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Capacity management, whether it involves servers in a data center, or human staff in a call center,

or doctors in a hospital, is largely about balancing a resource-delay tradeoff. On the one hand, one

would like to turn off servers when not in use (or send home staff that are idle) to save on resources.

On the other hand, one wants to avoid the considerable setup time required to turn an “off” server

back “on.” This paper aims to understand the delay component of this tradeoff, namely, what is the

effect of setup time on average delay in a multi-server system?

Surprisingly little is known about the effect of setup times on delay. While there has been some

work on studying the M/M/k with Exponentially-distributed setup times, these works provide only

iterative methods for computing mean delay, giving little insight as to how delay is affected by 𝑘 ,

by load, and by the setup time. Furthermore, setup time in practice is much better modeled by a

Deterministic random variable, and, as this paper shows, the scaling effect of a Deterministic setup

time is nothing like that of an Exponentially-distributed setup time.

This paper provides the first analysis of the M/M/k with Deterministic setup times. We prove a

lower bound on the effect of setup on delay, where our bound is highly accurate for the common

case where the setup time is much higher than the job service time. Our result is a relatively simple

algebraic formula which provides insights on how delay scales with the input parameters. Our proof

uses a combination of renewal theory, martingale arguments and novel probabilistic arguments,

providing strong intuition on the transient behavior of a system that turns servers on and off.
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1 INTRODUCTION
In many queueing systems, servers have both OFF and ON states. A setup time is the amount of

time needed to transition a server from being OFF to being ON. Setup times occur in a variety of

contexts: the transit time for an on-call doctor, the boot time of a computer, the warmup time for a

photocopier, to name a few. In all these cases, we turn off servers for good reason; we’re making a

tradeoff between delay and other things like power consumption, server health, and service quality.
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In order to make these decisions intelligently, we need a good understanding of how setup times

affect quality of service.

There are two aspects of setup time which we believe require careful modeling, particularly

in multi-server systems. The first is the high ratio between setup times and service times. While

setup times have always existed in queueing systems, as time has gone on, the ratio between setup

times and service times has grown increasingly larger. When combined with dynamic capacity

scaling, wherein one dynamically turns off and on servers in response to current queue lengths, this

high setup ratio has the potential to wreak havoc on queueing systems. As a thought experiment,

consider the behavior of a dynamically-scaled queueing system as the setup ratio goes to infinity:

in this case, turning off a server is like getting rid of it entirely, pushing your system into temporary

overload. While the limiting case might seem like a bogeyman, the reality of the situation is not so

different: in datacenters, virtual machine boot times can be hundreds or even thousands of times

larger than the desired customer latency (minutes versus hundreds of milliseconds) [11, 16, 21].

The second important aspect of setup time is its distribution. We argue that many setup times

are best modeled as deterministic. Consider, for example, the setup time in an application system

where virtual machines are dynamically being booted and shut down as user demand increases

and decreases, as in Google’s Autopilot [21]. Although the virtual machine (VM) boot procedure

includes steps like resource reservation which rely on communication (and thus could potentially

be highly variable), in most cloud computing settings, the variation in VM boot times depends

predominantly on static aspects of the task at hand, like the operating system image size [16]. In

fact, in [11] the setup times for servers in the data center was found to be a constant, 260s, more

than a thousand times the typical service requirement for the jobs in that data center.

To see how variability in the setup time might affect queueing behavior, consider another thought

experiment, where your web application has gone viral and you need 10 servers as soon as possible

to handle the surge in traffic. If setup times are highly variable, then initializing a setup of 100

servers will very quickly net you the 10 servers you need, and you can simply cancel setting up the

rest. On the other hand, if setup times take a fixed (deterministic) amount of time, then initializing a

setup for 100 servers won’t speed up anything. In some sense, models that include higher variability

in setup times can make a system seem more “reactive” to surges in traffic than they actually are,

especially in models where the number of servers is large.

While we have argued that large setup times, particularly deterministic ones, can have a signifi-

cant effect on delay in multi-server systems, at present the effect of setup is only fully understood

in the single-server setting. We consider the following notion of delay: the delay of a job is defined

to be the time the job spends waiting in the queue before entering service. For the M/G/1 queue

with setup times of any distribution, [22] gives an exact expression for the Laplace transform of

delay as a function of the Laplace transform of the setup time, the Laplace transform of the service

time, and the arrival rate 𝜆. In the case of an M/M/1 with deterministic setup times
1

𝛼
, the mean

delay from [22] is

E [delay in M/M/1 with Deterministic setup] = 1

𝜇

𝜌

1 − 𝜌
+ 1

2𝛼

(
2𝛼 + 𝜆

𝛼 + 𝜆

)
, (1)

where 𝜆 is the arrival rate of jobs, 𝜇 is the service rate of jobs, and 𝜌 = 𝜆
𝜇
is the load of the system.

Existing work on multiserver systems with setup times ([12, 20]) models setup times as following

an Exponential distribution, which allows the authors to model the system via a continuous time

Markov chain. Unfortunately, these papers only give iterative methods for computing the mean

delay. Thus, even for the case of Exponentially-distributed setup time, there are currently no

simple closed-form expressions for mean delay that allow us to understand the effect of setup,
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Fig. 1. Simulation results for the M/M/k/Setup-Deterministic, M/M/k/Setup-Exponential, M/M/k (no setup),
with 𝜇 = 1, setup time 1

𝛼 = 1000, and load kept at a constant 𝜌 = 0.5. While there’s a huge difference between
no-setup and setup, there’s also a considerable difference in the shape of the curves for Exponential and
Deterministic setups.
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Fig. 2. Comparison of our lower bound for the M/M/k/Setup-Deterministic with simulation results for the
M/M/k/Setup-Deterministic and M/M/k/Setup-Exponential, with 𝜇 = 1, setup time 1

𝛼 = 1000, and load kept
at a constant 𝜌 = 0.5. Our bound clearly follows the shape of the M/M/k/Setup-Deterministic. The shape of
the M/M/k/Setup-Exponential is quite different.

number of servers, and load, as in (1). Furthermore, in the more practical case where setup times

are Deterministic, no analytical results are known for multiserver systems.

To illustrate both the effect of setup time and the effect of Deterministic versus Exponential

setup times, we provide some simulations in Figure 1. Here we refer to the M/M/k/Setup with De-

terministic (respectively, Exponential) setup times as the M/M/k/Setup-Deterministic (respectively,

M/M/k/Setup-Exponential). Roughly, in the M/M/k/Setup-Deterministic, when a server is idle, it

is immediately turned off. When a job arrives to find some server(s) off, the job initiates a server
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setup. The exact definition of the M/M/k/Setup-Deterministic policy is given in Section 3. In these

simulations, the ratio between the mean setup time and mean service time is a constant
𝜇

𝛼
= 1000

and load 𝜌 = 0.5.

First, we see in Figure 1 that there is a huge difference between the mean delay in systems with

setup and the system without setup. This difference grows as the number of servers grows. In

particular, given this is a log-log plot, we can see that the mean delay in the systems with setup

appears to decay polynomially in 𝑘 , while we know from Erlang that the delay in the M/M/k

without setup decays exponentially in 𝑘 .

Our second observation in Figure 1 is that the M/M/k/Setup-Deterministic delay curve is much

flatter than that of the M/M/k/Setup-Exponential, the latter of which decays much more quickly.

Simply put, this tells us that Deterministic setup times are way more painful than Exponentially-

distributed ones and must be taken much more seriously in capacity planning. Note that this is in

line with our earlier intuition that Exponentially-distributed setup times are more “reactive" (more

forgiving) than Deterministic setup times.

