle, Ė = E
[∫

cycle
zP (t)dt

]
, where P (t) is the power consumed

at time t. We begin with the recursive theorem for ĖL
i,j , just

like we had Thm. 3 for ṘL
i,j .

Theorem 4 (Recursion theorem for transform of power)

For the M/M/k/setup, ĖL
i,j+1 = ĖL

i,j = TL
i,j · zk·Ppeak , for all

j ≥ k.

Thm. 4 gives us ĖL
i,j in closed form, in terms of TL

i,j . Fol-
lowing the usual renewal-reward approach, we get:

P̂ (z) = E[zP ] =
Ė
T =

α(μ− λ) + λ(μ+ α)zPpeak

μ(λ+ α)
(16)

6. M/M/2/SETUP
The M/M/2/setup chain shown in Fig. 5 is analyzed sim-

ilarly to the M/M/1/setup, except that there are now three
border states, (0, 2), (1, 2), and (2, 2). The only complica-
tion is that when moving one level left from a given state,
the resulting row is non-deterministic. For example, when
moving left from (1, 3) in Fig. 5, we may end up in row 1 at
(1, 2) or row 2 at (2, 2). We use pLi→d to denote the prob-
ability that once we move one level left from (i, j), we will
be at depth d.2 The following theorem proves that pLi→d is
independent of j for all states (i, j) in the repeating portion.

Theorem 5 (Recursion theorem for probability)
For the M/M/k/setup, for each 0 ≤ d ≤ k and for each
0 ≤ i ≤ k, pLi→d is the same for all j ≥ k.

Thus, it suffices to compute pLi→d for the border states.
These probabilities are used in Section 6.2.

6.1 Deriving pL
i→d

Solving for the pLi→d is easiest “bottom-up” (starting from
the greatest depth, i). For i = 2, we have pL2→2 = 1 for all
j > 2, since we stay at depth 2 after moving left. For i = 1



Figure 5: M/M/2/setup Markov chain with the re-
peating portion highlighted in gray and the border
states shaded black.

and i = 0, we follow the same approach of conditioning on
the first step and using recursion theorems:

pL1→1 =
μ

λ+ μ+ α
+

λ

λ+ μ+ α

(
pL1→1

)2

(17)

pL0→1 =
2α

λ+ 2α

(
pL1→1

)
+

λ

λ+ 2α

(
pL0→1

)(
pL1→1

)
(18)

Eqs. (17) and (18) can now be solved in closed form since
they are of degree at most 2. Note that pL1→2 = 1 − pL1→1

and pL0→2 = 1− pL0→1.

6.2 Deriving N̂(z) via ṘL
0,2, ṘL

1,2, and ṘL
2,2

To derive N̂(z) = E[zN ], we again need to find Ṙ and

T , where Ṙ = E
[∫

cycle
zN(t)dt

]
, and T = E

[∫
cycle

1dt
]
=

Ṙ
∣∣∣∣
z=1

. Using (1, 1) as our renewal state and the same argu-

ments as in Section 5.4, we have:

Ṙ =
z

λ+ μ
+

μ

λ+ μ

(
1

λ
+

z

λ+ α
+

λ

λ+ α
· ṘL

0,2

)

+
λ

λ+ μ
· ṘL

1,2 (19)

It now remains to compute the reward equations for the
border states: ṘL

0,2, Ṙ
L
1,2, and ṘL

2,2.

ṘL
2,2 =

z2

λ+ 2μ
+

λ

λ+ 2μ

(
z · ṘL

2,2 + ṘL
2,2

)
(20)

ṘL
1,2 =

z2

λ+ μ+ α
+

α

λ+ μ+ α
· ṘL

2,2

+
λ

λ+ μ+ α

(
z · ṘL

1,2 +
(
pL1→1

)
ṘL

1,2 +
(
1− pL1→1

)
ṘL

2,2

)
(21)

ṘL
0,2 =

z2

λ+ 2α
+

2α

λ+ 2α
· ṘL

1,2

+
λ

λ+ 2α

(
z · ṘL

0,2 +
(
pL0→1

)
ṘL

1,2 +
(
1− pL0→1

)
ṘL

2,2

)
(22)

Solving the above system of linear equations and substitut-

ing ṘL
0,2 and ṘL

1,2 into Eq. (19) allows us to solve for N̂(z)

in closed form as follows:

N̂(z) = E[zN ] =
Ṙ
T =

Ṙ
Ṙ
∣∣
z=1

=
λ(λ+ α)(z + λṘL

1,2) + μ(α+ λ(1 + z + λṘL
0,2))

λ(λ+ α)(1 + λTL
1j) + μ(α+ λ(2 + λTL

0j))

(23)

