
16

SOAP: One Clean Analysis of All
Age-Based Scheduling Policies

ZIV SCULLY, Carnegie Mellon University

MOR HARCHOL-BALTER, Carnegie Mellon University

ALAN SCHELLER-WOLF, Carnegie Mellon University

We consider an extremely broad class of M/G/1 scheduling policies called SOAP: Schedule Ordered by Age-

based Priority. The SOAP policies include almost all scheduling policies in the literature as well as an infinite

number of variants which have never been analyzed, or maybe not even conceived. SOAP policies range

from classic policies, like first-come, first-serve (FCFS), foreground-background (FB), class-based priority, and

shortest remaining processing time (SRPT); to much more complicated scheduling rules, such as the famously

complex Gittins index policy and other policies in which a job’s priority changes arbitrarily with its age. While

the response time of policies in the former category is well understood, policies in the latter category have

resisted response time analysis. We present a universal analysis of all SOAP policies, deriving the mean and

Laplace-Stieltjes transform of response time.

CCS Concepts: • General and reference → Performance; • Mathematics of computing → Queueing
theory; • Software and its engineering→ Scheduling; • Computing methodologies→Model develop-
ment and analysis; • Theory of computation→ Scheduling algorithms;

Additional Key Words and Phrases: M/G/1; exact response time analysis; Gittins index; shortest expected

remaining processing time (SERPT)

ACM Reference format:
Ziv Scully, Mor Harchol-Balter, and Alan Scheller-Wolf. 2018. SOAP: One Clean Analysis of All Age-Based

Scheduling Policies. Proc. ACM Meas. Anal. Comput. Syst. 2, 1, Article 16 (March 2018), 30 pages.

https://doi.org/10.1145/3179419

1 INTRODUCTION
Analyzing the response time of scheduling policies in the M/G/1 setting has been the focus of

thousands of papers over the past half century, from classic early works [10, 15–17, 21–23] to

more recent works in the SIGMETRICS community [1, 2, 6–9, 18–20, 24–26]. Examples of common

scheduling policies include

• first-come, first-served (FCFS), which serves jobs nonpreemptively in the order they arrive;

• class-based priority, which serves the job of highest priority class, possibly preemptively

and possibly nonpreemptively;

• shortest remaining processing time (SRPT), which preemptively serves the job with the least

remaining time;

• foreground-background (FB), which preemptively serves the job that has received the least

service so far; and

© 2018 Association for Computing Machinery.

This is the author’s version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version

of Record was published in Proc. ACM Meas. Anal. Comput. Syst., https://doi.org/10.1145/3179419.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 1, Article 16. Publication date: March 2018.

https://doi.org/10.1145/3179419
https://doi.org/10.1145/3179419


16:2 Ziv Scully, Mor Harchol-Balter, and Alan Scheller-Wolf

• processor sharing (PS), which concurrently serves all jobs in the system at the same rate.

In just these few examples we see a variety of features represented: preemptible jobs, nonpreemptible

jobs, prioritizing by class, prioritizing by job size, and prioritizing by service received so far, or

age. Each policy requires a custom response time analysis that takes into account its particular

combination of features.

Although there has been much success in analyzing the response time of specific scheduling

policies in the M/G/1 setting, such as those listed above, results are ad-hoc and limited to relatively
simple policies. Analyzing variants of the above simple policies, let alone fundamentally different

policies, is an open problem. For instance, none of the following scenarios have been analyzed

before.

• Suppose we have exact size information for some “sized” jobs but not other “unsized” jobs.

We run SRPT on sized jobs and FB on unsized jobs, meaning that we serve the sized job

of minimum remaining time or unsized job of minimum age, whichever measurement is

smaller.

• Suppose we have jobs that are neither fully preemptible nor fully nonpreemptible but

instead preemptible only at specific “checkpoint” ages. We run a preemptive policy, such as

SRPT or FB, but only preempt jobs when they reach checkpoint ages.

• The Gittins index policy [3, 11], long known to be optimal for minimizing mean response

time in the M/G/1 queue
1
, has only been analyzed in certain special cases [13, 20]. In

general, the Gittins index policy can have a complex priority scheme [4] which, while

known to perform optimally, has not been analyzed before in its general form.

Approaching the above examples with state-of-the-art techniques, if possible at all, would require

an ad-hoc analysis for each scenario. We seek general principles and techniques for response time

analysis that apply to not just the above examples but to as many scheduling policies as possible,

even those not yet imagined.

1.1 Contributions
We introduce SOAP, a universal framework for defining and analyzing M/G/1 scheduling policies.

The SOAP framework can analyze any SOAP scheduling policy, which includes nearly any policy

where a job’s priority depends on its own characteristics: class, size, age, and so on. Specifically, we

make the following contributions.

• We define the class of SOAP policies (Section 2), a broad class of policies that includes the

three unsolved examples above as well as many other policies, from practical scenarios to

policies not yet imagined. We encodemany policies old and new as SOAP policies (Section 3).

• We give a universal response time analysis that works for any SOAP policy (Section 5),

obtaining closed forms for the mean (Theorem 5.5) and Laplace-Stieltjes transform (Theo-

rem 5.4). In particular, we apply our results to previously intractable analyses (Section 6),

such as the response time of the Gittins index policy.

In defining and analyzing SOAP policies, there are two major technical challenges. The first major

challenge is that to have a single analysis apply to many scheduling policies at once, we need to

express all such policies within a single framework. The SOAP framework encodes a scheduling policy

as a rank function, which maps each job to a priority level, or rank. All SOAP policies are based

on a single rule: always serve the job of minimal rank. For example, in a preemptive class-based

priority system, a job’s rank is its class (Example 3.3), whereas in SRPT, a job’s rank is its remaining

time (Example 3.4). Rank functions can express a huge variety of policies, from virtually all classic

1
While SRPT is optimal when exact job sizes are known, the Gittins index policy, of which SRPT is a special case, is optimal

even when only size distributions are known.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 1, Article 16. Publication date: March 2018.



SOAP: One Clean Analysis of All Age-Based Scheduling Policies 16:3

policies (Section 3.1) to complex policies which have never been analyzed before (Section 3.2). A

notable exception is PS, which does not fit into the SOAP framework.

The second major challenge is to analyze policies with arbitrary rank functions. In particular,

nearly all previously analyzed scheduling policies, when expressed as SOAP policies, have rank

functions that are monotonic in age. For example, under SRPT, a job’s rank decreases with age,

making it less and less likely to be preempted by another job, while under FB, a job’s rank increases

with age, making it more and more likely to be preempted by another job. Unfortunately, the

techniques used in the past to analyze policies with monotonic rank functions break down for
arbitrary nonmonotonic rank functions, which appear, for instance, when studying the Gittins index

policy (Example 3.6) and jobs that are preemptible only at certain checkpoints (Example 3.7). We

develop new analytical tools that work for arbitrary rank functions (Section 4).

1.2 Related Work
Our work on SOAP policies follows in the tradition of analyses that address an entire class of

policies at once. Two such classes are SMART [25] and multilevel processor sharing (MLPS) [17].

• The SMART class includes all policies that satisfy certain criteria that ensure they pri-

oritize small jobs over large ones, such as SRPT and PSJF (Example 3.4). Some recent

work on SMART policies includes analyzing the tail behavior of response time [19] and

characterizing the tradeoff between accuracy of size estimates and response time [26].

• The MLPS class consists of policies that divide all jobs in the system into echelons based

on age, then serves jobs in the youngest echelon according to FCFS, FB, or PS. Some

recent work on MLPS policies includes optimally choosing the age echelon cutoffs [5] and

connecting MLPS to the Gittins index policy [4].

While the SMART and MLPS classes have nearly no overlap, the SOAP class includes many policies

from both classes. Specifically, the SMART* subclass of SMART [25] and MLPS policies which do

not use PS are all SOAP policies.

A particularly important SOAP policy is the Gittins index policy [3, 11], which minimizes mean

response time in the M/G/1 queue when job sizes are not known. The Gittins index policy has a

rather complex definition, but recent work [3, 4] has revealed some of its structural properties.

Osipova et al. [20] analyze a specific case of the Gittins index policy for a multiclass M/G/1 queue

where each class’s job size distribution has the decreasing hazard rate (DHR) property. Using the
SOAP framework, we can analyze the Gittins index policy for arbitrary size distributions. Hyytiä
et al. [13] show that for jobs with known sizes, a weighted version of the Gittins index yields the

shortest processing time product (SPTP) policy and that this policy minimizes mean slowdown, which
is the ratio of a job’s response time to its size. SPTP is a SOAP policy, so the SOAP framework can

obtain the Laplace-Stieltjes transform of slowdown for SPTP, extending the previous mean analysis.

2 SYSTEMMODEL AND SOAP POLICIES
We consider work-conserving scheduling policies for the M/G/1 queue. We write λ for the total

arrival rate and X for the overall job size distribution. We assume a stable system, meaning

λE[X ] < 1, and a preempt-resume model, meaning preemption and processor sharing are permitted

without penalty or loss of work.

2.1 Descriptors
Scheduling algorithms use information about jobs in the system when deciding which job to serve.

We can divide this information into two types: static and dynamic.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 1, Article 16. Publication date: March 2018.



16:4 Ziv Scully, Mor Harchol-Balter, and Alan Scheller-Wolf

• Static information about a job is revealed when it enters the system and never changes. For

example, in a system with multiple job classes, a job’s class would be static information, and

in a system where exact job sizes are known, a job’s exact size would be static information.

We call a job’s static information its descriptor and write D for the set of descriptors. A

job’s descriptor d determines its size distribution Xd = (X | job has descriptor d).
• Dynamic information about a job changes as a job is served. In this paper, the only dynamic

information about a job is its age, the amount of time it has been served. The set of possible

ages is R≥0.

Descriptors are often tuples. To distinguish descriptors from ranks, another type of tuple intro-

duced in Section 2.2, we write descriptors in [square brackets] and ranks in ⟨angle brackets⟩.

Example 2.1. Consider a system with a set of job classes K , where Xk is the size distribution of

class k ∈ K . Depending on what information is known to the scheduler, the set of descriptors D

may be one of several options.

• If jobs do not reveal their exact size upon entering the system, then D = K , because the

only static information we have about each job is its class. The size distribution of jobs

with descriptor k is simply Xk .

• If jobs reveal their exact size upon entering the system, then D = K × R≥0, because

we know each job’s class and size. The size distribution of jobs with descriptor [k,x] is
X[k,x ] = x , the deterministic distribution with value x .

• If only some jobs reveal their exact size, then

D = K × (R≥0 ∪ {?}),

because some jobs have known exact size x ∈ R≥0 while others have unknown size, which

we denote by ?. The size distributions are X[k,x ] = x for x ∈ R≥0 and X[k,?] = Xk .

We require that the descriptors of jobs must be chosen i.i.d. according to a fixed distribution. For

instance, in Example 2.1, each job’s class must be chosen i.i.d., and in the third scenario, having

each job independently reveal its size with probability 1/2 is permitted, but having alternating

arrivals reveal their sizes is not.