Our result. Having seen that Deterministic setup times produce very different results from

Exponential setup times, and also very different results from the case of no setup time, we seek

to better understand the effect of Deterministic setup times. Our main result is a lower bound on

E
[
𝑇𝑄

]
, the mean delay in the M/M/k with Deterministic setup times, where again delay refers to

the time a job spends waiting in the queue before entering service. Our lower bound applies in the

case where setup times are much longer than service times. Approximately, it says the following:

Theorem 1 (Informal). For an M/M/k/Setup with sufficiently large 𝑘 , sufficiently large Determin-
istic setup time 1

𝛼
, and some absolute constant 𝐶 ,

E
[
𝑇𝑄

]
≥ 𝐶 · 1

𝛼

1√︁
𝑘𝜌

,

where one should recall that the arrival rate is 𝑘𝜆, the service rate is 𝜇, and the load is 𝜌 = 𝜆
𝜇
.

This lower bound confirms that the mean delay in an M/M/k/Setup with Deterministic setup

time decays, at fastest, polynomially in 𝑘 , consistent with what we observe in Figure 1. Furthermore,

we plot this lower bound in Figure 2, where we take a closer look at the difference between the

M/M/k/Setup-Exponential and the M/M/k/Setup-Deterministic from Figure 1. We see that our

lower bound on the M/M/k/Setup-Deterministic does a very good job of capturing the shape of

the M/M/k/Setup-Deterministic, which is noticeably different from the M/M/k/Setup-Exponential.

As we hypothesized earlier, the M/M/k/Setup-Exponential has significantly lower delay than the

M/M/k/Setup-Deterministic.

Our approach. We now briefly discuss our approach, some technical challenges it raises, and the

key ideas which allow us to move beyond those challenges. Recall that our goal is to bound the

mean delay, or, equivalently (by Little’s Law), to bound the mean number of jobs in queue E [𝑄 (∞)].
We follow a renewal-reward approach to computing quantities like E [𝑄 (∞)]: First, we break time

into renewal cycles, where the system behavior within, say, the first cycle is independently and

identically distributed from the system behavior within all other cycles. (For a natural example of

such a cycle, consider starting a cycle when the system first becomes empty of jobs.) Once we have

chosen how to define a cycle, it follows from renewal theory [2] that

E [𝑄 (∞)] =
E

[∫
cycle

𝑄 (𝑡)d𝑡
]

E [cycle length] . (2)
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Fig. 3. Idealized depiction of an M/M/k/Setup-Deterministic renewal cycle.

Note that the definition of a cycle is not necessarily unique; in general, there are many definitions

of a cycle for which (2) holds, and not all of them are equivalently-easy to reason about.

This gives way to our first technical challenge: defining a cycle which makes the bounding of

the numerator and denominator as direct as possible. If, for example, we chose the “empty system”

renewal point we discussed before, then we would need to characterize the behavior of the system

over a cycle whose mean length is potentially very long (bounded from below by ≈ 𝑒𝑘𝜌

𝑘𝜆
, via a

coupling argument with the M/M/∞).

The key to solving this challenge is to observe the system in simulation. In simulation, a clear

two-phase pattern emerges in the behavior of the system, as depicted in Figure 3. In the first phase,

the system builds up a large number of queued jobs. In the second phase, once enough servers have

turned on, the queue drains in a way reminiscent of a busy period. Upon closer inspection, this

two-phase pattern is not a coincidence; the system enters the same state right at the end of every

draining phase. As such, we can and do define our cycle as starting with this post-draining state,

and ending when the next draining phase ends. This definition turns out to be exactly what we

need to make progress.

In some sense, our first challenge is a high-level challenge: we need a good vantage point from

which to begin our analysis. In necessary contrast, our second technical challenge is a low-level

challenge: in order to actually bound the numerator and denominator in (2), we require a good

understanding of the moment-to-moment dynamics of our system. This is a priori difficult, since

the system’s time evolution depends on possibly 𝑘 + 1 pieces of information (the status of each

server, plus the number of jobs in queue). Our key low-level insight is that, outside of the precise

moments where servers are turning off or on, the behavior of the number of jobs in system 𝑁 (𝑡) is
essentially exactly the behavior of two competing Poisson processes. Combining this insight with

martingale theory and the deterministic nature of setup, we have enough to develop our results.

Overview. We give an outline of the remainder of this work.

• In Section 2, we discuss some related work.

• in Section 3, we discuss our model and some preliminary notation.

• In Section 4, we state our main result, a lower bound on the mean delay.

• In Section 5, we go into more depth about our technical approach.

• In Section 6, we prove one of our two main lemmas needed in the main result.

• We leave the rest of the proofs of our results to the Appendices.
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2 RELATEDWORK
We now discuss some related works which also analyze the effect of setup time in queueing systems.

Although we have found no theoretical work analyzing the multi-server systems with deterministic

setup times, there is a rich history of work around the analysis of queueing systems with setup.

Single server. The case of setup time in a single server has been understood since the 1960’s.

Welch, [22], considers a slight generalization of the M/G/1/setup queue where, if a customer arrives

while the server is idle, then they have a different service distribution than if they arrive while the

server is busy. Welch characterizes the steady-state and transient distributions of the queue length

and delay. This important result has been extended in a variety of different directions, by adjusting

the service discipline or arrival process [3, 4, 13].

M/M/k and M/G/k with staggered setup. The easiest case of multiserver systems with setup times

involves the staggered setup model, where at most one server can be in setup at a time, greatly

simplifying the analysis. In [1], the authors obtain an expression for the steady-state distribution

of queue length for the system when setup times are Exponential, using the method of difference

equations. In [8] the authors simplify the solution of the M/M/k with exponential setup times

considerably, an prove a decomposition result for mean delay. In [6], the decomposition result is

generalized to a hyperexponential job size distribution, and shown to hold approximately for a

general job size distribution.

M/M/k/Setup-Exponential, Approximations. Most of the results that deal with an M/M/k/Setup

system assume Exponential service times and are approximate. In particular, we highlight the

work in [19] and [8]. Gandhi et al. [8] seek useful intuitive approximations to the M/M/k/Setup-

Exponential system. Their approximations stem from an exact analysis of the M/M/∞/Setup-

Exponential system, which they then modify in various ways to capture the finite server case.

The approximations in [8] work well, except when both load and setup times are moderately high

(𝜌 > 0.5 and
𝜇

𝛼
> 10).

Pender and Phung-Duc [19] consider a generalization of the M/M/k/Setup-Exponential model

which includes non-stationary arrival rate and customer abandonment. Within this model, they

derive a mean field approximation for the system dynamics, which they prove converges as the

number of servers, 𝑘 , approaches infinity.

Unlike our work, neither Pender and Phung-Duc [19] nor Gandhi et al. [8] provide explicit

bounds on the delay. The approximations themselves are also not stated as an explicit function of

the system parameters. Finally, neither considers Deterministic setup times.

M/M/k/Setup-Exponential, Exact Analysis. There are only a few results that deal with the exact

analysis of the M/M/k with Exponential setup times. The most well-known are [12] and [20].

Gandhi et al. [12] give the first exact analysis of the M/M/k/Setup-Exponential system. To do this,

they develop the Recursive Renewal Reward (RRR) technique for solving the corresponding Markov

chain, algorithmically. Gandhi et al. [12] use RRR to obtain the Laplace transform of delay for any

particular value of 𝑘 , but do not provide a formula as a function of 𝑘 . Phung-Duc [20] rederives the

exact solutions from [12] using generating functions and matrix-analytic methods.

While [12] and [20] are important in that they provide the first exact analysis, their algorithms

actually take 𝑂 (𝑘2) time to compute. They also do not provide good intuition for the structure of

the solution, i.e., how the different system parameters (mean setup time, mean service time, arrival

rate, number of servers) affect the delay behavior of the system.

Distributed setting. Setup times have also been looked at in distributed systems where a dispatcher

routes each incoming job to one of several queues. Mukherjee et al. [18] describe a token-based load
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balancing and scaling scheme called TABS that takes into account of setup times on the individual

queues. They prove that the performance of TABS (as 𝑘 → ∞) is asymptotically optimal. While

[18] assumes that the queues have finite buffers, Mukherjee and Stolyar [17] generalize their results

to infinite buffers. The nature of the questions being asked and answered in [18] and [17] are very

different from the central queue-based work we discuss.