6.3 Deriving T̃(s)

For the M/M/1/setup system, we were able to derive T̃ (s)

directly from N̂(z) via the distributional Little’s Law, since
the M/M/1/setup is a FIFO system. Unfortunately, the
M/M/2/setup system is not FIFO, since overtaking can oc-
cur. However, we can still apply the distributional Little’s
Law to the queue of the M/M/2/setup since the queue is

FIFO. The analysis of N̂Q(z) is very similar to that of N̂(z)
and is thus omitted:

N̂Q(z) =
λ(λ+ α)(1 + λṘL

1,2) + μ(α+ λ(1 + z + λṘL
0,2))

λ(λ+ α)(1 + λTL
1j) + μ(α+ λ(2 + λTL

0j))

(24)

We now apply the distributional Little’s Law to get T̃Q(s)

from N̂Q(z). Finally, since T = TQ + S, where S ∼ Exp(μ)
is the job size distribution, we have:

T̃ (s) = T̃Q(s) ·
μ

s+ μ
= N̂Q

(
1− s

λ

)
· μ

s+ μ

=
μ
(
λ(λ+ α)(1 + λṘL

1,2) + μ(α− s+ λ(2 + λṘL
0,2))

)
(s+ μ)

(
λ(λ+ α)(1 + λTL

1j) + μ(α+ λ(2 + λTL
0j))

)
(25)

6.4 Deriving P̂(z)

The derivation of P̂ (z) is similar to that of N̂(z) in Sec-
tion 6.2, and is thus omitted.

̂P (z) =
μ(α+ λ) + λ(λ+ μ+ α)zPpeak

μ(α+ λ) + λ(λ+ μ+ α) + λ2(μTL
0j + (λ+ α)TL

1j)

+
λ2(μTL

0j + (λ+ α)TL
1j)z

2Ppeak

μ(α+ λ) + λ(λ+ μ+ α) + λ2(μTL
0j + (λ+ α)TL

1j)
(26)

7. M/M/K/SETUP
The M/M/k/setup chain shown in Fig. 1 is analyzed simi-

larly to M/M/2/setup. The border states for M/M/k/setup
are (i, k), with 0 ≤ i ≤ k. In the M/M/k/setup, the non-
repeating portion consists of O(k2) states. For k = 1 and
k = 2, we did not have to explicitly write reward equations
for the non-repeating states; these were implicitly folded into
other equations (see, for example, the term in parentheses
in Eq. (19)). However, for arbitrarily large k, it is necessary
to write reward equations for the states in the non-repeating
portion. We use RH

i,j to denote the reward earned until we
reach the home state, starting from state (i, j) in the non-
repeating portion. The RH

i,j equations will be discussed in
Section 7.3.
We illustrate the RRR technique for M/M/k/setup by de-

riving N̂Q(z), from which we can obtain T̃ (s). For a detailed
demonstration of this technique for the case of k = 3, see [7].



One might think that analyzing the M/M/k/setup will re-
quire solving a kth degree equation. This turns out to be
false. Analyzing the M/M/k/setup via RRR only requires
solving equations which are, at worst, quadratic.

We choose (k − 1, k − 1) to be the renewal state. Using

RRR, Ṙ can be expressed as:

Ṙ =
1 + (k − 1)μṘH

k−2,k−2 + λṘL
k−1,k

λ+ (k − 1)μ
(27)

We now derive the necessary pL
i→d, Ṙ

L
i,k, and ṘH

i,j for com-

puting Ṙ.

7.1 System of equations for pL
i→d

The system of equations for pLi→d is as follows:2

pLi→i =
λ(pLi→i)

2 + iμ

λ+ iμ+ (k − i)α
, (i < k) (28)

pLi→d =
λ
(∑d

�=i

{
(pLi→�)(p

L
�→d)

})
+ (k − i)α(pLi+1→d)

λ+ iμ+ (k − i)α
,

(i < d < k) (29)

pLi→k = 1−
k−1∑
�=i

pLi→�, (i ≤ k) (30)

The summation in Eqs. (29) above denotes the possible
intermediate depths � through which we can move from ini-
tial depth i to final depth d. The above system of equations
involves linear and quadratic equations (including products
of two unlike variables), and can be solved symbolically to
find pLi→d in closed form (see Appendix B).

7.2 Deriving ṘL
i,k for the repeating portion

The system of equations for ṘL
i,k is as follows:

ṘL
0,k =

zk + λ
(
zṘL

0,k +
∑k

�=1

{
(pL0→�)(Ṙ

L
�,k)

})
+ kαṘL

1,k

λ+ kα
(31)

ṘL
i,k =

zk−i + λ
(
zṘL

i,k +
∑k

�=i

{
(pLi→�)(Ṙ

L
�,k)

})
λ+ iμ+ (k − i)α

+
(k − i)αṘL

i+1,k

λ+ iμ+ (k − i)α
, (0 < i < k) (32)

ṘL
k,k =

1 + λ(zṘL
k,k + ṘL

k,k)

λ+ kμ
(33)

In the above, we have used the fact that ṘL
i,k+1 = zṘL

i,k

from Thm. 3. The above system of linear equations can be
easily solved to find ṘL

i,k in closed form (see Appendix B).