2.2 SOAP Policies and Rank Functions
A SOAP scheduling policy is a preemptive priority policy where a job’s descriptor and age determine

its priority. SOAP is an acronym for Schedule Ordered by Age-based Priority. Specifically, a SOAP
policy is specified by the following ingredients:

• a set R of ranks,
• a strict total order ≺ on R, and

• a rank function assigning a rank r (d,a) to each pair of descriptor d and age a,

r : D ×R≥0 → R.

The defining property of SOAP policies is the following.

Every moment in time, a SOAP policy serves the job ofminimum rank.
Ties between jobs of the same rank are broken using a tiebreaking rule. For simplicity of exposition,

we focus on first-come, first-served (FCFS) tiebreaking, which, among the jobs of minimal rank,

serves the job that arrived to the system first. Our results also apply to SOAP policies that use

last-come, first-served (LCFS) tiebreaking, which we defer to Appendix A
2
.

2
Sometimes ties for minimum rank lead to processor sharing, and these ties do not require tiebreaking. See Example 3.1 and

Appendix B for details.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 1, Article 16. Publication date: March 2018.



SOAP: One Clean Analysis of All Age-Based Scheduling Policies 16:5

Suppose job J has descriptor d J and age a J and job K has descriptor dK and age aK . We say

J outranks K if r (d J ,a J ) ≺ r (dK ,aK ) or both r (d J ,a J ) = r (dK ,aK ) and J arrived before K . SOAP
policies always serve the job that outranks all other jobs in the system.

A great many SOAP policies can be expressed using R = R, in which case ≺ is the usual

ordering < on R. However, it is often convenient to have a nested rank structure in which jobs

are first prioritized by a primary rank, then by a secondary rank, and only then by the tiebreaking

rule. We express such nested ranks using R = R2
. Each rank is a pair ⟨r1, r2⟩ of primary rank r1

and secondary rank r2, and ≺ is the lexicographic ordering: ⟨r1, r2⟩ ≺ ⟨r ′
1
, r ′

2
⟩ if r1 < r ′

1
or both

r1 = r
′
1
and r2 < r ′

2
. We write primary and secondary ranks of a state (d,a) as r1(d,a) and r2(d,a),

respectively, so

r (d,a) = ⟨r1(d,a), r2(d,a)⟩.

When specifying a SOAP policy, we usually leave the choice of R unstated, as it is implied from

the formula for the rank function. Our results apply to R = Rn
ordered lexicographically for any

n ≥ 1, and they easily generalize to other choices of R.

We will devote much time to discussing how jobs’ ranks change with age. Thus, when we call a

rank function “monotonic” or similar, we mean that it is so with respect to age, not descriptor.

For a SOAP policy to be well-defined, its rank function must satisfy some technical conditions,

which are given in Appendix B.

3 SOAP POLICIES ARE EVERYWHERE
3.1 Previously Analyzed SOAP Policies

Example 3.1. The foreground-background (FB) policy is a SOAP policy. It uses no static information,

so D = {�}, where � is a “placeholder” descriptor assigned to every job. FB always serves the job

of least age, so it has rank function r (�,a) = a. It is likely that many jobs are tied for minimum

rank under FB, but whichever job is served immediately loses minimum status, resulting in a

processor-sharing effect.

There are always many rank functions that encode the same SOAP policy. For instance, any rank

function monotonically increasing in age, such as r (�,a) = a2, also describes FB.

Example 3.2. The first-come, first-served (FCFS) policy is a SOAP policy. It uses no static infor-

mation, so D = {�}. FCFS is nonpreemptive, which is equivalent to always serving the job of

maximal age, so it has rank function r (�,a) = −a. FCFS tiebreaking plays a crucial role by breaking
ties between jobs of age 0.

Once again, there are multiple rank functions that describe FCFS. In particular, a constant rank

function yields FCFS due to the tiebreaking rule, but we prefer the given encoding because it makes

it clear that FCFS is a nonpreemptive policy. As the following examples demonstrate, using primary

rank −a is a general way to indicate nonpreemptiveness in a rank function.

Example 3.3. Consider a system with classes K = {1, . . . ,n} where jobs within each class are

served in FCFS order but class 1 has highest priority, class 2 has next-highest priority, and so on.

The nonpreemptive priority and preemptive priority policies are SOAP policies. Both policies use job

class as static information, so D = K .

• Nonpreemptive priority has rank function r (k,a) = ⟨−a,k⟩: the primary rank prevents

preemption, and the secondary rank prioritizes the classes when starting a new job.

• Preemptive priority has rank function r (k,a) = ⟨k,−a⟩: because k is the primary rank, jobs

from high-priority classes preempt those in low priority classes.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 1, Article 16. Publication date: March 2018.



16:6 Ziv Scully, Mor Harchol-Balter, and Alan Scheller-Wolf

2 14

6

8

12

0 a
0

r (�,a)

The rank function for SERPT using the distribution described in Example 3.5: jobs have size either 2 or 14,

each with probability 1/2. The rank is the expected remaining size of a job given it has reached its age a. In
this case, the initial expected size is 8, but if the job does not finish at age 2, then we know it must be size 14,

so its expected remaining size jumps up to 12.

Fig. 3.1. Rank Function for SERPT (Example 3.5)

Example 3.4. The shortest job first (SJF), preemptive shortest job first (PSJF), and shortest remaining
processing time (SRPT) policies are SOAP policies. All three policies assume exact size information

is known and use it when scheduling, so all use D = R≥0.

• SJF has rank function r (x ,a) = ⟨−a,x⟩: it is a nonpreemptive priority policy with size as

priority.

• PSJF has rank function r (x ,a) = ⟨x ,−a⟩: it is a preemptive priority policy with size as

priority.

• SRPT has rank function r (x ,a) = x − a: a job’s rank is its remaining size.

3.2 Newly Analyzed SOAP Policies
Example 3.5. The shortest expected processing time (SEPT), preemptive shortest expected processing

time (PSEPT) and shortest expected remaining processing time (SERPT) policies are SOAP policies.

The policies are respective analogues of SJF, PSJF, and SRPT, but they do not have access to exact

size information.

• SEPT has rank function r (d,a) = ⟨−a,E[Xd ]⟩: it is a nonpreemptive priority policy with

expected size as priority.

• PSEPT has rank function r (d,a) = ⟨E[Xd ],−a⟩: it is a preemptive priority policy with

expected size as priority.

• SERPT has rank function r (d,a) = E[Xd −a | Xd > a]: a job’s rank is its expected remaining

size.

While SEPT and PSEPT have analyses similar to those of SJF and PSJF, respectively, SERPT has

never been analyzed before in full generality. We have left the set of descriptors D unspecified

because the definitions above work for any set of descriptors.

For concreteness, consider a system where all jobs have the same descriptor � and size either 2

or 14, each with probability 1/2. The resulting rank function for SERPT, shown in Figure 3.1, is

nonmonotonic with respect to age. This differs from every policy described in Section 3.1, all of which
have monotonic rank functions. The potential nonmonotonicity of SERPT’s rank function has

prevented previous techniques from analyzing SERPT in full generality. We give the first response

time analysis of SERPT using our general analysis of all SOAP policies (Section 6.4).

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 1, Article 16. Publication date: March 2018.



SOAP: One Clean Analysis of All Age-Based Scheduling Policies 16:7

2 14

4

12

0 a
0

r (�,a)

The rank function for the Gittins Index Policy using the same distribution as in Fig. 3.1: jobs have size either 2

or 14, each with probability 1/2. Compared to SERPT, the Gittins index policy gives more priority to jobs

before they reach age 2. For instance, while SERPT ranks a job with age 1.99 on par with a hypothetical

job that deterministically has remaining size 6.01, the Gittins index policy ranks such a job on par with a

hypothetical job that deterministically has remaining size 0.02. This reflects the fact that it is almost free to

run such a job to age 2, just in case it is about to finish. We show in Section 6.4 that the Gittins index policy

achieves lower mean response time than SERPT due to its prioritizing potentially short jobs.

Fig. 3.2. Rank Function for Gittins Index (Example 3.6)

Example 3.6. The Gittins index of a job with descriptor d and age a is [3, 11]

G(d,a) = sup

∆>0

P{Xd − a ≤ ∆ | Xd > a}

E[min{Xd − a,∆} | Xd > a]
= sup

∆>0

∫ a+∆
a fd (t)dt∫ a+∆
a Fd (t)dt

,

where fd and Fd are the density and tail functions of Xd , respectively. The Gittins index policy
is the scheduling policy that always serves the job of maximal Gittins index, and it is known to

minimize mean response time in the M/G/1 queue [11]. Although optimality of the Gittins index

policy has long been known, only a few special cases have been analyzed in the past [13, 20]. The

Gittins index policy is a SOAP policy with rank function

r (d,a) =
1

G(d,a)
.

Like the policies in Example 3.5, the Gittins index policy can be defined with any set of descriptors.

The Gittins index policy is in general not the same as SERPT, as shown in Figure 3.2, but, like

SERPT, the Gittins index policy often uses a nonmonotonic rank function, making it impossible

to analyze in general using previous techniques. We give the first response time analysis of the

Gittins index policy using our general analysis of all SOAP policies (Section 6.4).

Example 3.7. Consider a system in which jobs, rather than being completely nonpreemptible or

preemptible, are preemptible at specific checkpoints, say every 1 time unit. The discretized FB policy

is a variant of FB for jobs with checkpoints: when possible, it serves the job of minimal age, but

it does not preempt jobs between checkpoints
3
. Discretized FB is a SOAP policy. It uses no static

information, so D = {�}, and it has rank function

r (�,a) = ⟨⌊a⌋ − a,a⟩,

This rank function is illustrated in Figure 3.3. Roughly speaking, the primary rank encodes the

“discretized” aspect, preempting a job only at integer ages a when ⌊a⌋ − a = 0, and the secondary

rank encodes the “FB” aspect.

3
We note that it is possible to model discretized FB as an MLPS policy with infinitely many thresholds.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 1, Article 16. Publication date: March 2018.



16:8 Ziv Scully, Mor Harchol-Balter, and Alan Scheller-Wolf

1 2 3 4 5 6

−1

0 a
0

r1(�,a)

b

b

0 a
0

r2(�,a)

The rank function for the discretized FB policy described in Example 3.7. The primary rank (top) ensures that

jobs are only preempted at integer ages. This is because new jobs enter the system with primary rank 0, and

jobs only have primary rank 0 at integer ages. The secondary rank (bottom) prioritizes the job of lowest age,

as in traditional FB.

Fig. 3.3. Rank Function for Discretized FB (Example 3.7)

Discretized FB is just one example of a policy for jobs preemptible only at specific checkpoints, but

we can “discretize” any other SOAP policy by using primary rank ⌊a⌋ − a. For instance, discretized
SRPT has rank function r (x ,a) = ⟨⌊a⌋ − a,x − a⟩.