M/G/2/Setup-Deterministic, with dispatching. In the control literature, deterministic setup times

have been incorporated into models in order to enhance realism. Hyytiä et al. [14] consider a

dispatching version of the M/G/2/Setup-Deterministic model, and attempt to build near-optimal

policies for the joint control of setup initiation and the dispatching of jobs. We hope that our

analysis here could open the door to more fine-grained stochastic analysis of such control policies.

M/M/k/Setup-Deterministic, simulation only. The only work we have found which discusses

the M/M/k/Setup-Deterministic model explicitly is a simulation-based thesis by Kara [15]. Their

simulation results corroborate the argument we make in Section 1. In particular, they observe

that the mean delay in the M/M/k/Setup-Deterministic is consistently larger than that of the

M/M/k/Setup-Exponential, and, as the mean setup time
1

𝛼
increases, the relative increase in mean

delay between the M/M/k/Setup-Deterministic and the M/M/k/Setup-Exponential also increases.

Algorithms for reducing the effect of setup times on delay and energy usage. Setup times are both a

problem from a delay perspective and also from an energy perspective (servers utilize peak power

while in setup [11]). One can of course avoid setup times altogether by always leaving servers on,

but this results in wasted energy as well, since a server which is on, but idle, utilizes 60-70% of peak

energy [11]. To manage power efficiently, several algorithms have been developed to reduce the

costly effects of setup times. One idea is DelayedOff, whereby a one waits some time before turning

off a server, so as to avoid a future setup time [7, 8, 11, 19]. Another idea is routing jobs to the Most
Recently Busy server (MRB), so as to minimize the size of the pool of servers that are turning on and

off [7]. Similar to MRB is the idea of creating a rank ordering of all servers and always sending each

job to the lowest-numbered server in the rank [11]. The goal of all such algorithms is to minimize

the Energy-Response-time-Product (ERP) [7], maximize the Normalized-Performance-Per-Watt

(NPPW) [5], or minimize energy given a fixed tail cutoff for response time [11]. Other ideas for

minimizing delay and energy involve utilizing sleep states in servers, which require more power

than being off, but have a lower setup time [9, 10].

3 MODEL: M/M/k/SETUP-DETERMINISTIC
We now formally describe our model, referred to as M/M/k/Setup-Deterministic, which is a variant

on the M/M/k queueing system. An example is illustrated in Figure 4. Just as in the M/M/k model,

in our model there are 𝑘 servers, indexed by 1, 2, . . . , 𝑘 ; jobs arrive following a Poisson process of

rate 𝑘𝜆 into a central queue, and job service times follow an exponential distribution with rate 𝜇.

The load of the system is denoted as 𝜌 ≜ 𝜆
𝜇
, and the quantity 𝑅 ≜ 𝑘𝜌 is referred to as the offered

load of the system following the convention.

To augment the M/M/k with setup times, we make the following adjustments. When a server

completes a job and there are no jobs waiting in the queue, the server turns off. Now if we want to

turn an off server back on, it requires a setup time. We assume that the setup times are deterministic

with value
1

𝛼
. This is in contrast to the regular M/M/k model, where all the servers are on all the

time. With setup times, the dynamics of the system can be described as follows.

• When a job arrives: (i) If there are off servers, an off server initializes setup. To avoid ambuguity,

we assume that in this case the off server with the smallest index initializes setup. In the example
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Fig. 4. An example of M/M/k/Setup-Deterministic with 𝑘 = 6. The state pictured has 𝑍 (𝑡) = 2 busy servers,
which means there are 2 jobs in service. There are 𝑄 (𝑡) = 2 jobs in queue, and thus 𝑁 (𝑡) = 𝑍 (𝑡) +𝑄 (𝑡) = 4

jobs in system.

in Figure 4, if a job arrives to the pictured state, server 5 initializes setup. (ii) If all the servers are

either on or in setup, their states do not change.

• When a job is completed on a server: (i) If the queue is empty, the server turns off. (ii) If the

queue is nonempty, the server puts the head-of-queue job into service. Then if the number of

jobs left in the queue is smaller than the number of servers in setup, i.e., we are setting up more

servers than needed, the setup on the server with the largest remaining setup time is canceled,

returning the server back to off. In the example in Figure 4, if server 1 completes the job currently

in service, server 1 starts serving the head-of-queue job, the setup on server 4 is canceled, and

server 4 returns to off.

Now we explain the notation we use to describe the state of the system at time 𝑡 . An example

is again given in Figure 4. Let 𝑍 (𝑡) be the number of on servers (busy servers). Then 𝑍 (𝑡) is also
the number of jobs in service. Let 𝑄 (𝑡) be the number of jobs in queue (not including the jobs in

service), and 𝑁 (𝑡) = 𝑍 (𝑡) +𝑄 (𝑡) be the total number of jobs in system. We describe the remaining

setup times of servers via a size 𝑘 vector 𝑾 (𝑡), where, if server 𝑖 is in setup, the entry𝑊𝑖 (𝑡) is
the remaining amount of time that the 𝑖-th server needs to finish setting up before turning ON. If

server 𝑖 is not in setup, we set𝑊𝑖 (𝑡) in the following way for convenience: if server 𝑖 is on, we set

𝑊𝑖 (𝑡) = 0; if it is off, we set𝑊𝑖 (𝑡) = ∞. Then it is clear that the process

{S(𝑡) ≜ (𝑍 (𝑡), 𝑄 (𝑡),𝑾 (𝑡)) : 𝑡 ∈ R+}
is a Markov process. Let 𝑠 = (𝑧, 𝑞,𝒘) represent a realization of the state. We drop the time index

and simply write S, 𝑍,𝑄, 𝑁 and𝑾 to represent the corresponding quantities in steady state. We

note that by Little’s law, the mean number of busy servers in steady state is equal to the offered

load, i.e., E [𝑍 ] = 𝑅 = 𝑘𝜌 .

Our goal is to analyze the mean delay of jobs, where the delay of a job is defined to be the time

the job spends waiting in the queue before entering service. We use 𝑇𝑄 to denote the delay of a job

arriving to the steady state of the system. Then by Little’s law, if the system is stable, we have

E
[
𝑇𝑄

]
=
E [𝑄]
𝑘𝜆

.

Therefore, to bound E
[
𝑇𝑄

]
, it suffices to bound E [𝑄]. Although our analysis produces bounds of

explicit forms, we mainly focus on the asymptotics when the number of servers, 𝑘 , and the setup

time,
1

𝛼
, both become large, while holding other system parameters 𝜆 and 𝜇 constants.
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4 MAIN RESULT
Our main result is a lower bound on the mean delay of M/M/k/Setup-Deterministic. In this section,

we first state our lower bound as a scaling result in Theorem 1 to clearly reveal the asymptotic

behavior. We then give an explicit form of the lower bound in Theorem 2 to provide more details,

which is the form we actually prove in the later sections of the paper. At the end of this section, we

include a short proof of Theorem 1 using Theorem 2.

Theorem 1 (Scaling Behavior). Consider an M/M/k/Setup-Deterministic system with load 𝜌 = 𝜆
𝜇

and setup time 1

𝛼
. We consider the asymptotic regime where 𝑘 and 1

𝛼
become large in a way such that

1/𝛼
1/𝜇 ≥ log

2 (𝑘𝜌), while holding 𝜆 and 𝜇 constants. Then the expected delay in steady state is lower
bounded as

E
[
𝑇𝑄

]
= Ω

(
1

𝛼

1√︁
𝑘𝜌

)
. (3)

As we explained in Section 1, our lower bound shows that in the presence of setup times, the

delay is at least on the order of
1√
𝑘
as 𝑘 → ∞. This is in sharp contrast to the delay in M/M/k

without setup, which decays exponentially fast as 𝑘 → ∞. Moreover, the
1

𝛼
factor in our bound

captures the effect of the setup time
1

𝛼
.