7.3 Deriving ṘH
i,j for the non-repeating portion

2The definition given for pLi→d applies in all cases except
when j = k and d ∈ {k − 1, k}. When j = k, we can never
end in depth k when moving one step to the left; in this
case, we interpret pLi→k (or pLi→k−1) as the probability that
we first moved one step left by transitioning out of a state
in depth k (or k − 1).

The system of equations for ṘH
i,j is as follows:

ṘH
0,j =

zj + λṘH
0,j+1 + jαṘH

1,j

λ+ jα
, (j < k − 1) (34)

ṘH
i,j =

zj−i + λṘH
i,j+1 + iμṘH

i,j−1 + (j − i)αṘH
i+1,j

λ+ iμ+ (j − i)α
,

(0 < i < j < k − 1) (35)

ṘH
i,i =

1 + λṘH
i,i+1 + iμṘH

i−1,i−1

λ+ iμ
, (0 < i < k − 1)

(36)

ṘH
i,k−1 =

zk−1−i + λ
(
ṘL

i,k +
∑k

�=i

{
(pLi→�)(Ṙ

H
�,k−1)

})
λ+ iμ+ (k − 1− i)α

+
iμṘH

i,k−2 + (k − 1− i)αṘH
i+1,k−1

λ+ iμ+ (k − 1− i)α
, (i < k − 1)

(37)

ṘH
k−1,k−1 = 0 (38)

Eqs. (34), (35), and (36), are simply based on the rate tran-
sitions in the non-repeating portion of the Markov chain.
Eqs. (37) describe the rewards earned when starting in states
in the non-repeating portion of the chain that can transition
to the repeating portion of the chain via the border states.
When we have an arrival in one of these states, we transi-
tion to the repeating portion of the chain, and after earn-
ing some reward, return to the non-repeating portion of the
chain. Finally, Eq. (38) guarantees that any transition to
state (k − 1, k − 1) will end the renewal cycle. The above
system of linear equations can again be easily solved to find
ṘH

i,j in closed form (see Appendix B).

After solving for pLi→d, Ṙ
L
i,k and ṘH

i,j , we can derive Ṙ, and

consequently N̂Q(z), via Eq. (27). T̃ (s) can then be derived

by using the fact T̃ (s) = T̃Q(s) · μ
s+μ

= N̂Q

(
1− s

λ

)
· μ
s+μ

.
We applied the above steps to obtain a closed-form expres-

sion for N̂Q(z) for the M/M/3/setup. We refer the reader
to [7] for full details.

8. M/M/K/SETUP/DELAYEDOFF
The Markov chain for M/M/k/setup/delayedoff is shown

in Fig. 2. Our renewal state this time will be (k, k − 1);

thus, Ṙ, the reward earned when going from (k, k− 1) back
to (k, k − 1) can be expressed as:

Ṙ =
1 + (k − 1)μṘH

k,k−2 + λṘL
k,k + βṘH

k−1,k−1

λ+ (k − 1)μ+ β
(39)

The analysis for M/M/k/setup/delayedoff via RRR is very
similar to that of M/M/k/setup in Section 7 above. In fact,
since the repeating portion for the two chains is the same,
the system of equations for pLi→d and ṘL

i,j is identical, but
the non-repeating portion for the two chains is different. We
now set up the system of equations for solving ṘH

i,j .

8.1 Deriving ṘH
i,j for the non-repeating portion



(a) (b)

Figure 6: Fig. 6(a) depicts the class of Markov chains that can be analyzed via RRR. The repeating portion is
highlighted in gray and the border states, bi, are shaded black. Note that yi are the neighbors of x. Fig. 6(b)
depicts the more restrictive class of Markov chain that can be analyzed in closed-form via RRR. In this class,
the horizontal transitions are skip-free and the vertical transitions are unidirectional.

The system of equations for ṘH
i,j is as follows:

ṘH
0,j =

zj + λṘH
0,j+1 + jαṘH

1,j

λ+ jα
, (j < k − 1) (40)

ṘH
i,0 =

1 + λṘH
i,1 + iβṘH

i−1,0

λ+ iβ
, (0 < i ≤ k) (41)

ṘH
k,j =

1 + λṘH
k,j+1 + jμṘH

k,j−1 + (k − j)βṘH
k−1,j

λ+ jμ+ (k − j)β
,

(1 ≤ j < k − 1) (42)

ṘH
i,j =

zj−i + λṘH
i,j+1 + iμṘH

i,j−1 + (j − i)αṘH
i+1,j

λ+ iμ+ (j − i)α
,

(0 < i < j < k − 1) (43)