We have seen a variety of features that SOAP policies can model:

• jobs that are nonpreemptible, preemptible, or preemptible at checkpoints;

• jobs with known or unknown exact size;

• priority based on a job’s exact size or expected size;

• class-based priority in multiclass systems; and

• priority that changes nonmonotonically as a job ages.

As the following examples show, SOAP policies go even further: they can combine many such
features as part of a single policy.

Example 3.8. Consider a system with two customer classes, humans (H ) and robots (R).
• Humans, unpredictable and easily offended, have unknown service time, are nonpre-

emptible, and are served according to FCFS relative to other humans.

• Robots, precise and ruthlessly efficient, have known service time, are preemptible, and are

served according to SRPT relative to other robots.

We can model the system using D = {[H , ?]} ∪ {[R,x] | x ∈ R≥0}, where ? denotes unknown size.

A reasonable policy might have humans outrank most robots but let short robots, say those with

remaining size less than some threshold xH , outrank humans that have not yet started service. This

results in rank function

r ([H , ?],a) = ⟨−a,xH ⟩

r ([R,x],a) = ⟨0,x − a⟩,

which uses primary rank to encode preemptibility and secondary rank to encode priority. We

analyze this system in Section 6.2.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 1, Article 16. Publication date: March 2018.



SOAP: One Clean Analysis of All Age-Based Scheduling Policies 16:9

Example 3.9. Consider a system as in Example 3.3 with n = 3 classes. Suppose that, in addition

to class-based priority,

• jobs in class 1 are preemptible, have known size, and are served according to SRPT;

• jobs in class 2 are nonpreemptible, have known size, and are served according to SJF; and

• jobs in class 3 are preemptible at specific checkpoints, have unknown size, and are served

according to discretized FB, as in Example 3.7.

The static information of a job is its class and, if known, its size, so D = {1, 2} ×R≥0 ∪ {[3, ?]},
where ? denotes unknown size. The rank function, which uses R = R3

as the set of ranks, is

r ([1,x],a) = ⟨0, 1,x − a⟩

r ([2,x],a) = ⟨−a, 2,x⟩

r ([3, ?],a) = ⟨⌊a⌋ − a, 3,a⟩.

The components of the rank respectively encode preemptibility, class-based priority, and the policy

used within each class.

3.3 SOAP Policies with LCFS Tiebreaking
There are two common SOAP policies that use LCFS tiebreaking instead of FCFS. The last-come,
first-serve (LCFS) policy, which has the same rank function as FCFS in Example 3.2 but uses LCFS

tiebreaking. The rank function still ensures nonpreemption, but now ties between jobs of age 0 are

broken by LCFS. Similarly, the preemptive last-come, first-serve (PLCFS) policy is a SOAP policy

with constant rank function and LCFS tiebreaking. SOAP policies that use LCFS tiebreaking admit

essentially the same analysis as those that use FCFS tiebreaking (Appendix A).

3.4 Non-SOAP Policies
As our examples have demonstrated, there is an extremely wide variety of SOAP policies. However,

there are some policies which are not SOAP policies, many of which fit into three broad categories.

First, some policies cannot be expressed using descriptors that are distributed i.i.d. for each arriving
job. For example, the earliest deadline first (EDF) policy could be a SOAP policy if each job’s

descriptor were its deadline, but deadlines cannot be i.i.d. because later arrivals need later deadlines.

Second, some policies require a tiebreaking rule other than FCFS or LCFS. For example, the random
order of service (ROS) policy could be a SOAP policy using the rank function in Example 3.2 if it

could break ties between jobs of age 0 differently. A future generalization of the SOAP class might

allow for ROS tiebreaking because, like FCFS and LCFS, it serves one job at a time. In contrast, the

processor sharing (PS) policy, which is also not a SOAP policy, requires a fundamentally different

tiebreaking rule.

Third, some policies have job priorities that are context-dependent. For example, a nonpreemptive

policy in a multiclass system that tries to alternate between serving jobs of class 1 and class 2 is

not a SOAP policy, because the priority of a job depends on external context, namely the class of

the previously served job. The rank function approach used by SOAP policies inherently considers

each job individually, so there is no way to capture such context.

4 HOW TO HANDLE ANY RANK FUNCTION
We have seen how to express a vast space of policies in the SOAP framework by careful choice of

rank function. However, as demonstrated by Section 3.2, the rank function that encodes a SOAP

policy can be very complicated. This leaves us with a difficult technical challenge: how do we

analyze SOAP policies with arbitrary rank functions?

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 1, Article 16. Publication date: March 2018.



16:10 Ziv Scully, Mor Harchol-Balter, and Alan Scheller-Wolf

Before tackling arbitrary rank functions, let us recall how classic response time analyses work.

Though there are of course many approaches, all of the policies in Section 3.1 can be analyzed

with the “tagged job” approach, which follows a particular job through the system to analyze its

response time. For instance, consider tagging a job of size x in a system using PSJF (Example 3.4).

There are two types of jobs that outrank the tagged job:

• jobs of size at most x that are present in the system when the tagged job arrives and

• jobs of size less than x that arrive at the system after the tagged job arrives but before it

completes.

One way to think about PSJF is to view the tagged job as seeing the system through “transformer

glasses” [12] which transform the system by hiding jobs that the tagged job outranks. For PSJF, this
transformation is simple because each job’s rank is essentially constant

4
. A similar approach still

works for policies with increasing or decreasing rank functions, but the hiding transformation

becomes more complicated. For instance, under SRPT (Example 3.4), which has a decreasing rank

function, a tagged job of size x sees a system transformed as follows.

• Jobs that arrive after the tagged job are hidden if their size is at least x − a, where a is the

tagged job’s age when the other job arrives.

• Jobs that arrive before the tagged job are hidden if their remaining size is greater than x . It
may be that a job of initial size greater than x remains visible.

In more general terms: because jobs’ ranks change with age, the tagged job’s hiding criterion

changes with its age, and whether or not other jobs satisfy that criterion changes with their ages.

Handling these changes in rank is already tricky for SRPT, where a job’s rank only decreases with

age. The situation becomes even more complex when working with nonmonotonic rank functions.

4.1 Conventions
For the remainder of this section, we examine the journey of a tagged job J through the system.

The tagged job J has descriptor d J and size x J . Note that we may use J ’s size as part of our analysis
even if the scheduler does not have access to exact job sizes.

Throughout, we call jobs other than J old if they arrive before J and new if they arrive after J . As
a mnemonic, we name old jobs I and name new jobs K , using subscripts when there are multiple

such jobs. In examples, old jobs have descriptor dI and new jobs have descriptor dK , though in a

real system it may of course happen that different old or new jobs have different descriptors. When

it is unspecified whether a job is new or old, we name the job L.

4.2 Nonmonotonicity Difficulties
There are two major obstacles to analyzing policies with arbitrary nonmonotonic rank functions

that do not occur when analyzing SRPT, which has a monotonic rank function. We illustrate these

obstacles below and in Figure 4.1. The first obstacle concerns the nonmonotonicity of J ’s rank.
• In SRPT, we permanently hide some other jobs based on J ’s current rank.
• In general, another job L might be only temporarily hidden. If J ’s rank starts below L’s rank
but later exceeds it, the initially hidden L becomes visible again.

The second obstacle concerns the nonmonotonicity of the ranks of old jobs.

• In SRPT, an old job permanently outranks J if served for long enough before J arrives.
• In general, an old job I might only temporarily outrank J . Furthermore, if I ’s rank oscillates
above and below J ’s initial rank, whether I gets hidden or stays visible depends on when
during I’s service J arrives.

4
Due to FCFS tiebreaking, we could encode PSJF without its secondary rank.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 1, Article 16. Publication date: March 2018.



SOAP: One Clean Analysis of All Age-Based Scheduling Policies 16:11

aI

r J

r ′J

0 a
0

r (dI ,a)

aI a′I a′′I

r Jr J

0 a
0

r (dI ,a)

We show two obstacles to the “transformer glasses” approach by examining the interaction between the

tagged job J and an old job I of age aI . The cyan curve shows I ’s rank as a function of its age. First (top),

suppose a tagged job J has rank r J upon entering the system, and suppose that old job I of age aI is already in

the system. Consider how J views I if, as pictured, r J ≺ r (dI ,aI ). Then J outranks I , so I is initially hidden.

However, I may be only temporarily hidden, because J ’s rank may later increase to r ′J ≻ r (dI ,aI ). Second

(bottom), consider the same jobs J and I and suppose J has not entered the system yet. Whether or not I
will be hidden from J depends on I’s age when J arrives. For instance, as I advances in age from aI to a

′
I and

later a′′I , it switches back and forth between being visible to and hidden from J .

Fig. 4.1. Difficulties with Nonmonotonic Rank Functions

Dealing with such arbitrarily varying rank functions appears intractable. We need two key
insights in order to handle nonmonotonic rank functions: the Pessimism Principle (Section 4.3) and

the Vacation Transformation (Section 4.4).

4.3 The Pessimism Principle
We call the amount of time any job L is served before J completes J’s delay due to L. The response
time of J is its size x J plus its delays due to all jobs that are in the system with J at some point.

Suppose that a new job K arrives when J has age a J . To analyze J ’s response time, we have to

know its delay due to K . As we saw in Section 4.2, deciding whether or not to hide K based only on

J ’s current rank r (d J ,a J ) will not work. Instead, we need to examine J ’s current and future ranks.

Definition 4.1. The worst future rank of a job with descriptor d , size x , and age a is

rworstd,x (a) = sup

a≤b<x
r (d,b).

Note that the worst future rank only considers ages up to the job’s size x . See Figure 4.2 for an
illustration.

The reason we care about J ’s worst future rank is that for the purposes of computing J ’s delay
delay due to K , we can essentially pretend that J has its worst future rank

r J = r
worst

d J ,x J
(a J ),

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 1, Article 16. Publication date: March 2018.



16:12 Ziv Scully, Mor Harchol-Balter, and Alan Scheller-Wolf

x
0 a
0

r (d,a)
rworstd,x (a)

The relationship between rank r (d,a) (solid cyan), and worst future rank rworstd,x (a) (dashed magenta) for a job

with descriptor d and size x .

Fig. 4.2. Illustration of Worst Future Rank (Definition 4.1)

a J a′J a′′J

rK

r J

0 a
0

r (d J ,a)

A new job K arrives when J , whose rank as a function of age is shown in cyan, has age a J . Suppose for
simplicity that K ’s rank is constant at rK . An instant after J reaches age a′J , it will be outranked by K , so K

will complete before J reaches age a′′J . In practice, K ’s rank may change, but K will still complete before J

reaches age a′′J unless K surpasses rank r J , in which case K never outranks J again. Thus, for the purposes of

finding J ’s delay due to K , we can pretend that J ’s rank is r J for all of J ’s ages before a
′′
J .