Remark 1. With the lower bound in Theorem 1 alone, we cannot distinguish the asymptotic

behavior of M/M/k/Setup-Deterministic from that of M/M/k/Setup-Exponential theoretically. Al-

though the difference is evident in simulations, as noted by Figure 2, we do not have a tight

analytical characterization of the delay under M/M/k/Setup-Exponential. We can show that the

delay under M/M/k/Setup-Exponential is also on the order of
1√
𝑘
(with poly(log𝑘) modifications),

but the dependence on the setup time
1

𝛼
is unclear.

Our explicit form of the lower bound involves two functions, which we define below. Consider

an M/M/1 queue with arrival rate 𝑘𝜆 and service rate 𝑘𝜇, and consider a busy period started by 𝑥

jobs in this M/M/1 queue. Then let

ℎ(𝑥) = E [length of busy period started by 𝑥 jobs] = 𝑥

𝑘𝜇 (1 − 𝜌) , (4)

and

𝑔(𝑥) = E
[∫

𝑡 ∈busy period started by 𝑥 jobs

(number of jobs in system at 𝑡)𝑑𝑡
]

=

[
𝑥 − 1

2

+ 1

1 − 𝜌

]
𝑥

𝑘𝜇 (1 − 𝜌) .
(5)

With this notation, our explicit lower bound is presented in Theorem 2 below.

Theorem 2 (Explicit Lower Bound). Consider an M/M/k/Setup-Deterministic system with load
𝜌 = 𝜆

𝜇
and setup time 1

𝛼
. If the ratio between the setup time and the service time satisfies that

1/𝛼
1/𝜇 ≥ 1000, the offered load 𝑅 = 𝑘𝜌 ≥ 128, and 1/𝛼

1/𝜇 ≥ log
2 (𝑘𝜌), then the expected delay in steady

state is lower bounded as

E
[
𝑇𝑄

]
≥ 1

𝑘𝜆

1

2

(
1

𝛼

)
2 𝜇

√
𝑘𝜌

2
+ 𝑔

( [ ( 𝜇
𝛼
− 1

) √𝑘𝜌

2
− 𝑘 (1 − 𝜌)

]+)
𝐶1

(
3

𝛼
+ 1

𝜇

)
+ 1

𝛼
+ ℎ

(
𝐶2

𝜇
√
𝑘𝜌

𝛼

)
+ 𝐶3

𝜇
log

(
𝐶2

𝜇
√
𝑘𝜌

𝛼

) ,
where 𝐶1,𝐶2, and 𝐶3 are constants independent of system parameters 𝑘, 𝜆, 𝜇, and 𝛼 .
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Proof of Theorem 1 using Theorem 2.

Proof. We begin with the expression from Theorem 2, converting the numerator and denomi-

nator to asymptotic notation. In particular, for the numerator, we drop the 𝑔 function term because

it is nonnegative; for the denominator, we plug in the form of the 𝑓 function. This gives

E
[
𝑇𝑄

]
= Θ

(
1

𝑘𝜆

)
·

Ω

(
1

𝛼

𝜇
√
𝑘𝜌

𝛼

)
𝑂

(
1

𝛼

)
+𝑂

(
1

𝑘𝜇 (1−𝜌 )
𝜇
√
𝑘𝜌

𝛼

)
+𝑂 (log𝑘) +𝑂

(
log

(
1

𝛼

) ) (6)

=

Ω

(
1

𝛼

𝜇

𝑘𝜆

√
𝑘𝜌

𝛼

)
𝑂

(
1

𝛼

)
+𝑂

(
1√
𝑘

1

𝛼

)
+ 𝑜

(
1

𝛼

)
+ 𝑜

(
1

𝛼

) (7)

= Ω

(
1

𝛼

1√︁
𝑘𝜌

)
, (8)

where (7) follows from the assumption that
1/𝛼
1/𝜇 ≥ log

2 (𝑘𝜌). □

With this, the remainder of this paper is devoted to proving Theorem 2.

5 OVERVIEW OF TECHNICAL APPROACH
In this section, we give an overview of our technical approach, which reduces proving Theorem 2

to proving Lemmas 5.1 and 5.2. The proof of Lemma 5.1 is deferred to Appendix A; the proof of

Lemma 5.2 follows immediately after this overview, in Section 6.

Recall that the expected delay E
[
𝑇𝑄

]
=
E[𝑄 ]
𝑘𝜆

, so it suffices to focus on bounding E [𝑄], where 𝑄
denotes the number of jobs in the queue in steady state.

Our main idea of the analysis is to decompose time into renewal cycles and then express E [𝑄]
using the Renewal Reward Theorem. This allows us to bound E [𝑄] by bounding the expected

reward over a cycle and the expected cycle length, respectively.

The key to this approach is to find the right renewal cycles, given the complex dynamics induced

by the setup times. We define renewal time points to be times when the number of busy servers,

𝑍 (𝑡), decreases from 𝑍 (𝑡−) = 𝑅 + 1 to 𝑍 (𝑡) = 𝑅, recalling that 𝑅 ≜ 𝑘𝜌 is the offered load. Note that

the queue is necessarily empty at this transition, i.e., 𝑄 (𝑡−) = 𝑄 (𝑡) = 0, because otherwise the

number of busy servers would not decrease. As a result, there are no servers in setup either at this

transition. Without loss of generality, assume that there is a renewal at time 0, and let 𝑋 be the

next renewal point, i.e.,

𝑋 = min {𝑡 > 0 : 𝑍 (𝑡−) = 𝑅 + 1, 𝑍 (𝑡) = 𝑅} . (9)

Then viewing the queue length 𝑄 (𝑡) as reward, by the Renewal Reward Theorem, we have

E [𝑄] =
E

[∫ 𝑋

0
𝑄 (𝑡)𝑑𝑡

]
E [𝑋 ] . (10)

With this, our lower bound on E
[
𝑇𝑄

]
=
E[𝑄 ]
𝑘𝜆

in Theorem 2 directly follows from the upper bound

on E [𝑋 ] in Lemma 5.1 and the lower bound on the expected reward E
[∫ 𝑋

0
𝑄 (𝑡)𝑑𝑡

]
in Lemma 5.2.

Before we present the bounds in Lemmas 5.1 and 5.2, we first provide some intuition on the

structure of a renewal cycle under our definition, say the time interval [0, 𝑋 ), as illustrated in
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!

Busy Period

renewal cycle "

!

"! ""

Accumulation
# $
% $

Fig. 5. A visualization of the accumulation and busy period phases which make up a renewal cycle.

Figure 5. By our construction, the renewal cycle [0, 𝑋 ) can be split into two phases, divided by the

following time point:

𝑇𝐴 = min {𝑡 > 0 : 𝑍 (𝑡) = 𝑅 + 1} , (11)

i.e., the first time the (𝑅 + 1)-th server turns on. Let 𝑇𝐵 = 𝑋 −𝑇𝐴 be the length of the remaining

time in the cycle after 𝑇𝐴. Then 𝑇𝐵 can be written as

𝑇𝐵 = min {𝑠 > 0 : 𝑍 (𝑇𝐴 + 𝑠) = 𝑅} , (12)

i.e., the time to the first time after time 𝑇𝐴 that the (𝑅 + 1)-th server turns off. With this notation,

the cycle [0, 𝑋 ) is split into the following two phases:

• [0,𝑇𝐴), the accumulation phase: During this phase, the system must build up enough jobs in the

queue for long enough that the (𝑅 + 1)-th server turns on.

• [𝑇𝐴,𝑇𝐴 + 𝑇𝐵), the busy period phase: During this phase, the system should be (in a net sense)

losing jobs over time, until the (𝑅 + 1)-th server turns off.

With this decomposition, we can write 𝑋 = 𝑇𝐴 +𝑇𝐵 . Our analyses of E [𝑋 ] and E
[∫ 𝑋

0
𝑄 (𝑡)𝑑𝑡

]
are

both based on this two-phase structure.