ṘH
i,i =

1 + λṘH
i,i+1 + iμṘH

i,i−1

λ+ iμ
, (0 < i < k − 1) (44)

ṘH
i,j =

1 + λṘH
i,j+1 + jμṘH

i,j−1 + (i− j)βṘH
i−1,j

λ+ jμ+ (i− j)α
,

(0 < j < i < k) (45)

ṘH
i,k−1 =

zk−1−i + λ
(
ṘL

i,k +
∑k

�=i

{
(pLi→�)(Ṙ

H
�,k−1)

})
λ+ iμ+ (k − 1− i)α

+
iμṘH

i,k−2 + (k − 1− i)αṘH
i+1,k−1

λ+ iμ+ (k − 1− i)α
, (i ≤ k − 1)

(46)

ṘH
k,k−1 = 0 (47)

The above system of linear equations can again be solved
to find ṘH

i,j in closed form. This yields Ṙ, and consequently

N̂Q(z), via Eq. (39).

9. M/M/K/SETUP/SLEEP
The Markov chain for M/M/k/setup/sleep is shown in

Fig. 3. The analysis for M/M/k/setup/sleep via RRR is
again similar to that of M/M/k/setup in Section 7. The only
difference is in the setup transition rate (downwards tran-
sition arrows in the Markov chain): For the M/M/k/setup,
the setup rate in state (i, j) is α · min{j − i, k − i}. For
the M/M/k/setup/sleep, the setup rate in state (i, j) is

more complicated. When i ≥ s, the setup rate is still
α · min{j − i, k − i}. However, if i < s, the setup rate is
ω ·(j− i) if j ≤ s and ω ·(s− i)+α ·min{j−s, k−s} if j > s.
This can be explained based on the M/M/k/setup/sleep
model description in Section 3.3 and the Markov chain in
Fig. 3. Based on the above setup rates, we can easily mod-
ify the M/M/k/setup sets of equations for pLi→d, Ṙ

L
i,k and

ṘH
i,j from Sections 7.1, 7.2 and 7.3 respectively, to represent

the M/M/k/setup/sleep system of equations. The equation

for Ṙ will change accordingly.

10. THE GENERALIZED RECURSIVE RE-
NEWAL REWARD TECHNIQUE

The RRR technique can be applied to a very broad class
of Markov chains beyond just the M/M/k/setup. In gen-
eral, RRR can reduce the analysis of any 2-dimensional, ir-
reducible Markov chain which is repeating and infinite in one
dimension (as shown in Fig. 6(a)) to the problem of solving a
system of polynomial equations. Further, if in the repeating
portion all horizontal transitions are skip-free and all verti-
cal transitions are unidirectional (as shown in Fig. 6(b)), the
resulting system of equations will be of degree at most two,
yielding a closed-form solution. In this section we explain
the application of the RRR technique to general repeating
Markov chains and also provide justification for the above
claims regarding Figs. 6(a) and 6(b). Throughout we will
assume that the reward earned at a state, (i, j), is an affine
function of i and j.

In order to apply RRR, we first partition the Markov chain
into a finite non-repeating portion and an infinite repeating
portion as in Fig. 6(a); in principle, this partition is not
unique. Then, we fix a renewal point, or home state, within
the non-repeating portion. For each state, x, in the non-
repeating portion of the chain, we write an equation for the
mean reward, RH

x , earned in traveling from x to the home
state. Each RH

x is a sum of the mean reward during our
residence in x and a weighted linear combination of the re-
wards RH

y , where y is a neighbor of x, as in Fig. 6(a). We

refer to this finite set of linear equations for the RH
x s as (Ia).

Since the chain is irreducible, at least one state in the non-
repeating portion of the chain transitions directly to a state
in the repeating portion of the chain. We refer to the states
in the repeating portion that are directly accessible from the
non-repeating portion as border states. These are shown as
bi in Fig. 6(a). We next write a set of equations for the
mean reward earned in traveling from each border state to



(a) E[S] = 1s (b) E[S] = 100s (c) E[S] = 1s (d) E[S] = 100s

Figure 7: E[P] versus E[T] for various values of twait and s.

the home state; call this set (Ib). Equation sets (Ia) and
(Ib) together form the linear system of equations (I).