Fig. 4.3. A Tagged Job’s Delay due to a New Job

as illustrated in Figure 4.3. This is because before J reaches its worst future rank, K must either

complete or surpass
5
rank r J .

We have so far focused on a new job K , but the story is very similar for old jobs. The result is

the Pessimism Principle, so named for its pessimistic focus on the worst future rank.

Pessimism Principle. The tagged job J ’s delay due to any other job L is the amount of time L is

served until it either completes or surpasses J’s worst future rank. To be precise, letting

r J (a) = r
worst

d J ,x J
(a),

this means the following.

• Each old job I is served until it completes or first has rank rI ≻ r J (0). In particular, if

rI = r J (0), then I outranks J due to FCFS tiebreaking, thus the strict inequality
6
.

• Each new job K is served until it completes or first has rank rK ⪰ r J (a J ), where a J is the
age of J when K arrives.

5
Unless otherwise noted, we mean “surpass” in a weak sense. That is, to surpass a rank r means to attain rank at least r .

6
See Appendix C for discussion of corner cases where we need ⪰ instead of ≻.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 1, Article 16. Publication date: March 2018.



SOAP: One Clean Analysis of All Age-Based Scheduling Policies 16:13

new

cd [r ]

r

0 a
0

r (d,a)

The new r -work for a job with descriptor d , whose rank as a function of age is shown in cyan, is the amount

of service the job requires until it either completes or surpasses rank r at the cutoff age cd [r ]. Pictorially, the
new r -work is the amount of service the job requires while its age is in the green region. The new r -work is at

most cd [r ] but may be less if the job completes. Note that the new r -work is not impacted by the job’s rank at

ages a > cd [r ], even if r (d,a) ≺ r .

Fig. 4.4. Illustration of New Work (Definition 4.2)

Furthermore, in both cases, the service occurs before J is served while at its worst future rank.
To clarify, the discussion above addresses the total amount of service another job receives while J

is in the system. The service need not be contiguous but might be interleaved with that of J and
other jobs.

The Pessimism Principle gives an implicit description of J ’s delay due to any other job L, but
it remains to explicitly find this delay’s distribution. We do this now for the case where L is new,

treating the case where L is old in Section 4.4.

Definition 4.2. Let r be a rank. The new r-work is a random variable, writtenX new[r ], representing
how long a job that just arrived to the system is served until it completes or surpasses rank r .
Specifically, we define X new[r ] = X new

D [r ], where D is the random descriptor assigned to a new job

and, for any specific descriptor d ,

cd [r ] = inf{a ≥ 0 | r (d,a) ⪰ r }

X new

d [r ] = min{Xd , cd [r ]}.

That is, cd [r ] is the cutoff age at which a new job with descriptor d surpasses rank r . See Figure 4.4
for an illustration.

Together, the Pessimism Principle and Definition 4.2 say that if a new jobK has random descriptor

and arrives when J has age a J , then J ’s delay due to K is X new[rworstd J ,x J
(a J )].

Example 4.3. Consider SRPT as described in Example 3.4, in which a job’s descriptor is its size

and its rank is its remaining size. Suppose that a new job K of size xK arrives when J has age a J .
Under SRPT, J ’s worst future rank is its current rank r (x J ,a J ) = x J − a J , so the cutoff age for K is

cxK [x J − a J ] =

{
∞ if xK < x J − a J

0 if xK ≥ x J − a J .

That is, K will always outrank J if xK < x J − a J , and K will never outrank J if xK ≥ x J − a J . This
means J ’s delay due to K is

X new

xK [x J − a J ] = xK1(xK < x J − a J ),

where 1 is the indicator function.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 1, Article 16. Publication date: March 2018.



16:14 Ziv Scully, Mor Harchol-Balter, and Alan Scheller-Wolf

When analyzing the response time of SRPT, we need to know J ’s delay due to a random new job,

meaning one with size drawn from the size distribution X . This is the new (x J − a J )-work,

X new[x J − a J ] = X new

X [x J − a J ] = X1(X < x J − a J ).

Example 4.4. Consider the SERPT system described in Example 3.5, in which all jobs have the
same descriptor � and the same two-point size distribution: jobs are size 2 with probability 1/2

and size 14 otherwise. The rank function is

r (�,a) = E[X − a | X > a] =

{
8 − a if a < 2

14 − a if a ≥ 2,

as shown in Figure 3.1.

Suppose that a new job K arrives when J has age a J < 2. The worst future rank of J depends
crucially on J ’s size x J .

• If x J = 2, then J ’s worst future rank is its current rank, 8 − a J . In this case, the cutoff age

for K is c�[8 − a J ] = 0 because K ’s initial rank is 8, which is at least J ’s worst future rank
8 − a J . This means J ’s delay due to K is

X new[8 − a J ] = X new

� [8 − a J ] = 0.

• If instead x J = 14, then J ’s worst future rank is 12. In this case, the cutoff age for K is

c�[12] = 2 because K will either complete or jump up to rank 12 when it reaches age 2.

This means J ’s delay due to K is

X new[12] = X new

� [12] = 2.

4.4 The Vacation Transformation
We have seen how the Pessimism Principle shows us how long each new job delays the tagged

job J . The question remains: how long does each old job delay J? This is much harder than the

corresponding question for new jobs because old jobs can have any age, whereas new jobs always

start at age 0.

Fortunately, we are actually not directly concerned with the delay due to individual old jobs.

What ultimately matters is the delay due to all old jobs together. It turns out that we can view this

total delay as the queueing time of a carefully transformed system. The careful transformation in

question is the Vacation Transformation, but we are still a few definitions away from presenting it.

Our goal is to find the J ’s total delay due to old jobs. We can think of this delay as the amount

of “relevant” work in the system at the moment J arrives. Because Poisson arrivals see time

averages [27], the distribution of the amount relevant work seen by J upon arrival is the stationary
distribution of the amount of relevant work. Thus, in this section, we imagine J as a witness to the

system, watching other jobs enter, receive service, and exit. For this purpose, the most important

fact about J is its worst future rank upon arrival,

r J = r
worst

d J ,x J
(0).

So far, we have considered old jobs as a monolithic category, but it is useful to consider three

subcategories. At any moment in time, we can classify old jobs as follows.

• Discarded old jobs currently have rank greater than r J .
• Original old jobs currently have rank at most r J and have always had rank at most r J since
arriving themselves.

• Recycled old jobs currently have rank at most r J but had rank greater than r J at some point

in the past.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 1, Article 16. Publication date: March 2018.



SOAP: One Clean Analysis of All Age-Based Scheduling Policies 16:15

original discarded recycled discarded recycled discarded

a1 a2 a3

r J

0 a
0

r (dI ,a)

I1 I2 I3
J

A system contains jobs I1, I2, and I3 with respective agesa1,a2, anda3. All three jobs have the same descriptordI
and therefore the same rank as a function of age, drawn in cyan. We view the system from the transformed

perspective of witness J , which has worst future rank r J . By the Pessimism Principle, if J were to arrive at the

system now, it would only be delayed by original job I1 and recycled job I2, so discarded job I3 is completely

hidden from J . Furthermore, jobs I1 and I2 only delay J until they either complete or exceed rank r J , so there

are upper bounds on the delays due to each, shown as magenta bars.

Fig. 4.5. A Witness’s Transformed View of the System

More generally, we may call a job discarded, original, or recycled with respect to rank r, in which

case we replace r J with r .
An old job I goes through the following transitions between these categories, as shown in

Figures 4.5 and 4.6.

• When I arrives in the system, if its initial rank is at most r J , it starts out original. Otherwise,
it starts out discarded.

• As I ages, it may become discarded if it is not already.

• As I ages further, it may become recycled, then discarded again, then recycled again, and

so on until it completes.

Eventually, J will arrive, and each of the old jobs will delay J by some amount of time based on

their category at the moment when J arrives. By the Pessimism Principle, J ’s delay due to discarded
jobs is 0, so such jobs do not concern us further. Original jobs are similar to new jobs but, due to

the FCFS tiebreaking rule, not quite the same. Recycled jobs are the most difficult type of old job to

handle, but fortunately, as we will soon see, J sees at most one recycled job in the system when it

arrives.

For the purposes of analyzing J ’s response time, we view the system through “transformer

glasses” [12] through which only original and recycled jobs are visible, as illustrated in Figure 4.5.

In the transformed system, jobs are transformed such that when they become discarded, they

complete. Thus, the total work in the transformed system is exactly the “relevant” work in the

untransformed system, which would be J ’s total delay due to old jobs were J to arrive immediately.

Therefore, our goal is to find the stationary distribution of work in the transformed system.

Both original and recycled jobs arrive in the transformed system. Arrivals of original jobs

correspond to arrivals to the untransformed system, but arrivals of recycled jobs occur seemingly

arbitrarily, as they are really caused by discarded jobs transitioning to recycled in the untransformed

system. A busy period in the transformed system always starts with the arrival of an original or

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 1, Article 16. Publication date: March 2018.



16:16 Ziv Scully, Mor Harchol-Balter, and Alan Scheller-Wolf

original discarded 1-recycled discarded 2-recycled discarded

c0,d [r ] b1,d [r ] c1,d [r ] b2,d [r ] c2,d [r ]

r

0 a
0

r (d,a)

As a job ages, it can transition repeatedly between being discarded and recycled with respect to a rank r . The
i-old r -interval for descriptor d is the interval [bi,d [r ], ci,d [r ]] during which a job of descriptor d is original

(i = 0) or recycled for the ith time (i ≥ 1). We highlight the i-old r -intervals in green. The i-old r -work is the

amount of service the job requires while its age is in its i-old r -interval.

Fig. 4.6. Illustration of Old Work (Definition 4.5)

recycled job. Arrivals of original jobs continue during the busy period, but no more recycled jobs
arrive for the rest of the busy period. This is because for a recycled job to arrive in the transformed

system, a discarded job has to become recycled by receiving service in the untransformed system.

But discarded jobs never outrank original or recycled jobs, which are present for the entire busy

period in the transformed system, so such transitions never occur.

To analyze the amount of work in the transformed system, we need to know how long each old

job spends as an original or recycled job. We call the amount of time an old job spends as original

with respect to rank r its 0-old r-work, and we call the amount of time it spends as recycled for the

ith time with respect to rank r its i-old r-work, both of which we now define formally.

Definition 4.5. Let r be a rank and d be a descriptor. The 0-old r-interval for descriptor d is the

interval of ages during which a job of descriptor d is original with respect to rank r . Specifically,
the interval is [b0,d [r ], c0,d [r ]], where

7
,

b0,d [r ] = 0

c0,d [r ] = inf{a ≥ b0,d [r ] | r (d,a) ≻ r }.

For i ≥ 1, the i-old r-interval for descriptor d is the interval of ages during which the job is recycled

with respect to rank r for the ith time. Specifically, the interval is [bi,d [r ], ci,d [r ]], where

bi,d [r ] = inf{a > ci−1,d [r ] | r (d,a) ⪯ r }

ci,d [r ] = inf{a > bi,d [r ] | r (d,a) ≻ r }.