5.1 Upper bound on cycle length E [𝑋 ]
Our upper bound on E [𝑋 ], given in Lemma 5.1 below, makes use of the busy period in an M/M/1

queue with arrival rate 𝑘𝜆 and service rate 𝑘𝜇. Recall that ℎ(𝑥) = 𝑥
𝑘𝜇 (1−𝜌 ) defined in (4) denotes the

expected length of a busy period started by 𝑥 jobs in this M/M/1 queue.

Lemma 5.1 (Upper Bound on Cycle Length). Let 𝑋 be the cycle length defined in (9). Then for
three constants 𝐶1, 𝐶2, and 𝐶3 that do not depend on system parameters, we have

E [𝑋 ] ≤ 𝐶1

(
3

𝛼

)
+ 1

𝛼
+ ℎ

(
𝐶2

𝜇
√
𝑅

𝛼

)
+ 𝐶3

𝜇
log

(
𝐶2

𝜇
√
𝑅

𝛼

)
. (13)

Recall that E [𝑋 ] = E [𝑇𝐴] + E [𝑇𝐵]. The terms in the bound (19) correspond exactly to bounds

on E [𝑇𝐴] and E [𝑇𝐵]. We discuss the intuition behind each bound in turn.

Bound on E [𝑇𝐴]. We first show that

E [𝑇𝐴] ≤ 𝐶1

(
3

𝛼

)
.
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𝑅 − 𝑗∗

𝑡

𝑁 𝑡 𝑍 𝑡

slingshot
period

𝑈𝑛∗𝑈𝑗∗

𝑅

𝑅 − 𝑛∗

𝑈𝑛∗ +
1

𝛼

8 𝜎 + 1

𝑈𝑗∗ +
2

𝛼

slope = 𝜇𝑗∗

𝑇𝐴

Fig. 6. A visualization of the argument used to bound E [𝑇𝐴]. The solid red line represents the true value of
the number of busy servers 𝑍 (𝑡) during some accumulation phase. The dotted red line represents our upper
bound on 𝑍 (𝑡). The compound blue line represents the expected value of the number of jobs 𝑁 (𝑡), if we
assume the 𝑍 (𝑡) takes on the value of the previously mentioned upper bound. Note that our dotted upper
bound on 𝑍 (𝑡) is valid only until time 𝑇𝐴 . Note also that each horizontal line pictured is of length 1

𝛼 .

To bound E [𝑇𝐴], we condition on an event E. Before we can define E, we need to define two

quantities and two random variables. We begin with the quantities. Let 𝜎 ≜
√︃

𝑘𝜆
𝛼

represent the

standard deviation in the number of job arrivals over
1

𝛼
time. Let the critical threshold 𝑗∗ ≜

1

1/𝛼
1/𝜇 −1

(8𝜎 + 1). We give more intuition about these quantities later; for now, we define the random

variables. Let the hitting time𝑈 𝑗 ≜ min {𝑡 > 0 : 𝑍 (𝑡) = 𝑅 − 𝑗} be the first time the system has only

𝑅 − 𝑗 servers on. Let the slingshot index 𝑛∗ ≜ min

{
𝑗 ∈ 𝒁+

: 𝑈 𝑗+1 −𝑈 𝑗 >
1

𝛼

}
be the smallest value

of 𝑗 for which the ( 𝑗 + 1)-th hitting time𝑈 𝑗+1 occurs more than
1

𝛼
time away from its predecessor.

We now use these definitions to define the event E. Let E be the intersection of the following

three events:

• Let E1 be the event that 𝑛
∗ ≥ 𝑗∗. In other words, define 𝜂1 ≜ 𝑈𝑛∗ + 1

𝛼
and let

E1 ≜

{
𝑈 𝑗∗ +

1

𝛼
≤ 𝜂1

}
.

• Let E2 be the event that, in the
1

𝛼
time after 𝑈 𝑗∗ , the total number of jobs 𝑁 (𝑡) reaches

4𝜎 + 𝑅 + 1. In other words, let 𝜂2 ≜ min {𝑡 > 𝜂1 : 𝑁 (𝑡) ≥ 4𝜎 + 𝑅 + 1} and define

E2 ≜

{
𝜂2 ≤ 𝑈 𝑗∗ +

1

𝛼

}
.

• Let E3 be the event that, after reaching 𝑁 (𝜂2) = 4𝜎 + 𝑅 + 1, the total number of jobs

𝑁 (𝑡) stays above 𝑅 + 1 until the number of busy servers 𝑍 (𝑡) is at least 𝑅 + 1. Let 𝜂3 ≜
min {𝑡 ≥ 𝜂2 : 𝑍 (𝑡) ≥ 𝑅 + 1}. Then we can define E3 as

E3 ≜

{
𝜂3 ≤ 𝜂2 +

1

𝛼

}
.

We explain why this definition suffices. First, note that, if 𝑁 (𝑡) stays above 𝑅 + 1 for
1

𝛼
time,

then the (𝑅 + 1)-th server must finish setting up during that time, i.e. the stopping time

𝜂3 ≤ 𝜂2 + 1

𝛼
. Next, note that, if the number of jobs 𝑁 (𝑡) drops below 𝑅 + 1 before 𝑍 (𝑡) ≥ 𝑅 + 1,
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then it must be the case that 𝜂3 > 𝜂2 + 1

𝛼
, since it takes at least

1

𝛼
time before we can set up

another server.

We illustrate some of these critical time instants in Figure 6.

With the event E defined as such, it follows that

E [𝑇𝐴 |E] ≤ E [𝜂3 |E] ≤ E [𝜂2 |E] +
1

𝛼
≤ E [𝜂1 |E] +

1

𝛼
.

This implies

E [𝑇𝐴] = Pr (E) E [𝑇𝐴 |E] + Pr (E𝑐 ) E [𝑇𝐴 |E𝑐 ]

≤ Pr (E)
(
E [𝜂1 |E] +

1

𝛼

)
+ Pr (E𝑐 ) E [𝑇𝐴 |E𝑐 ]

≤ E [𝜂1] + Pr (E) 1
𝛼
+ Pr (E𝑐 ) E [𝑇𝐴 |E𝑐 ] .

We spend the rest of this section describing how we upper bound the probability Pr (E𝑐 ), upper
bound the expectation E [𝜂1], and upper bound the conditional expectation E [𝑇𝐴 |E𝑐 ]. Our upper
bound on E [𝑇𝐴 |E𝑐 ] will be larger than 1

𝛼
, so this will suffice to prove the claim.

Upper bound on Pr (E𝑐 ). We argue here that the probability Pr (E𝑐 ) is small, i.e. that the events

of E are likely. We do so by giving an intuitive explanation of the early dynamics of our system.

We begin by noting three facts:

• First, jobs arrive at rate 𝑘𝜆 and depart at rate 𝜇𝑍 (𝑡).
• Second, whenever the number of busy servers 𝑍 (𝑡) decreases, the number of jobs in queue

𝑄 (𝑡) must be 0, since we only turn off servers when there are no jobs available for them to

work on.

• Third, if at time 𝑡 ′ the number of busy servers 𝑍 (𝑡 ′) = 𝑅 − 𝑗 and the queue is empty, then,

for at least
1

𝛼
time afterwards, 𝑍 (𝑡) will be at most 𝑅 − 𝑗 , since no additional servers could

possibly set up during that time.

It follows from these facts that, in a sense, the system behaves like a slingshot: if the number of

busy servers decreases to 𝑅 − 𝑗 , then, for the next 1

𝛼
time, the system will accumulate jobs at rate

𝑘𝜆 − 𝜇𝑍 (𝑡) ≥ 𝜇 𝑗 . If the number of turned off servers 𝑗 was large enough, then, after this period, the

system will likely have a large number of jobs queued. If there are a large number of jobs queued

and the departure rate 𝜇𝑍 (𝑡) does not exceed the arrival rate 𝑘𝜆 (i.e. we are in the accumulation

phase), then it’s unlikely that the queue will empty before we turn the (𝑅 + 1)-th server on. We

visualize this chain of events in Figure 6. Nicely, because the events are based on the stopping times

𝑈 𝑗 , 𝜂1, 𝜂2 and 𝜂3, each event E𝑖 concerns the behavior of the system for
1

𝛼
after a state-determined

stopping time. This state information is precisely what makes it possible to bound each of Pr

(
E𝑐
𝑖

)
;

applying a union bound, we gain a bound for Pr (E𝑐 ).