Within (Ib), the mean reward earned when returning home
from each border state b consists of two parts: (i) the mean
reward earned from the time we enter b until we leave the re-
peating portion, and (ii) the mean reward earned from when
we first exit the repeating portion until returning home.
Note that (ii) is simply a weighted linear combination of RH

x s
where the weights form the probability distribution over the
set of states in the non-repeating portion that we transition
to (same as the pLi→ds). For (i), the reward equation can be
expressed as a weighted linear combination of the rewards
for the neighbors of b in the repeating portion. The fact that
the chain has a repeating structure allows us to express the
reward from any state in the repeating portion as a linear
combination of the rewards of the border states by using
“recursion theorems” (similar to Thms. 2 and 3). We also
need the probability distribution over the set of states we
transition to when we move left (the pLi→ds). At this point,
to write the equations in (Ib), we require solving the pLi→ds.
We refer to the system of equations for pLi→ds as (II).
In writing the equations for pLi→ds, we again use recur-

sion theorems (similar to Thm. 5) that exploit the repeating
structure of the Markov chain. However, this time, the equa-
tions need not be linear. This is because when moving left
to depth d from depth i, we might transition through var-
ious intermediate depths. Thus, pLi→d will involve several
other probability terms. Unlike rewards where we sum up
intermediate terms, for probability we take a product of the
intermediate terms, leading to a system of higher order poly-
nomial equations, (II). Note that (II) does not depend on
(I), and can be solved independently. Once we get the pLi→ds
by solving (II), we substitute these back (as constants) into
the set of linear equations (Ib). The sets of linear equations
(Ib) and (Ia) can now be jointly solved using standard tech-
niques such as symbolic matrix inversion. This yields the
mean reward earned during a renewal cycle from home to
home; mean time is found analogously.

In the case of Markov chains as shown in Fig. 6(b), the
probability equations, (II), will be of degree at most two, as
in Section 7.1. This is because skip-free horizontal transi-
tions guarantee that the probability pLi→d can be expressed
as a linear sum of products of only two intermediate terms
of the form pLi→� · pL�→d, where � represents the intermedi-
ate depths that we can transition to in going from i to d
(as in Section 7.1). Further, the unidirectional vertical tran-
sitions guarantee that i ≤ � ≤ d, which ensures that the
intermediate probability terms do not lead to higher-order

dependencies between each other. Thus, the probabilities
can be derived in closed-form by solving quadratic equa-
tions (including products of two unlike terms) in a particular
“bottom-up” order as explained in Appendix B.

11. APPLICATIONS
In this section we use our analytical results to evaluate the

performance of M/M/k, M/M/k/setup, M/M/k/setup/de-
layedoff and M/M/k/setup/sleep. In particular, we will be
interested in the mean response time, E[T ], and the mean
power consumption, E[P ], under these policies. Through-
out, we assume a load of ρ = λ

kμ
= 0.3 (or 30% load), setup

times of 1
α

= 100s (when the server is off) and 1
ω

= 25s
(when the server is sleeping), and power consumption val-
ues of Ppeak = 200W, Pidle = 140W, and Psleep = 14W.
These parameter values are based on empirical measure-
ments from prior work [4, 11]. We consider job sizes with
mean E[S] = 1s (typical web workloads [6]), E[S] = 10s
(database queries or secured transactions), and E[S] = 100s
(file download or upload), and system sizes ranging from
k = 5 to k = 100 servers.
The M/M/k policy keeps k servers always on. Servers that

are not busy serving jobs are left idle. The M/M/k/setup
policy (see Section 3.1) immediately turns off idle servers
to save power. However, restarting an off server requires a
setup time of 1

α
= 100s. The M/M/k/setup/delayedoff pol-

icy (see Section 3.2) is the same as the M/M/k/setup policy,
except that idle servers wait for an exponentially distributed
amount of time with mean twait =

1
β
before turning off. The

performance of this policy depends on the choice of the twait

parameter. Finally, the M/M/k/setup/sleep policy (see Sec-
tion 3.3) is the same as the M/M/k/setup policy, except that
s of the k servers go to sleep as opposed to turning off, when
idle. A sleeping server has a small setup time of 1

ω
= 25s.

The performance of this policy depends on the choice of the
s parameter. Before comparing the above four policies, we
first discuss how we choose the parameter value of twait for
M/M/k/setup/delayedoff and s for M/M/k/setup/sleep.

11.1 Choosing optimal parameter values
The tradeoff between E[P ] and E[T ] for M/M/k/setup/de-

layedoff is shown in Figs. 7(a) and 7(b). Each plotted point
represents an (E[T ], E[P ]) pair associated with a specific
value of twait. Intuitively, as twait increases, E[T ] decreases
since we avoid setup times. Moreover, before some thresh-
old twait, E[P ] decreases as twait increases, because we avoid
consuming power at peak rate by repeatedly putting servers
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Figure 8: Results when mean job size E[S] = 1.