If bi,d [r ] = ci,d [r ] = ∞, the interval is the empty set. See Figure 4.6 for an illustration.

For i ≥ 0, the i-old r-work is a random variable, written X old

i [r ], representing how long a job will

be served while its age is in its i-old r -interval. Specifically, we define X old

i [r ] = X old

i,D [r ], where D is

the random descriptor assigned to a new job and, for any specific descriptor d ,

X old

i,d [r ] =


0 if Xd < bi,d [r ]

Xd − bi,d [r ] if bi,d [r ] ≤ Xd < ci,d [r ]

ci,d [r ] − bi,d [r ] if ci,d [r ] ≤ Xd .

If bi,d [r ] = ci,d [r ] = ∞, we define X old

i,d [r ] = 0.

7
See Appendix C for discussion of corner cases where we need ⪰ instead of ≻.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 1, Article 16. Publication date: March 2018.



SOAP: One Clean Analysis of All Age-Based Scheduling Policies 16:17

Suppose old job I has a random descriptor. In the transformed system, I receives service
• for time X old

0
[r J ] as an original job and,

• for all i ≥ 1, for time X old

i [r J ] as a job being recycled for the ith time.

Note that X old

0
[r J ] may be 0, representing I starting out discarded, and X old

i [r J ] for i ≥ 1 may be 0,

representing I completing before being recycled for the ith time.

Example 4.6. Consider SRPT as described in Example 3.4, in which a job’s descriptor is its size

and its rank is its remaining size. Suppose that J witnesses an old job I of initial size xI . Under
SRPT, every job’s rank is strictly decreasing with age, so J ’s worst future rank is its initial size x J .
The amount of time I spends as an original or recycled job depends on its size relative to J ’s.

• If xI ≤ x J , then I is original until its completion because its rank never exceeds x J , so

X old

0,xI [x J ] = xI .

I is never recycled, so X old

i [x J ] = 0 for i ≥ 1.

• If xI > x J , then I is starts out discarded but becomes recycled at age xI − x J , at which point

it has remaining size x J , so

X old

0,xI [x J ] = 0

X old

1,xI [x J ] = x J .

I is recycled only once, so X old

i,xI [x J ] = 0 for i ≥ 2.

When analyzing the response time of SRPT, we need to know the amount of time a random old

job, meaning one with size drawn from the size distribution X , spends as an original or recycled

job. From the above casework, we obtain

X old

0
[x J ] = X old

0,X [x J ] = X1(X ≤ x J )

X old

1
[x J ] = X old

1,X [x J ] = x J1(X > x J ),

where 1 is the indicator function, and X old

i [x J ] = 0 for i ≥ 2.

The Vacation Transformation gives a simple specification of the amount of work the witness J
sees in the transformed system. It follows from three observations.

• The amount of work in the transformed system is independent of the scheduling policy

used on transformed jobs, provided it is work-conserving, so we may assume FCFS among

original and recycled jobs
8
.

• Because Poisson arrivals see time averages [27], the stationary amount of work in the

transformed system is the same as the stationary FCFS queueing time of an original job in

the transformed system.

• In the transformed system, the arrival process of recycled jobs is not Poisson, but they only

appear at the starts of busy periods, so it is convenient to view them as server vacations.

Vacation Transformation. Consider the tagged job J with descriptor d J and size x J arriving to
the system, and let

r J = r
worst

d J ,x J
(0).

J ’s total delay due to old jobs has the same distribution as queueing time in a transformed M/G/1/FCFS
system with “sparse” server vacations. We call the transformed system the Vacation Transformation
System, or simply VT System. In the VT System, jobs arrive at rate λ and have size distribution

X old

0
[r J ], and several types of vacations occasionally occur, as described below.

8
Recall that an original or recycled job completes the transformed system if it either completes or becomes discarded in the

untransformed sysytem.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 1, Article 16. Publication date: March 2018.



16:18 Ziv Scully, Mor Harchol-Balter, and Alan Scheller-Wolf

The server in the VT System is always in one of three states:

• busy, meaning a job is in service;

• idle, meaning the system is empty but the server is ready to start a job immediately should

one arrive; or

• on vacation, meaning the server will not serve jobs until the vacation finishes, even if there

are jobs in the system.

The server only starts vacations when the system is empty. Unlike job arrivals, vacation start times

are not a Poisson process. Each vacation has a type i ≥ 1 determining its length. Specifically, type i
vacations have i.i.d. lengths drawn from distribution

Vi = (X old

i [r J ] | X
old

i [r J ] > 0).

The stationary probability that the the server is on a type i vacation is λE[X old

i [r J ]]. The exact
process determining when a type i vacation starts is intractable, but to analyze queueing time in the

VT System, as we do in Lemma 5.2, it fortunately suffices to know just this stationary probability.

5 RESPONSE TIME OF SOAP POLICIES
Having spent the previous section understanding the perspective of a tagged job in a system using a

SOAP policy, we are now ready to apply our insights to analyze the response time of SOAP policies.

Specifically, we analyze Td,x , the response time of a tagged job J with descriptor d and size x .
When analyzing traditional policies like SRPT or PSJF (Example 3.4), it often helps to think of

J ’s response time as the sum of two independent random variables [12, 22]:

• waiting time, writtenTwait

d,x , the time from when J arrives to when it first enters service; and

• residence time, written T res

d,x , the time from when J first enters service to when it exits.

Unfortunately, the usual strategy for analyzing waiting and residence time relies on J ’s rank never

increasing, which holds for SRPT and PSJF but does not hold for a great many SOAP policies.

To overcome this obstacle, we replace J’s rank with its worst future rank, which never increases.

This rank substitution, fully justified in Appendix D, is made possible by the Pessimism Principle

(Section 4.3). We call J with its adjusted rank the rank-substituted tagged job.

After replacing J ’s rank with its worst future rank, it remains to analyze its waiting and residence

times. Even though J ’s worst future rank is monotonic, other jobs’ ranks may both increase and

decrease with age, making these analyses challenging.

• We can think of waiting time as a transformed busy period: the initial transformed work is

J ’s total delay due to old jobs, and each arriving new job’s transformed size is the amount

it delays J . The main challenge is finding the distribution of initial transformed work,

which requires using the Vacation Transformation (Section 4.4). We analyze waiting time

in Section 5.1.

• We would also like to think of residence time as a transformed busy period. The initial

work is simply J ’s size x , but now the arriving new jobs present a challenge: because J ’s
worst future rank may decrease with time, not all new jobs have the same transformed size

distribution. We analyze residence time in Section 5.2.

5.1 Waiting Time
Hereafter, “transform” means Laplace-Stieltjes transform. We write the transform of a random

variable V as Ṽ (s) and the transform of a parametrized random variable V [r ] as Ṽ [r ](s).
Recall that the waiting time of the rank-substituted tagged job J is the amount of time between

J ’s arrival and when J first enters service. As mentioned previously, we can think of waiting time

as a transformed busy period: the initial work is J ’s total delay due to old jobs, and each arriving

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 1, Article 16. Publication date: March 2018.



SOAP: One Clean Analysis of All Age-Based Scheduling Policies 16:19

new job’s size is the amount it delays J . This type of busy period is formalized in the following

definition.

Definition 5.1. Let r be a rank. The new r-work busy period, written Bnew[r ], is the length of a

busy period in an M/G/1 system with arrival rate λ and job size X new[r ]. Its transform satisfies [12]

B̃new[r ](s) = X̃ new[r ](s + λ(1 − B̃new[r ](s))).

More generally, the new r -work busy period started by work W, written Bnew

W [r ], is the length

of a busy period in the same M/G/1 system with a random initial amount of work W . It has

transform [12]

B̃new

W [r ](s) = W̃ (s + λ(1 − B̃new[r ](s))). (5.1)

Let r = rworstd,x (0) be J ’s worst future rank upon arrival. Because J is not served until its residence

time, r remains J ’s worst future rank for the entirety of J ’s waiting time. This means J ’s delay due

to each new job that arrives during its waiting time is X new[r ], so J ’s waiting time is a new r -work
busy period started by initial workW , whereW is J ’s total delay due to old jobs.

All that remains is to determineW , for which it is convenient to define two new notations. First,

let

ρnew[r ] = λE[X new[r ]]

ρoldi [r ] = λE[X old

i [r ]]

ρoldΣ [r ] =
∞∑
i=0

ρoldi [r ]

be the “loads contributed by” new r -work, i-old r -work, and all old r -work, respectively. Second,
let Y old

i [r ] be the equilibrium distribution [12], or length-biased sample, of X old

i [r ]. It has transform

Ỹ old

i [r ](s) =
1 − X̃ old

i [r ](s)

sE[X old

i [r ]]
.

Note that Y old

i [r ] is also the equilibrium distribution of the length of a type i vacation in the

VT System, Vi = (X old

i [r ] | X old

i [r ] > 0), because samples of length 0 are never encountered in a

length-biased sample.

Lemma 5.2. Under any SOAP policy, the Laplace-Stieltjes transform of waiting time for a rank-
substituted tagged job with descriptor d and size x is

T̃wait

d,x (s) =
1 − ρoldΣ [r ] +

∑∞
i=1 ρ

old

i [r ]Ỹ old

i [r ](σ )

1 − ρold
0
[r ]Ỹ old

0
[r ](σ )

,

where r = rworstd,x (0) and σ = s + λ(1 − B̃new[r ](s)).

Proof. Call the rank-substituted tagged job J . As previously mentioned, Twait

d,x is a new r -work

busy period started by initial workW , whereW is J ’s total delay due to old jobs. This means

T̃wait

d,x (s) = W̃ (σ ) by (5.1), so it remains only to compute W̃ (σ ).

The Vacation Transformation states thatW has the same distribution as the queueing time in

the VT System, which is a particular M/G/1/FCFS system with vacations. A decomposition result of

Fuhrmann and Cooper [10, Equation (4)] states that the number of jobs in an M/G/1/FCFS system

with vacations, such as the VT System, is distributed as the sum of two independent random

variables:

• the number NQ of jobs in the queue of a vacation-free M/G/1/FCFS system; and

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 1, Article 16. Publication date: March 2018.



16:20 Ziv Scully, Mor Harchol-Balter, and Alan Scheller-Wolf

• the number NV of jobs in the queue observed by an arriving job conditional on observing a

non-busy server.

Recalling the Vacation Transformation and a standard result for the M/G/1 queue [12], we immedi-

ately obtain the probability generating function for NQ ,

N̂Q (z) =
1 − ρold

0
[r ]

1 − ρold
0
[r ]Ỹ old

0
[r ](λ(1 − z))

. (5.2)

In the VT System, a job arriving to a non-busy server observes NV as one of the following.

• If the server is idle, which happens with probability 1− ρoldΣ [r ], there are 0 jobs in the queue.