Bound on E [𝜂1]. To bound E [𝜂1], we first describe 𝜂1 as the length of a sequence of stopped ran-

domwalks, then bound the expected length of each step in the sequence. Recall the definitions of the

hitting time𝑈 𝑗 = min {𝑡 > 0 : 𝑍 (𝑡) = 𝑅 − 𝑗}, the slingshot index𝑛∗ = min

{
𝑗 ∈ W : 𝑈 𝑗+1 −𝑈 𝑗 >

1

𝛼

}
,

and the stopping time 𝜂1 = 𝑈𝑛∗ + 1

𝛼
. One can describe 𝜂1 as the length of the following process,

which we call the slingshot period. Starting from time𝑈0 = 0, after each hitting time𝑈 𝑗 , we give

the system
1

𝛼
time to reach the next hitting time𝑈 𝑗+1. If the system succeeds, then the slingshot

period continues; if not, the period ends. We first observe that, during the 𝑗-th step in this process,

the behavior of the number of jobs 𝑁 (𝑡) is exactly the behavior of a biased random walk driven by
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a Poisson process, i.e. the time between each arrival/departure event is i.i.d. Exp(𝑘𝜆 + 𝜇 (𝑅 − 𝑗))
and is an arrival with probability 𝑝 = 𝑅

2𝑅− 𝑗
and a departure with probability 1 − 𝑝 =

𝑅− 𝑗

2𝑅− 𝑗
.

After making this observation, we use it to bound the expected contribution of each step in

the slingshot period. Let 𝑉𝑗 (𝑡), with 𝑉𝑗 (0) = 0, be the value of the Poisson-driven random walk

in the previous paragraph and let 𝜏 𝑗 = min

{
𝑡 > 0 : 𝑉𝑗 (𝑡) = −1

}
be the first passage time of the

continuous-time random walk𝑉𝑗 (𝑡). We first develop an upper bound on the tail of 𝜏 𝑗 (Lemma B.2),

then use that tail bound to bound both the probability that the 𝑗-th step occurs and the expected

contribution of the 𝑗-th step given that it does occur. Summing the expected contribution from

each step together, we find that, for some constant 𝐶4 independent of system parameters,

E [𝜂1] ≤
1

𝛼
+𝐶4

√︄
1

𝛼𝜇
≤ 2

𝛼
.

Upper bound on E [𝑇𝐴 |E𝑐 ]. To bound the conditional expectation E [𝑇𝐴 |E𝑐 ], we break 𝑇𝐴 | E𝑐

down into two terms, a stopping time𝜓 | E𝑐
and a remainder (𝑇𝐴 −𝜓 ) | E𝑐

. In particular, event

E describes a set of allowed initial system trajectories: all trajectories where 𝑍 (𝑡) reaches 𝑅 − 𝑗∗

quickly, the number of jobs in queue 𝑄 (𝑡) crosses some threshold, and the number of jobs stays

above 𝑅 + 1. Let the stopping time𝜓 be the first moment that the system deviates from that set of

allowed trajectories. With𝜓 defined, we have

E [𝑇𝐴 |E𝑐 ] = E [𝜓 |E𝑐 ] + E [𝑇𝐴 −𝜓 |E𝑐 ] .

We now discuss how to bound E [𝜓 |E𝑐 ], then give some brief insight into how we bound the

remainder E [𝑇𝐴 −𝜓 |E𝑐 ]. First, we argue that, if the event E𝑐
occurs, then 𝜓 < 3

𝛼
. This follows

from the fact that the length of every allowed trajectory is at most
3

𝛼
. In other words, if the first

deviation from the set of allowed trajectories has not occurred by
3

𝛼
, then it will never occur, i.e.

the event E𝑐
is first. This implies that𝜓 | E𝑐 < 3

𝛼
.

To bound the remainder E [𝑇𝐴 −𝜓 |E𝑐 ], we use a worst-case bound of the remainder over every

possible state S(𝜓 ). Let 𝑆𝜓 denote the set of all possible exit states S(𝜓 ). Using the Markovian

structure of the system, we obtain

E [𝑇𝐴 −𝜓 |E𝑐 ] =
∑︁
𝑠∈𝑆𝜓

Pr (S(𝜓 ) = 𝑠 |E𝑐 ) E [𝑇𝐴 −𝜓 |E𝑐 ∩ S(𝜓 ) = 𝑠]

=
∑︁
𝑠∈𝑆𝜓

Pr (S(𝜓 ) = 𝑠 |E𝑐 ) E [𝑇𝐴 −𝜓 |S(𝜓 ) = 𝑠]

≤ max

𝑠∈𝑆𝜓
E [𝑇𝐴 −𝜓 |S(𝜓 ) = 𝑠] .

We relax things further. Let 𝑆𝐴 be the set of all states consistent with being in the accumula-

tion phase, i.e. all states 𝑠 such that 𝑍 (𝑡) ≤ 𝑅. To upper bound the conditional expectation of

E [𝑇𝐴 −𝜓 |S(𝜓 ) = 𝑠] for every state in 𝑆𝜓 , we derive an upper bound on E [𝑇𝐴 − 𝑡 |S(𝑡) = 𝑠] that
applies to every state in 𝑆𝐴.

The full derivation of this bound is of course deferred to Appendix A; however, we explain here

the rough strategy, visualized in Figure 7. The key idea is to argue about the dynamics of the system

using only the total number of jobs 𝑁 (𝑡). First, we split all states in 𝑆𝐴 into 3 different buckets

based on their value of 𝑁 (𝑡), with each number of jobs being classified as high, medium, or low. In

particular, we call a number of jobs 𝑁 (𝑡) low if it is strictly less than 𝑅, call it high if that number

of jobs is above some threshold 𝑅 + 𝑀 (whose value we discuss later), and medium otherwise.

Then, for each bucket of states 𝐵, we give a bound on the worst-case expected remaining time
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high

𝑇𝐴 ends

w.p. ≥ 𝑝

w.p. ≤ 𝑞

w.p. ≥ 1 − 𝑝

w.p. ≤ 𝑝

w.p. ≈ 1 − 𝑞 − 𝑝

w.p. 1
low

medium

Fig. 7. A depiction of our method for bounding E [𝑇𝐴 − ℓ |S(ℓ) = 𝑠]. We partition a state’s number of jobs
𝑁 (𝑡) into three bins: low, medium, and high. We say that a state has a medium number of jobs if 𝑁 (𝑡) lies
in some range [𝑅, 𝑅 + 𝑀), a low number of jobs if 𝑁 (𝑡) < 𝑅, and a high number of jobs if 𝑁 (𝑡) ≥ 𝑅 + 𝑀 .
Each circle represents a bin of states (low, medium, or high), and each arrow represents a possible transition
between states, which occurs with the probability written alongside it. The single thin arrow represents a
step which takes at most ≈ 1

𝜇 time, in expectation. The remaining thick arrows represent steps which take at

most 1

𝛼 time.

max𝑠∈𝐵 E [𝑇𝐴 − 𝑡 |S(𝑡) = 𝑠] using the worst-case bounds of the other buckets. Roughly, it suffices

to show the following claims:

• In expectation, a low state becomes a medium state in ≈ 1

𝜇
time.

• With some probability 𝑝 depending on 𝑀 , a system beginning in a medium state enters a

high state within
1

𝛼
time.

• With probability at least 1−𝑝 , a system beginning in a high state completes the accumulation

phase within
1

𝛼
time.