(a) E[T] versus k (b) E[P] versus k

Figure 9: Results when mean job size E[S] = 100.

in setup. However, beyond this threshold twait, E[P ] starts
increasing on account of idle servers. Thus, as twait in-
creases, we get the plots in Figs. 7(a) and 7(b), from right
to left. We choose the twait value that optimizes (i.e., max-
imizes) the popular Performance-Per-Watt metric [11, 8],
given by PPW = (E[T ] ·E[P ])−1. These optimal values are
shown in Figs. 7(a) and 7(b). We find that the optimal twait

value decreases with an increase in E[S].
Figs. 7(c) and 7(d) illustrate the tradeoff between E[P ]

and E[T ] under M/M/k/setup/sleep for different values of
s. Intuitively, as s increases, E[T ] decreases since we benefit
from faster setup times afforded by sleeping servers. As
s increases, E[P ] first decreases since we avoid the severe
power penalty of longer setup times. But beyond a certain
s, E[P ] increases on account of the sleeping servers. Thus, as
s increases, we get the plots in Figs. 7(c) and 7(d), from right
to left. Note that E[P ] monotonically decreases for the case
of E[S] = 1s in Fig. 7(c). This is because 1

α
� E[S], and

thus, the decrease in power consumption by avoiding power
penalties of longer setup times outweighs the increase in
power consumption because of Psleep. We choose the s value
that optimizes the PPW metric, as indicated in Figs. 7(c)
and 7(d). We find that the optimal s value decreases with
an increase in E[S].

11.2 Comparison of all policies
Fig. 8 shows our results for E[T ] and E[P ] as a function

of k for the case of E[S] = 1s. Comparing M/M/k (squares)
and M/M/k/setup (circles), we see that M/M/k/setup has
a much higher E[T ], and only a slightly lower E[P ]. In fact,
when k is low, E[P ] for M/M/k/setup is higher than that of
M/M/k. This is because of the power penalty involved in the
setup cost. Thus, M/M/k/setup is not a good policy
for small job sizes. The M/M/k/setup/sleep (crosses) has
lower E[T ] and lower E[P ] than the M/M/k/setup. Thus,
using sleep modes improves the M/M/k/setup pol-
icy. Finally, we see that M/M/k/setup/delayedoff (dia-
monds) has E[T ] virtually as low as that of M/M/k, and
has the lowest power consumption among all other poli-
cies. Thus, M/M/k/setup/delayedoff is superior to
all the other policies for small job sizes. The reason
for lower E[P ] under M/M/k/setup/delayedoff is because of
twait which avoids unnecessary setups (and the associated
power penalties).
Fig. 9 shows our results for the case of E[S] = 100s. The

E[T ] results for this job size are qualitatively similar to the
results for E[S] = 1s. The percentage difference between
the E[T ] under different policies goes down as E[S] goes
up. This is because the setup time is not changing as E[S]
goes up, and thus, the queueing delay caused by setup times
is not as severe for large E[S]. Note that the E[T ] under
M/M/k/setup/delayedoff actually goes up as E[S] goes up.
This is a side-effect of the optimal twait setting which trades



Figure 10: Var(T) versus k for E[S] = 1s.

off lower E[P ] at the expense of a slightly higher E[T ] for
bigger job sizes.

The E[P ] results for different job sizes indicate that E[P ]
under M/M/k/setup and M/M/k/setup/sleep de-
creases with an increase in job size, and approaches
the E[P ] of M/M/k/setup/delayedoff. This is because
an increase in E[S] necessitates an increase in the inter-
arrival time, given fixed load, ρ. Thus, servers now spend
more time in the off or sleep states, and consequently, con-
sume less power. In fact, the M/M/k/setup/sleep has lower
E[P ] as compared to M/M/k/setup/delayedoff for the case
of E[S] = 100s. We take a closer look at these two poli-
cies in Section 11.3. Note that under M/M/k, E[P ] =
k · ρ · Ppeak + k · (1 − ρ) · Pidle, which is linear in k and
independent of E[S].

The E[T ] results for these job sizes are qualitatively sim-
ilar to the results for E[S] = 1s. The percentage difference
between the E[T ] under different policies goes down as E[S]
goes up. This is because the setup time is not changing as
E[S] goes up, and thus, the queueing delay caused by setup
times is not as severe for large E[S]. Note that the E[T ] un-
der M/M/k/setup/delayedoff actually goes up as E[S] goes
up. This is a side-effect of the optimal twait setting which
trades off lower E[P ] at the expense of a slightly higher
E[T ] for bigger job sizes. As mentioned in Section 7, RRR
also provides closed-form solutions for higher moments of
response time and power. Fig. 10 shows our results for
V ar(T ), the variability in response time, for the case of
E[S] = 1s. We see that V ar(T ) follows the same trends
as E[T ] in Fig. 8(a). Note that V ar(T ) is close to 1 for
M/M/k and M/M/k/setup/delayed-off. Also, V ar(T ) con-
verges to 1 for all policies for high k. This is because V ar(T )
converges to V ar(S) (no queueing delay) in these cases, and
since S is exponentially distributed with mean E[S] = 1s,
we get V ar(T ) → V ar(S) = 1s2.
All the results above assumed exponential setup times and

exponential delay times. However, in real-world scenarios,
these times would be deterministic. We use simulations to
find E[T ] and E[P ] under deterministic setup times for all
the above cases. We find that the relative ordering of the
policies and the trends in E[T ] and E[P ] do not change
significantly, despite the fact that all values become slightly
higher due to the setup rates no longer being additive.