• If the server is in the middle of a type i vacation, which happens with probability ρoldi [r ], the

number of jobs in the queue is the number of Poisson arrivals at rate λ during time Y old

i [r ],
which is the amount of time since the start of the type i vacation.

Accounting for the fact that we measure NV only when a job arrives to a non-busy server, which

happens with probability 1 − ρold
0
[r ], we obtain the probability generating function of NV ,

N̂V (z) =
1 − ρoldΣ [r ] +

∑∞
i=1 ρ

old

i [r ]Ỹ old

i [r ](λ(1 − z))

1 − ρold
0
[r ]

. (5.3)

Multiplying (5.2) and (5.3), applying the distributional version of Little’s Law
9
[14], and substituting

σ = λ(1 − z) gives the transform of queueing time in the VT System, which matches the desired

transform W̃ (σ ). □

5.2 Residence Time
Lemma 5.3. Under any SOAP policy, the Laplace-Stieltjes transform of residence time for a rank-

substituted tagged job with descriptor d and size x is

T̃ res

d,x (s) = exp

(
−λ

∫ x

0

(1 − B̃new[rworstd,x (a)](s))da

)
.

Proof. We view residence time as a sum of many small busy periods, each started by a small

amount of work δ . We then take the δ → 0 limit, which exists thanks to conditions in Appendix B.

This is very similar to the argument used to compute the transform of residence time under

SRPT [22]. Specifically, we divide [0,x] into chunks of size δ and consider each small busy period

started by the work needed to bring the job from age a to age a + δ . In the δ → 0 limit, for the

entirety of the small busy period starting at age a, we can assume the job has rank rworstd,x (a).

By the Pessimism Principle, the amount of work in the small busy period starting at age a is the

length of a new rworstd,x (a)-work busy period started by work δ , which by (5.1) has transform

B̃new

δ [rworstd,x (a)](s) = exp(−δλ(1 − B̃new[rworstd,x (a)](s))).

The lengths of the small busy periods are independent because the arrival process is Poisson, so

the residence time, which is the total amount of work in all such busy periods, has transform

x/δ∏
i=0

B̃new

δ [rworstd,x (δi)](s) = exp

(
−δλ

x/δ∑
i=0

(1 − B̃new[rworstd,x (δi)](s))

)
.

Taking the δ → 0 limit yields the desired expression. □

9
Here we apply the distributional version of Little’s Law to the VT System, not the original SOAP system, which is crucial

because the law applies only to FCFS systems.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 1, Article 16. Publication date: March 2018.



SOAP: One Clean Analysis of All Age-Based Scheduling Policies 16:21

5.3 Total Response Time
Theorem 5.4 (SOAP Transform of Response Time). Under any SOAP policy, the Laplace-Stieltjes

transform of response time of jobs with descriptor d and size x is

T̃d,x (s) = T̃
wait

d,x (s)T̃ res

d,x (s),

where T̃ res

d,x (s) and T̃
wait

d,x (s) are as in Lemmas 5.2 and 5.3, respectively.

Proof. Because the arrival process is Poisson, Twait

d,x and T res

d,x are independent, so the result

follows from Lemmas 5.2 and 5.3 □

Theorem 5.5 (SOAP Mean Response Time). Under any SOAP policy, the mean response time of
jobs with descriptor d and size x is

E[Td,x ] =
λ
∑∞

i=0 E[(X
old

i [r ])2]

2(1 − ρold
0
[r ])(1 − ρnew[r ])

+

∫ x

0

1

1 − ρnew[r (a)]
da,

where r (a) = rworstd,x (a) and r = rworstd,x (0).

Proof. This follows from E[Td,x ] = −T̃ ′
d,x (0) after straightforward computation. □

We can useTd,x to analyzeTd , the response time of jobs with descriptor d and any size, andT , the

overall response time of all jobs. Specifically, T̃d (s) = E[T̃d,Xd (s)], where Xd is the size distribution

of jobs with descriptor d , and T̃ (s) = E[T̃D (s)], where D is the random descriptor assigned to a

new job. Analyzing response time of jobs with size x and any descriptor is similar, but it requires

computing Dx , the distribution of descriptors of jobs with size x .

6 NEW ANALYSES FOR SPECIFIC POLICIES
In this section, we analyze the response time of several policies discussed in Section 3.2. The main

challenge to analyzing SOAP policies is determining X new[r ] and X old

i [r ]. Throughout, we give
expressions for these focusing only on ranks r that are important for the final result. Specifically,

for the possible descriptors d and sizes x , we only need to find

• X new[rworstd,x (a)] for all ages a and

• X old

i [rworstd,x (0)].

For simplicity, we give final formulas only for mean response time.

6.1 Discretized FB
Consider the discretized FB policy (Example 3.7), which can only preempt jobs when their age is at

specific checkpoints spaced 1 time unit apart. We represent this using the rank function

r (�,a) = ⟨⌊a⌋ − a,a⟩,

shown in Figure 3.3. As in the analysis of traditional FB, it is convenient to work in terms of the

capped size distribution and its associated load [12, Section 30.3],

Xx = min{X ,x}

ρx = λE[Xx ].
(6.1)

In discretized FB, a job of size x and age a has worst future rank

rworst�,x (a) =

{
⟨0, ⌊x⌋⟩ if a ≤ ⌊x⌋

⟨⌊a⌋ − a,a⟩ if a > ⌊x⌋ .

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 1, Article 16. Publication date: March 2018.



16:22 Ziv Scully, Mor Harchol-Balter, and Alan Scheller-Wolf

The new r -work and 0-old r -work relevant for obtaining response time are therefore

X new[⟨0, ⌊x⌋⟩] = X
⌊x ⌋

X new[⟨⌊a⌋ − a,a⟩] = 0

X old

0
[⟨0, ⌊x⌋⟩] = X

⌊x ⌋+1,

where ⌊x⌋ < a < x in the second equation. From Theorem 5.5, we conclude the following.

Proposition 6.1. Under discretized FB (Example 3.7), the mean response time of jobs with size x
is10

E[Tx ] =
λE

[
X 2

⌈x ⌉

]
2

(
1 − ρ

⌈x ⌉

) (
1 − ρ

⌊x ⌋

) + ⌊x⌋

1 − ρ
⌊x ⌋
+ x − ⌊x⌋ .

6.2 Mixture of Known and Unknown Job Sizes
Consider the “humans and robots” system (Example 3.8). This scenario has two features that were

previously difficult to analyze.

• Some jobs have known size, namely robots, while others have unknown size, namely

humans.

• Some jobs are preemptible, namely robots, while others are nonpreemptible, namely hu-

mans.

Let

• XH and XR be the respective size distributions of humans and robots,

• pH and pR = 1 − pH be the respective probabilities that a given arrival is a human or a

robot, and

• λH = λpH and λR = λpR be the respective arrival rates of humans and robots.

Recall that humans all have descriptor [H , ?], indicating that their size is unknown, and robots each
have a descriptor of the form [R,x], indicating that their exact size is x . The rank function is

r ([H , ?],a) = ⟨−a,xH ⟩

r ([R,x],a) = ⟨0,x − a⟩,

where xH is a constant.

Both humans and robots have maximal primary rank, namely 0, upon entering the system, so

the only nonzero new r -work and i-old r -work occur for ranks of the form r = ⟨0,x⟩:

X new[⟨0,x⟩] =

{
XH1(xH < x) with probability pH

XR1(XR < x) with probability pR

X old

0
[⟨0,x⟩] =

{
XH1(xH ≤ x) with probability pH

XR1(XR ≤ x) with probability pR

X old

1
[⟨0,x⟩] =

{
XH1(xH > x) with probability pH

x1(XR > x) with probability pR ,

where 1 is the indicator function. These follow from arguments similar to those given for SRPT in

Examples 4.3 and 4.6. Finally, X old

i [r ] = 0 for i ≥ 2, so Theorem 5.5 yields the following.

10
See Appendix C for discussion of why we use ⌈x ⌉ instead of ⌊x ⌋ + 1.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 1, Article 16. Publication date: March 2018.



SOAP: One Clean Analysis of All Age-Based Scheduling Policies 16:23

Proposition 6.2. In the humans and robots system (Example 3.8), the mean response time of
humans is

E[TH ] =
λHE[X 2

H ] + λRE[(XR )
2

xH
]

2(1 − ρH − ρR≤xH )(1 − ρR<xH )
+ E[XH ],

and the mean response time of robots with size x is

E[TR,x ] =
λHE[X 2

H ] + λRE[(XR )
2

x ]

2(1 − ρH1(xH ≤ x) − ρR≤x )(1 − ρR<xH )
+

∫ x

0

1

1 − ρH1(xH ≤ t) − ρR<t
dt ,

where (XR )xH and (XR )x are capped distributions as defined in (6.1) and

ρH = λHE[XH ]

ρR<x = λRE[XR1(XR < x)]

ρR≤x = λRE[XR1(XR ≤ x)].

6.3 The Gittins Index Policy
As discussed in Example 3.6, the Gittins index policy can have a nonmonotonic rank function, and

thus only special cases of it have been analyzed in the past [13, 20]. Theorems 5.4 and 5.5 give us

exactly the framework we need to analyze the Gittins index policy used with any set of descriptors

and job size distributions, though X new[r ] and X old

i [r ] do not have a general closed form and thus

require details of the system to derive. We start in this section by using the SOAP framework to

analyze the model considered by Osipova et al. [20], which is relatively simple thanks to the fact

that the rank functions involved are monotonic. In Section 6.4, we move to a more difficult setting

in which the Gittins index policy has a nonmonotonic rank function.

We consider a systemwith two job classesA and B, which serve as our descriptors, with respective
arrival rates λA = λpA and λB = λpB and respective Pareto size distributionsXA andXB . Specifically,

P{XA > t} =

(
1 +

t

βA

)−αA
and symmetrically for B, where αA,αB > 1 and βA, βB > 0 are parameters of the distributions. The

rank function is [3, 20]

r (A,a) =
1

G(A,a)
=

βA + a

αA

and symmetrically for B. The rank is strictly increasing in a, so rworstd,x (a) = r (d,x) for all ages a < x .

Strictly increasing rank also means jobs are never recycled, so X old

i [r ] = 0 for all i ≥ 1.

It remains only to compute X new[r ] and X old

0
[r ]. As in Definition 4.2, let

cA[r ] = max{αAr − βA, 0}

be the age at which a class A job first surpasses rank r , and symmetrically for B. Note that

cA[r (A,x)] = x . Because the rank function is strictly increasing,

X new[r ] = X old

0
[r ] =

{
(XA)cA[r ]

with probability pA

(XB )cB [r ]
with probability pB ,

where (XA)cA[r ]
and (XB )cB [r ]

are capped distributions as defined in (6.1). By Theorem 5.5,

E[TA,x ] =
λAE[(XA)

2

x ] + λBE[(XB )
2

y ]

2(1 − ρx,y )2
+

x

1 − ρx,y
,

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 1, Article 16. Publication date: March 2018.