By setting𝑀 appropriately, we guarantee that the probability 𝑝 is not too small and also not too

large (i.e., that 1 − 𝑝 is also not too small) and, by completing some casework, we arrive at a bound

on E [𝑇𝐴 − 𝑡 |S(𝑡) = 𝑠] which holds for any state 𝑠 that might occur in the accumulation phase. This

implies a bound E [𝑇𝐴 |E𝑐 ] and thus E [𝑇𝐴], completing the proof.

Bound on E [𝑇𝐵]. The right two terms of Lemma 5.1 correspond to an upper bound on E [𝑇𝐵]:

E [𝑇𝐵] ≤
1

𝛼
+ ℎ

(
𝐶2

𝜇
√
𝑅

𝛼

)
+ 𝐶3

𝜇
log

(
𝐶2

𝜇
√
𝑅

𝛼

)
We prove this bound in two steps. First, we give a concave function 𝑓 (𝑦) such that 𝑓 (𝑦) ≥
E [𝑇𝐵 |𝑄 (𝑇𝐴) = 𝑦], then use Jensen’s inequality to show

E [𝑇𝐵] = E [E [𝑇𝐵 |𝑄 (𝑇𝐴)]]
≤ E [𝑓 (𝑄 (𝑇𝐴))]
≤ 𝑓 (E [𝑄 (𝑇𝐴)]) .

Second, we show that E [𝑄 (𝑇𝐴)] ≤ 𝐶2

𝜇
√
𝑅

𝛼
. We describe each step in more detail below.

Bound on E [𝑇𝐵 |𝑄 (𝑇𝐴)]. We set out to show

E [𝑇𝐵 |𝑄 (𝑇𝐴) = 𝑦] ≤ 1

𝛼
+ 𝑦

𝜇𝑘 (1 − 𝜌) +
𝐶3

𝜇
(log(𝑦) + 1) ≜ 𝑓 (𝑦).
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We prove this bound via a stronger state-specific result. Before stating that result, we give some

necessary definitions and assumptions. Let 𝑆𝐵 = {𝑠 = (𝑧, 𝑞,𝒘) : 𝑧 ≥ 𝑅 + 1} be the set of all possible
states in the draining phase; these are the states we are bounding over. We consider the system at

some time ℓ < 𝑇𝐵 in some state S(ℓ) = 𝑠 = (𝑧, 𝑞,𝒘). Let 𝑣 ∈ Z+ ∪ 0 be the unique index such that

the number of jobs in the system 𝑛 = 𝑞 + 𝑧 lies somewhere in [2𝑣 + 𝑅, 2𝑣+1 + 𝑅). Note that such an

index must exist, since the total number of jobs in the system 𝑛 must be at least the number of jobs

being served 𝑧 ≥ 𝑅 + 1. Let 𝑧ℎ ≜ min (2𝑣 + 𝑅, 𝑘) be some “hoped for” number of busy servers, and

recall that𝑤𝑧ℎ is the remaining amount of setup time on the 𝑧ℎ-th server.

The stronger result is this: For any such state S(ℓ) = 𝑠 ∈ 𝑆𝐵 ,

E [𝑇𝐵 − ℓ |S(ℓ) = 𝑠] ≤ 𝑤𝑧ℎ + 𝑛 − 𝑧ℎ

𝜇 (𝑧ℎ − 𝑅) +
1

𝜇
(𝑣 + 1).

We prove this state-dependent result via induction on 𝑣 ≜ ⌊log𝑛 − 𝑅⌋. The base case is very simple:

in the case where 𝑍 (ℓ) = 𝑅 + 1 and 𝑄 (ℓ) = 0, the remaining time in the system 𝑇𝐵 − ℓ must be

stochastically dominated by the length of an M/M/1 busy period with arrival rate 𝑘𝜆 and departure

rate 𝜇 (𝑅 + 1) = 𝑘𝜆 + 𝜇. In the inductive case, we observe the system for𝑊𝑧ℎ (ℓ) time and condition

on whether 𝑁 (𝑡) ever dips below 2
𝑣 + 𝑅. The moment that it does, we can invoke our inductive

hypothesis. If the number of jobs 𝑁 (𝑡) never dips, then 𝑁 (𝑡) has stayed above 𝑧ℎ for enough time

that we can be sure at least 𝑧ℎ servers are on. Intuitively, having a large number of servers should

help us drain the queue very quickly. Unfortunately, if𝑁 (𝑡) never dips below 2
𝑣+𝑅, then the number

of jobs in our system 𝑁 (𝑡) is likely large. We use the observation that 𝑁 (𝑡) is a supermartingale to

bound the number of jobs in queue 𝑄 (𝑡) in this bad case. To complete the result, we couple the

original system at time ℓ +𝑤𝑧ℎ to an OFF system, a system that begins in the same state but can

only turn servers off.

Bound on E [𝑄 (𝑇𝐴)]. We now discuss the bound on the expected number of jobs in queue at the

end of the accumulation phase, 𝑄 (𝑇𝐴). The proof has two steps. In the first step, we show that

E [𝑄 (𝑇𝐴)] = 𝑂 (E [𝑅 − 𝑍 ∗] + 𝜎) ,
where 𝑍 ∗

is the minimal number of servers that are on during the accumulation phase and the

variation 𝜎 =

√︃
𝑘𝜆
𝛼
. In the second step, we upper bound E [𝑅 − 𝑍 ∗].

To upper bound E [𝑄 (𝑇𝐴)] using E [𝑅 − 𝑍 ∗], we condition on whether the number of jobs 𝑁 (𝑡)
exceeded 𝑅 + 4𝜎 + 1 near the end of the accumulation phase. If not, then clearly we can upper

bound 𝑄 (𝑇𝐴) by 4𝜎 . If 𝑁 (𝑡) did exceed that amount, we argue that the expected value of 𝑁 (𝑇𝐴) is
the conditional expectation of some stopped random walk, and that we can bound this conditional

expectation by making a martingale argument. Informally,

E [𝑄 (𝑇𝐴) |𝑁 (𝑡) gets large] ≤ 1

𝑝

(
4𝜎 + 1

𝛼
[maximal upward drift experienced by 𝑁 (𝑡)]

)
,

where the 𝑝 is a probability near 1 and the maximal upward drift is just 𝜇 (𝑅 − 𝑍 ∗).
To bound E [𝑅 − 𝑍 ∗], we hearken back to our bound on𝑇𝐴. In particular, we need to lower bound

the probability that, if we have just reached 𝑍 (𝑡) = 𝑅 − 𝑗 servers, then the accumulation phase

ends without the number of busy servers 𝑍 (𝑡) dropping lower than 𝑅 − 𝑗 . To do this, we argue that,

if the number of turned off servers 𝑗 is sufficiently large (≈
√
𝑅), then the probability we follow our

previously discussed path (up to 𝑁 (𝑡) = 4𝜎 + 𝑅 + 1 and onward) without turning off a server is at

least ≈ 1√
𝑅
. By analogy to a Geometric random variable, it follows that

E [𝑅 − 𝑍 ∗] = 𝑂

(√
𝑅

)
,
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Fig. 8. A visualization of our approach to bounding E
[∫ 𝑋

0
𝑄 (𝑡)d𝑡

]
.

which, since 𝜎 =

√︃
𝜇𝑅

𝛼
≪ 𝜇

√
𝑅

𝛼
, implies

E [𝑄 (𝑇𝐴)] ≤ 𝐶2

𝜇
√
𝑅

𝛼
.