11.3 A closer look at M/M/k/setup/delayedoff
versus M/M/k/setup/sleep

Figure 11: E[P] versus E[T] for various values of
twait and s for mean job size E[S] = 100s.

Fig. 11 shows the tradeoff between E[P ] and E[T ] for
M/M/k/setup/delayedoff and M/M/k/setup/sleep for E[S]
= 100s. These plots are identical to Figs. 7(b) and 7(d).
We see that no policy dominates the other. If we are more
concerned about reducing E[P ], M/M/k/setup/sleep is the
better choice. However, if we are more concerned about re-
ducing E[T ], M/M/k/setup/delayedoff is the better choice.
Interestingly, by taking a probabilistic mixture of the two
policies, we can find additional policies that are superior to
the M/M/k/setup/delayedoff and the M/M/k/setup/sleep.
The probabilistic mixture can be obtained by taking the
convex hull of the two policies, as shown by the dashed line
in Fig. 11. This suggests the potential for a policy that
combines M/M/k/setup/sleep with delayedoff.

12. CONCLUSION
In this paper we develop a new analysis technique, Recur-

sive Renewal Reward (RRR), which allows us to solve the
M/M/k/setup class of Markov chains. RRR is very intuitive,
easy to apply, and can be used to analyze many important
Markov chains that have a repeating structure. RRR com-
bines renewal reward theory with the development of recur-
sion theorems for the Markov chain to yield exact, closed
form results for metrics of interest such as the transform
of time in system and the transform of power consumed by
the system. RRR reduces the solution of the M/M/k/setup
chains to solving k quadratic equations and a system of
O(k2) linear equations. On an Intel Core i5-based proces-
sor machine we found RRR to be almost 5-10 times faster
than the iterative matrix-analytic based methods, when us-
ing standard MATLAB implementations of both methods.
While we have only considered the M/M/k/setup, the

M/M/k/setup/delayedoff, and the M/M/k/setup/sleep in
this paper, we have also been able to use RRR for the
derivation of exact, closed-form solutions for other impor-
tant Markov chains with a repeating structure such as: (i)
M/M/k/stag [10], wherein at most one server can be in
setup, (ii) M/M/k/setup-threshold, wherein the servers are
turned on and off based on some threshold for number of jobs
in queue, (iii) M/M/k/disasters, wherein the system can
empty abruptly due to disasters, and (iv) M/E2/k, where
the job size distribution is Erlang-2. We have also been able
to apply RRR to analyze other Markov chains such as: (i)
Mt/M/1, where the arrival process is Poisson with a time
dependent parameter, (ii) M/H2/k, where the job size dis-



tribution is a 2-phase hyperexponential, and (iii) Mx/M/k,
where there is a Poisson batch arrival process. In the above
three cases, RRR reduces the analysis to solving a system
of polynomial equations with degree > 2. In general, RRR
should be able to reduce the analysis of any 2-dimensional
Markov chain (with an affine reward function), which is fi-
nite in one dimension and infinite (with repeating structure)
in the other, to solving a system of polynomial equations.

While not shown in this paper, it is possible to derive an
explicit rate matrix for the M/M/k/setup, which leads to
closed-form expressions for the limiting probabilities. While
RRR does not utilize the rate matrix in any way, we believe
that the set of Markov chains that can be solved in closed
form via RRR should have an explicit rate matrix.
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APPENDIX
A. RECURSION THEOREMS

Theorem 1 (Recursion theorem for mean time)
For the M/M/k/setup, the mean time to move one step left
from state (i, j), TL

i,j , is the same for all j ≥ k.

Proof. For any j ≥ k, observe that when moving one step
left from any state (i, j), we only visit states with level j
or greater, until the final transition to level j − 1. Hence,
TL
i,j depends only on the structure of the “subchain” of the

M/M/k/setup consisting of levels {j, j + 1, . . .}, including
transition rates to level j − 1. Now consider the subchain
for each j ≥ k; these subchains are isomorphic, by the fact
that the chain is repeating from level k onward. Hence, the
time to move one step left is the same regardless of the initial
level j ≥ k.

Theorem 2 (Recursion theorem for mean reward)
For the M/M/k/setup, the mean reward earned in moving
one step left from state (i, j + 1), RL

i,j+1, satisfies RL
i,j+1 =

RL
i,j +TL

i,j for all j ≥ k, where the reward tracks the number
of jobs in the system.

Proof. Consider the process of moving one step left from a
given state (i, j) where j ≥ k. At the same time, consider the
same process where everything is shifted over one level to the
right, so that the initial state is (i, j+1) At any point in time,
the number of jobs seen by the second process is exactly one
greater than that seen by the first process. Therefore, the
total number of jobs accumulated (total reward) during the
second process is TL

i,j greater than that of the first process,

since the duration of both processes is TL
i,j by Theorem 1.