16:24 Ziv Scully, Mor Harchol-Balter, and Alan Scheller-Wolf

where

y = cB [r (A,x)]

ρx,y = λAE[(XA)x ] + λBE[(XB )y ].

Of course, E[TB,x ] is symmetrical. It is simple to verify that, modulo notation, this matches the

results of Osipova et al. [20].

6.4 Case Study: SERPT vs. the Gittins Index
We now analyze both SERPT and the Gittins index policy on the size distribution introduced in

Example 3.5. Both policies have nonmonotonic rank functions in this case, so we need the full

power of Theorem 5.5 to compute mean response times. All jobs have descriptor � and the same

two-point size distribution. We write the size distribution as X = CoinFlip{2, 14}, meaning jobs

have size 2 with probability 1/2 and size 14 otherwise.

We begin by analyzing SERPT. We have computed X new[r ] for SERPT with this size distribution

in Example 4.4,

X new[r ] =

{
0 r ≤ 8

2 r > 8

We only need to compute i-old r -work for ranks rworst
�,2 (0) = 8 and rworst

�,14 (0) = 12. From the rank

function plot in Figure 6.1, we see

X old

0
[8] = 2

X old

0
[12] = CoinFlip{2, 14}

X old

1
[8] = CoinFlip{0, 8}

X old

1
[12] = 0.

The most subtle of these is X old

1
[8]: the total time an old job I spends as recycled with respect

to rank 8 is either 0, if I has size 2, or 8, if I has size 14. Finally, X old

i [r ] = 0 for i ≥ 2. Applying

Theorem 5.5 yields size-specific mean response times

E[T SERPT

2
] =

18λ

1 − 2λ
+ 2

E[T SERPT

14
] =

50λ

(1 − 8λ)(1 − 2λ)
+

6

1 − 2λ
+ 8.

The Gittins index policy for the same system has rank function r (�,a) = 1/G(�,a), where, by
the definition in Example 3.6,

1

G(�,a)
=

{
4 − 2a if a < 2

14 − a if a ≥ 2.

This rank function is illustrated in Figure 3.2. Broadly speaking, the Gittins index policy places

higher priority on jobs of age a < 2 than SERPT does. Like that of SERPT, the rank function is

piecewise linear with negative slopes, so we omit the very similar analysis and simply state the

size-specific mean response times:

E[TGittins

2
] =

6λ

1 − 2λ
+ 2

E[TGittins

14
] =

50λ

(1 − 8λ)(1 − 2λ)
+

10

1 − 2λ
+ 4.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 1, Article 16. Publication date: March 2018.



SOAP: One Clean Analysis of All Age-Based Scheduling Policies 16:25

original discarded 1-recycled

2 6 14

6

8

12

0 a
0

r (�,a)

The rank function for SERPT where jobs have two-point size distribution CoinFlip{2, 14}, meaning size 2

with probability 1/2 and size 14 otherwise. The same rank function appears in Fig. 3.1. The 0-old (original) and

1-old (1-recycled) intervals are highlighted in green. A job is original with respect to rank 8 until age 2, when

its rank jumps up if it does not complete. Upon reaching age 6, the job has remaining size 8, so it becomes

recycled.

Fig. 6.1. Original and Recycled Work in SERPT

As expected due to its prioritization of jobs of age a < 2, the Gittins index policy has shorter mean

response time for jobs of size 2 but longer mean response time for jobs of size 14. The Gittins index

policy is known to minimize overall mean response time, and it performs as promised:

E[T SERPT

2
] − E[TGittins

2
] =

12λ

1 − 2λ

E[T SERPT

14
] − E[TGittins

14
] =

−8λ

1 − 2λ
.

Because the two job sizes are equally likely, the Gittins index policy has lower overall mean response

time than SERPT.

7 CONCLUSION
We introduce SOAP policies, a very broad class of scheduling policies for the M/G/1 queue. The

characteristic feature of a SOAP policy is its rank function, which maps each possible state a job

could be in to a rank, meaning priority level. The SOAP class includes many policies old and

new. While the mean response times of some relatively simple SOAP policies have been analyzed

previously, the vast majority of SOAP policies, in particular those with nonmonotonic rank functions,
have resisted analysis. Using two key technical insights, the Pessimism Principle and the Vacation
Transformation, we overcome the obstacles presented by nonmonotonic rank functions to present

a universal response time analysis that applies to any SOAP policy.

Our universal analysis applies to some notable policies. Among these is the Gittins index policy,
which has long been known to minimize mean response time in settings where exact job sizes are

not known. While prior work [13, 20] was restricted to the case of known job sizes or distributions

with the decreasing hazard rate property, our analysis can handle the Gittins index policy with

arbitrary size distributions, which was previously intractable. Our universal analysis also applies

to several practically motivated systems, such as those in which jobs are only preemptible at

certain checkpoints or only some jobs’ exact sizes are known. More broadly, we are optimistic that

techniques similar to our Pessimism Principle and Vacation Transformation could help analyze the

response times of scheduling policies in more complex M/G/1 settings, such as systems with setup

times or server vacations.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 1, Article 16. Publication date: March 2018.



16:26 Ziv Scully, Mor Harchol-Balter, and Alan Scheller-Wolf

ACKNOWLEDGMENTS
We thank Peter van de Ven and the anonymous referees for their helpful comments. Ziv Scully

was supported by an ARCS Foundation scholarship and the National Science Foundation Graduate

Research Fellowship Program under Grant No. DGE-1745016. Mor Harchol-Balter was supported

by NSF-XPS-1629444, NSF-CMMI-1538204, NSF-CMMI-1334194, and a Faculty Award from Google.

REFERENCES
[1] Samuli Aalto and Urtzi Ayesta. 2006. Mean delay analysis of multi level processor sharing disciplines. In INFOCOM

2006. 25th IEEE International Conference on Computer Communications. Proceedings. IEEE, 1–11.
[2] Samuli Aalto, Urtzi Ayesta, Sem Borst, Vishal Misra, and Rudesindo Núñez-Queija. 2007. Beyond processor sharing. In

ACM SIGMETRICS Performance Evaluation Review, Vol. 34. ACM, 36–43.

[3] Samuli Aalto, Urtzi Ayesta, and Rhonda Righter. 2009. On the Gittins index in the M/G/1 queue. Queueing Systems 63,
1 (2009), 437–458.

[4] Samuli Aalto, Urtzi Ayesta, and Rhonda Righter. 2011. Properties of the Gittins index with application to optimal

scheduling. Probability in the Engineering and Informational Sciences 25, 03 (2011), 269–288.
[5] Konstantin Avrachenkov, Patrick Brown, and Natalia Osipova. 2009. Optimal choice of threshold in two level processor

sharing. Annals of Operations Research 170, 1 (2009), 21–39.

[6] Urtzi Ayesta, Onno J. Boxma, and Ina Maria Verloop. 2012. Sojourn times in a processor sharing queue with multiple

vacations. Queueing Systems 71, 1 (2012), 53–78.
[7] Sem Borst, Rudesindo Núñez-Queija, and Bert Zwart. 2006. Sojourn time asymptotics in processor-sharing queues.

Queueing Systems 53, 1 (2006), 31–51.
[8] Jacqueline Boyer, Fabrice Guillemin, Philippe Robert, and Bert Zwart. 2002. Heavy tailed M/G/1-PS queues with

impatience and admission control in packet networks. In INFOCOM 2003. Twenty-Second Annual Joint Conference of
the IEEE Computer and Communications. IEEE Societies, Vol. 1. IEEE, 186–195.

[9] Hanhua Feng and Vishal Misra. 2003. Mixed scheduling disciplines for network flows. InACM SIGMETRICS Performance
Evaluation Review, Vol. 31. ACM, 36–39.

[10] Steve W. Fuhrmann and Robert B. Cooper. 1985. Stochastic decompositions in the M/G/1 queue with generalized

vacations. Operations research 33, 5 (1985), 1117–1129.

[11] John Gittins, Kevin Glazebrook, and Richard Weber. 2011. Multi-armed Bandit Allocation Indices. John Wiley & Sons.

[12] Mor Harchol-Balter. 2013. Performance Modeling and Design of Computer Systems: Queueing Theory in Action (1st ed.).

Cambridge University Press, New York, NY, USA.

[13] Esa Hyytiä, Samuli Aalto, and Aleksi Penttinen. 2012. Minimizing slowdown in heterogeneous size-aware dispatching

systems. In ACM SIGMETRICS Performance Evaluation Review, Vol. 40. ACM, 29–40.

[14] J. Keilson and L. D. Servi. 1988. A distributional form of Little’s law. Operations Research Letters 7, 5 (1988), 223–227.
[15] David G Kendall. 1953. Stochastic processes occurring in the theory of queues and their analysis by the method of the

imbedded Markov chain. The Annals of Mathematical Statistics (1953), 338–354.
[16] Leonard Kleinrock. 1967. Time-shared systems: A theoretical treatment. Journal of the ACM (JACM) 14, 2 (1967),

242–261.

[17] Leonard Kleinrock. 1976. Queueing Systems, Volume 2: Computer Applications. Vol. 66. Wiley New York.

[18] Minghong Lin, Adam Wierman, and Bert Zwart. 2010. The average response time in a heavy-traffic SRPT queue. In

ACM SIGMETRICS Performance Evaluation Review, Vol. 38. ACM, 12–14.

[19] Misja Nuyens, Adam Wierman, and Bert Zwart. 2008. Preventing large sojourn times using SMART scheduling.

Operations Research 56, 1 (2008), 88–101.

[20] Natalia Osipova, Urtzi Ayesta, and Konstantin Avrachenkov. 2009. Optimal policy for multi-class scheduling in a

single server queue. In Teletraffic Congress, 2009. ITC 21 2009. 21st International. IEEE, 1–8.
[21] Linus E Schrage. 1967. The queue M/G/1 with feedback to lower priority queues. Management Science 13, 7 (1967),

466–474.

[22] Linus E Schrage and Louis W Miller. 1966. The queue M/G/1 with the shortest remaining processing time discipline.

Operations Research 14, 4 (1966), 670–684.

[23] Lajos Takács. 1963. Delay distributions for one line with Poisson input, general holding times, and various orders of

service. Bell Labs Technical Journal 42, 2 (1963), 487–503.
[24] Adam Wierman. 2007. Fairness and classifications. In ACM SIGMETRICS Performance Evaluation Review, Vol. 34. ACM,

4–12.

[25] Adam Wierman, Mor Harchol-Balter, and Takayuki Osogami. 2005. Nearly insensitive bounds on SMART scheduling.

In ACM SIGMETRICS Performance Evaluation Review, Vol. 33. ACM, 205–216.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 1, Article 16. Publication date: March 2018.



SOAP: One Clean Analysis of All Age-Based Scheduling Policies 16:27

[26] Adam Wierman and Misja Nuyens. 2008. Scheduling despite inexact job-size information. In ACM SIGMETRICS
Performance Evaluation Review, Vol. 36. ACM, 25–36.

[27] Ronald W. Wolff. 1982. Poisson arrivals see time averages. Operations Research 30, 2 (1982), 223–231. https://doi.org/

10.1287/opre.30.2.223 arXiv:https://doi.org/10.1287/opre.30.2.223

A EXTENSION TO LCFS TIEBREAKING
SOAP policies that use LCFS tiebreaking admit almost exactly the same analysis as those that

use FCFS tiebreaking. As explained in detail below, the entire analysis is unchanged except for

reversing the strictness of rank comparisons in Definitions 4.2 and 4.5, meaning swapping ≺ and ⪯

and swapping ≻ and ⪰.

Throughout Sections 4.3 and 4.4, which follow a tagged job J through the system, we distinguish

between new jobs, which arrive after J , and old jobs, which arrive before J . When there are

multiple jobs of minimal rank, FCFS tiebreaking prioritizes old jobs, then J , and then new jobs.

This prioritization affects the strictness of rank comparisons when defining new r -work and old

r -work. For instance, Definition 4.2 defines

cd [r ] = inf{a ≥ 0 | r (d,a) ⪰ r },

whereas Definition 4.5 defines

c0,d [r ] = inf{a ≥ 0 | r (d,a) ≻ r },

which is the same but with ≻ in place of ⪰. When J ’s worst future rank is r , the above values each
represent a “cutoff age” before which a job of descriptor d outranks J . Under FCFS tiebreaking, a
new job K outranks J until K ’s rank is at least r , whereas an old job I outranks J until I ’s rank
strictly exceeds r . Under LCFS tiebreaking, this situation is reversed, which manifests as reversing

the strictness of rank comparisons.

B RANK FUNCTION DETAILS
In order to ensure that a SOAP policy is well-defined, its rank function r must satisfy the following

conditions.

• With respect to descriptor, r must be piecewise continuous to ensure that certain expectations
are well-defined.

• With respect to age, r must be piecewise monotonic and piecewise differentiable to determine

when and how to share the processor between multiple jobs. Any compact region of R≥0

must contain only finitely many boundary points between pieces. Furthermore, upwards

jump discontinuities must be continuous from the right
11
.

These conditions allow us to define a SOAP policy as the limit of discrete-time priority policies,

with the limit taken as the discretization increment approaches 0. When R = R2
ordered lexico-

graphically, the limiting policy is Algorithm B.1, which has a clear generalization to R = Rn
. In

Algorithm B.1, we say a job is “in state (d,a)” to mean it has descriptor d and age a.

C WORST FUTURE RANK DETAILS
For simplicity of exposition, throughout Section 4, we assumed that a job’s worst future rank

rworstd,x (a) was actually attained by that job in the future. However, there are two cases where the

supremum in Definition 4.1 is not be attained by some age a: when there is a jump discontinuity or

when the maximum is at the open boundary a = x . For example, in Section 6.1, if a job has integer

size x , then the job never attains rank ⟨0,x⟩.

11
That is, if a job jumps from low rank to high rank at age a, its rank exactly at age a should be the high rank.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 1, Article 16. Publication date: March 2018.

https://doi.org/10.1287/opre.30.2.223
https://doi.org/10.1287/opre.30.2.223
http://arxiv.org/abs/https://doi.org/10.1287/opre.30.2.223


16:28 Ziv Scully, Mor Harchol-Balter, and Alan Scheller-Wolf

Algorithm B.1 SOAP Policy in Continuous Time

Let J be the set of jobs in states (d,a) of minimal r1(d,a).
• Within J , consider jobs such that r is strictly decreasing in age. If there are any, schedule

the job of minimal r2, using FCFS tiebreaking if there are multiple such jobs.

• Otherwise, within J , consider jobs such that r1 is constant and r2 is strictly increasing in

age. If there are any, share the processor between all such jobs, giving a job in state (d,a)
share proportional to 1/∂ar2(d,a).

• Otherwise, J must only contain jobs such that r1 is strictly increasing. Share the processor

between jobs in J , giving a job in state (d,a) share proportional to 1/∂ar1(d,a).

There are multiple ways to remedy the situation. The most intuitive is to say that rworstd,x (a) is

not a rank but a rank bound. The set of rank bounds is R × {−1, 0} ordered lexicographically. An

ordinary rank r corresponds to the pair (r , 0) representing the closed upper bound r ′ ⪯ r over other
ranks r ′, but the pair (r ,−1) is “just below” (r , 0), representing the open upper bound r ′ ≺ r .

The corrections to definitions are as follows. In Definition 4.1, we define the worst future rank to

be the rank bound

rworstd,x (a) = (sup
a≤b<x

r (d,b),−1(the supremum is not attained))

instead of just a rank. In Definitions 4.2 and 4.5, instead of defining r -work for a rank r , we define
(r ,q)-work for rank bounds (r ,q). When we compare a rank r ′ against a rank bound (r ,q), we
compare rank bound (r ′, 0) against (r ,q). Concretely, in Definition 4.2, we define

cd [(r ,q)] = inf{a ≥ 0 | (r (d,a), 0) ⪰ (r ,q)},

and similarly for bi,d [(r ,q)] and ci,d [(r ,q)] in Definition 4.5.

For example, consider the analysis of discretized FB in Section 6.1. When a job has integer size x ,
the supremum in rworst�,x (a) is attained only in the b → x limit. Thus, X old

0
[rworst�,x (0)] = Xx when x

is an integer, not Xx+1 as would follow from the uncorrected Definition 4.5. To correct for this,

Proposition 6.1 uses ⌈x⌉ instead of ⌊x⌋ + 1.
The above discussion assumes FCFS tiebreaking. As discussed in Appendix A, the strictness

of rank comparisons in Definitions 4.2 and 4.5 is reversed under LCFS tiebreaking, but the same

changes described above apply without issue.

D THE RANK-SUBSTITUTED TAGGED JOB
In this section, we show that for the purposes of analyzing Td,x , we can use a rank-substituted
tagged job.

Worst Future Rank Substitution. Consider an arbitrary arrival sequence that includes the arrival

of a tagged job J with descriptor d and size x . The response time of J is unaffected if we schedule J
as if its rank were rworstd,x (a) instead of r (d,a) at every age a, without otherwise changing the arrival

sequence or scheduling policy. We call this process rank substitution.

Worst Future Rank Substitution is a direct consequence of the Pessimism Principle (Section 4.3).

To see why it holds, consider two systems experiencing identical job arrivals, including tagged

job J .
• System A is unmodified, so J is scheduled according to its current rank.

• System B uses rank substitution, so J is scheduled according to its worst future rank.

We say the two systems synchronize at time t if they contain the same jobs at the same ages at t . The
systems clearly synchronize at J ’s arrival time. We show below that the systems also synchronize

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 1, Article 16. Publication date: March 2018.



SOAP: One Clean Analysis of All Age-Based Scheduling Policies 16:29

v1 w1 v2 w2 x

v1
w1

v2
w2

x

0 a

0

aworstd,x (a)

0 a
0

r (d,a)
rworstd,x (a)

The relationship between rank r (d,a) (solid cyan), worst future rank rworstd,x (a) (dashed magenta), and worst

future age aworstd,x (a) (solid green) for a job with descriptor d and size x . Age and worst future age coincide for

ages in the intervals [v1,w1] and [v2,w2].

Fig. D.1. Illustration of Worst Future Age

at many other points in time, one of which is J ’s exit time, so J ’s response time is the same in each

system.

The Pessimism Principle states that all of J ’s delay due to another job L occurs before J is served
while at its worst future rank. This suggests we should focus on J ’s worst future age, which when J
has age a is

aworstd,x (a) = inf{b ≥ a | r (d,b) = rworstd,x (b)},

namely the earliest age at which J attains its worst future rank12. See Figure D.1 for an illustration.

Note that a = aworstd,x (a) if and only if r (d,a) = rworstd,x (a).

As J ages, its worst future age alternates between being a constant future age and its current age.

Let [vi ,wi ] be the ith interval of ages a such that a = aworstd,x (a). It is convenient to setw0 = 0 and

vn+1 = x , where n is the number of [vi ,wi ] intervals. We will show that System A and System B

synchronize when, for some i , either

12
As discussed in Appendix C, a job’s worst future rank is sometimes only attained in a limit due to the job’s completion or

a jump in the rank function. Accounting for this changes only minor details in the following discussion.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 1, Article 16. Publication date: March 2018.



16:30 Ziv Scully, Mor Harchol-Balter, and Alan Scheller-Wolf

• J has age vi and is in service or

• J ’s age is in (vi ,wi ].

It is clear that if the systems synchronize when J is served at age vi , then the systems remain

synchronized until J reaches agewi , because J ’s rank in the two systems is identical until J reaches
age wi . Thus, it suffices to show that if the systems synchronize when J has age wi−1, then the

systems synchronize when J is served at age vi .
Consider how the two systems change during the interval between their synchronization when

J has agewi−1. Let tA be the moment when J is served at age vi in System A, and symmetrically

for tB in System B.

• In System A, by the Pessimism Principle, each other job L in the system during the interval

is served until it either completes or surpasses J ’s worst future rank r (d,vi ), after which L
is never served again. This is because aworstd,x (a) = vi for all a ∈ (wi−1,vi ].

• In System B, by the Pessimism Principle, each other job L is served for the same amount of

time as in System A, because rank substitution does not change J ’s worst future rank.
Thus, if System A experiences the same arrivals before tA that System B experiences before tB,
then the systems synchronize at tA = tB, as desired. Suppose for contradiction that one system,

say System A, experiences an extra arrival. Because the arrival sequence is the same for the two

systems, this occurs only if tA > tB. But by work conservation and the observations above, at tB,
System A must serve J at age vi , so tA = tB after all, contradicting tA > tB.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 1, Article 16. Publication date: March 2018.


	Abstract
	1 Introduction
	1.1 Contributions
	1.2 Related Work

	2 System Model and SOAP Policies
	2.1 Descriptors
	2.2 SOAP Policies and Rank Functions

	3 SOAP Policies Are Everywhere
	3.1 Previously Analyzed SOAP Policies
	3.2 Newly Analyzed SOAP Policies
	3.3 SOAP Policies with LCFS Tiebreaking
	3.4 Non-SOAP Policies

	4 How to Handle Any Rank Function
	4.1 Conventions
	4.2 Nonmonotonicity Difficulties
	4.3 The Pessimism Principle
	4.4 The Vacation Transformation

	5 Response Time of SOAP Policies
	5.1 Waiting Time
	5.2 Residence Time
	5.3 Total Response Time

	6 New Analyses for Specific Policies
	6.1 Discretized FB
	6.2 Mixture of Known and Unknown Job Sizes
	6.3 The Gittins Index Policy
	6.4 Case Study: SERPT vs. the Gittins Index

	7 Conclusion
	Acknowledgments
	References
	A Extension to LCFS Tiebreaking
	B Rank Function Details
	C Worst Future Rank Details
	D The Rank-Substituted Tagged Job