Theorem 3 (Recursion theorem for transform of reward)

For the M/M/k/setup, ṘL
i,j+1 = z · ṘL

i,j , for all j ≥ k, where

Ṙ tracks the z-transform of the number of jobs in the system.

Proof. The proof is identical to that of Theorem 2, except
that in any moment in time the second process (starting in
level (i, j + 1)) earns z times as much reward as the first
process (starting at (i, j)).

Theorem 4 (Recursion theorem for transform of power)

For the M/M/k/setup, ĖL
i,j+1 = ĖL

i,j = TL
i,j · zk·Ppeak , for all

j ≥ k.

Proof. When j ≥ k, all k servers are either on or in setup,
putting power consumption at k ·Ppeak. So the transform of

power usage is zk·Ppeak , yielding ĖL
i,j = TL

i,j ·zk·Ppeak . It then

follows immediately from Theorem 1 that ĖL
i,j+1 = ĖL

i,j .

Theorem 5 (Recursion theorem for probability)
For the M/M/k/setup, for each 0 ≤ d ≤ k and for each
0 ≤ i ≤ k, pLi→d is the same for all j ≥ k.

Proof. Recall that pLi→d is the probability that, given that
we start at depth i, we end at depth d when moving one step
to the left, except when j = k and d ∈ {k − 1, k}; in these
cases we interpret pLi→k (or pLi→k−1) as the probabilities that
we first moved one step left by transitioning out of a state
in depth k (or k − 1).
As with TL

i,j , p
L
i→d depends only on the structure of the

“subchain” consisting of levels {j, j + 1, . . .}, including tran-
sition rates to level j − 1. Since for all j ≥ k the resulting
subchains are isomorphic, pLi→d must be the same for all
j ≥ k.

B. SOLUTION OF THE SYSTEM OF EQUA-
TIONS FOR M/M/K/SETUP

The steps below illustrate how to solve the system of equa-
tions for M/M/k/setup. All of the operations in the steps
below can be performed symbolically to obtain closed-form
results.

B.1 Solving for pL
i→d

The system of equations for pLi→d consists of equation
sets (28), (29) and (30). Eqs. (28) are k quadratic equations,
each in one variable: pL0→0, p

L
1→1, . . . , p

L
k−2→k−2, p

L
k−1→k−1.

Thus, we can solve each equation easily using the quadratic
formula. It can be easily shown that among the two roots
of each equation, the greater root exceeds 1, and is thus
disregarded. The lesser root can be shown to lie in the in-
terval [0, 1), making it the unique solution of interest to the
quadratic equation. Note that pL0→0 = 0, as expected (we
cannot move to the left when we have no servers on).

The set of equations (29) is a collection of O(k2) equations
involving linear terms and products of two unlike variables.
However, the structure of this system of equations reduces
solving the system to solving a set of linear equations via
back substitution. Consider solving this set of equations for
the unknown values of pLi→d in this order:

pLk−1→k−1, p
L
k−2→k−2, p

L
k−2→k−1, . . . , p

L
0→1 p

L
0→2, . . . , p

L
0→k−1

That is, solving from greatest (k − 1) to least (0) “original
depth,” but within each original depth, solving from least to
greatest “target depth.” Solving in this order, each equation
we solve will only have one unknown, as all other variables
will already have been solved for in an earlier step (including
the pLi→i from Equations (28)), so these variables can be
viewed as coefficients and constant terms. Once we have
solved Equations (29), we can easily solve Equations (30),
yielding pL0→k, p

L
1→k, . . . , p

L
k−1→k, by taking complements. It

follows that all pLi→d can be solved in closed forms that are,
at worst, linear combinations of radicals (i.e., square roots).

B.2 Solving for ṘL
i,k

The system of equations for ṘL
i,k consists of Equations (31)

and (32), and Eq. (33). This system is a collection of (k +
1) linear equations with (k + 1) unknowns. Although we
could solve this system using standard linear algebraic tech-
niques, the structure of this system suggests an even sim-
pler approach using back substitution. Solving for each ṘL

i,k

only requires knowing the ṘL
i,� such that � ∈ {i+ 1, . . . , k}.

Eq. (33) readily gives us ṘL
k,k. Thus, we can now solve for

ṘL
k−1,k, then ṘL

k−2,k, and so on. In this way, each ṘL
i,k is

found by solving a linear equation for one unknown variable.

B.3 Solving for ṘH
i,j

The system of equations for ṘH
i,j consists of Equations (34),

(35), (36) and (37), and Eq. (38). This system is a collec-
tion of O(k2) dependent linear equations with just as many
unknowns. Unlike the earlier systems of equations, there
is no apparent structure we can exploit, so the system can
be solved via standard linear algebraic techniques such as
(symbolic) matrix inversion.