Bound on E [𝑋 ]. This allows us to complete our bound on the length of the draining phase E [𝑇𝐵],
and in turn our bound on the cycle length E [𝑋 ]. Recalling that ℎ(𝑥) = 𝑥

𝜇𝑘 (1−𝜌 ) and using our

previous results E [𝑇𝐵 |𝑄 (𝑇𝐴)] and E [𝑄 (𝑇𝐴)], we obtain

E [𝑇𝐵] ≤
1

𝛼
+ ℎ

(
𝐶2

𝜇
√
𝑅

𝛼

)
+ 𝐶3

𝜇
log

(
𝐶2

𝜇
√
𝑅

𝛼

)
,

as desired. Combining our results on E [𝑇𝐴] and E [𝑇𝐵], we obtain Lemma 5.1,

E [𝑋 ] ≤ 𝐶1

(
3

𝛼

)
+ 1

𝛼
+ ℎ

(
𝐶2

𝜇
√
𝑅

𝛼

)
+ 𝐶3

𝜇
log

(
𝐶2

𝜇
√
𝑅

𝛼

)
.

5.2 Lower bound on expected reward E
[∫ 𝑋

0
𝑄 (𝑡)𝑑𝑡

]
Our lower bound on E

[∫ 𝑋

0
𝑄 (𝑡)𝑑𝑡

]
also makes use of the M/M/1 queue with arrival rate 𝑘𝜆 and

service rate 𝑘𝜇. Recall that 𝑔(𝑥) =
[
𝑥−1
2

+ 1

1−𝜌

]
𝑥

𝑘𝜇 (1−𝜌 ) denotes the expected time integral of the

number of jobs in system (in queue plus in service) during a busy period started by 𝑥 jobs in this

M/M/1 queue. Then our lower bound is given as Lemma 5.2.

Lemma 5.2 (Lower Bound on Expected Reward).

E

[∫ 𝑋

0

𝑄 (𝑡)d𝑡
]
≥ 1

2

(
1

𝛼

)
2

𝜇
√
𝑅

2

+ 𝑔
([( 𝜇

𝛼
− 1

) √
𝑅

2

− 𝑘 (1 − 𝜌)
]+)

.

We illustrate our reward bounds in Figure 8. The first term in Lemma 5.2 corresponds to the

area of Triangle I before the slingshot period plus
1

𝛼
, and the second term corresponds to the area

of Triangle II in the mini busy period. The initial dynamics of our system are like a slingshot, as

discussed in the previous subsection. During this period, servers are being turned off. As we turn

off servers, the upward drift in our number of jobs 𝑁 (𝑡) gets higher. Suppose we turn off 𝑛∗ = 𝑖

servers before we turn on servers in this initial period. Then when we start turning on servers, the

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 56. Publication date: December 2022.



56:18 Jalani K. Williams, Mor Harchol-Balter, and Weina Wang

number of jobs 𝑁 (𝑡) will, for at least 1

𝛼
time, drift upward at a rate of 𝜇𝑖 . The cumulative reward up

to the slingshot period plus
1

𝛼
then is lower bounded by the area of Triangle I, which is ≈ 1

2

(
1

𝛼

)
2

𝜇𝑖 .

Moreover, once we reach the time point that is the slingshot period plus
1

𝛼
, we have accumulated

roughly 𝜇𝑖 · 1

𝛼
+ 𝑅 − 𝑖 =

( 𝜇
𝛼
− 1

)
𝑖 + 𝑅 jobs, with at most

( 𝜇
𝛼
− 1

)
𝑖 + 𝑅 − 𝑘 jobs in the queue. The

fastest way we can get rid of these jobs is if all 𝑘 servers are working. Therefore, we consider an

M/M/1 queue with arrival rate 𝑘𝜆 and service rate 𝑘𝜇. Then the expected reward afterwards can be

lower bounded by the time integral of the number of jobs in the M/M/1 queue during a busy period

started by

( 𝜇
𝛼
− 1

)
𝑖 + 𝑅 − 𝑘 jobs. This lower bound corresponds to the area of Triangle II.

In our proof, we will lower bound the expected number of servers that get turned off during the

slingshot period by relating the number of jobs in queue to a continuous-time random walk.

We note here the scaling of the terms mentioned. As 𝑘 gets large, the dominating term will be

the first term, since
𝜇

𝛼

√
𝑅 ≤ 𝑘 (1 − 𝜌) for sufficiently large 𝑘 , making the last term go to 0.

6 LOWER BOUND ON EXPECTED REWARD
In this section, we prove the lower bound given in Lemma 5.2 on the expected reward E

[∫ 𝑋

0
𝑄 (𝑡)d𝑡

]
.

Recall that the renewal cycle starts with 𝑍 (0−) = 𝑅 + 1 and 𝑍 (0) = 𝑅. Our proof relies on the

following hitting times that we defined earlier. For convenience, let𝑈0 = 0, and we think of𝑈0 as

the first time for 𝑍 (𝑡) to reach 𝑅. Recall that we have defined

𝑈 𝑗 = min

{
𝑡 > 𝑈 𝑗−1 : 𝑍 (𝑡) = 𝑅 − 𝑗

}
, 𝑗 = 1, 2, . . . , 𝑅.

I.e.,𝑈 𝑗 is the first time that the number of busy servers reaches 𝑅 − 𝑗 . Note that by this construction,

we necessarily have that 𝑍 (𝑈 −
𝑗 ) = 𝑅 − 𝑗 + 1, 𝑍 (𝑈 𝑗 ) = 𝑅 − 𝑗 and 𝑄 (𝑈 𝑗 ) = 0. We have also defined

𝑛∗ = min

{
𝑗 ∈ Z+ : 𝑈 𝑗+1 −𝑈 𝑗 >

1

𝛼

}
. (14)

Let 𝑛∗ = 𝑅 when𝑈 𝑗+1 −𝑈 𝑗 ≤ 1

𝛼
for all 𝑗 = 0, 1, . . . , 𝑅 − 1 for convenience. Note that𝑈𝑛∗ + 1

𝛼
is then a

stopping time with respect to the process of the system state {S(𝑡) ≜ (𝑍 (𝑡), 𝑄 (𝑡),𝑾 (𝑡)) : 𝑡 ∈ R+}.
Based on these definitions, our proof of Lemma 5.2 consists of proving the following three claims,

where Claim 6.1 is used in proving Claims 6.2 and 6.3. Lemma 5.2 then follows immediately by

taking a sum of the lower bounds in Claims 6.2 and 6.3.

Claim 6.1. Consider the 𝑛∗ in (14) and recall that 𝑅 = 𝑘𝜌 . Then

E [𝑛∗] ≥ 1

2

√
𝑅.

Claim 6.2. The expected cumulative reward up to time𝑈𝑛∗ + 1

𝛼
is lower bounded as

E

[∫ 𝑈𝑛∗+ 1

𝛼

0

𝑄 (𝑡)d𝑡
]
≥ 1

2

(
1

𝛼

)
2

𝜇
√
𝑅

2

.

Claim 6.3. The expected cumulative reward after time𝑈𝑛∗ + 1

𝛼
is lower bounded as

E

[∫ 𝑋

𝑈𝑛∗+ 1

𝛼

𝑄 (𝑡)d𝑡
]
≥ 𝑔

([( 𝜇
𝛼
− 1

) √
𝑅

2

− 𝑘 (1 − 𝜌)
]+)

,

where recall that 𝑔(𝑥) =

[
𝑥−1
2

+ 1

1−𝜌

]
𝑥

𝑘𝜇 (1−𝜌 ) is the expected time integral of the number of jobs
during a busy period of the M/M/1 queue with arrival rate 𝑘𝜆 and service rate 𝑘𝜇.

We prove these three claims in the remainder of this section.
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6.1 Proof of Claim 6.1
Proof. We observe that 𝑛∗ ≥ 𝑖 is equivalent to𝑈 𝑗+1 −𝑈 𝑗 ≤ 1

𝛼
for all 𝑗 = 0, 1, . . . , 𝑖 − 1. Consider

any 𝑗 = 0, 1, . . . , 𝑖 − 1. Since 𝑍 (𝑈 𝑗 ) = 𝑛 − 𝑗 ,𝑄 (𝑈 𝑗 ) = 0, and no servers can finish setting up within a

time duration of
1

𝛼
, we can couple the queueing dynamics 𝑄 (𝑡) for 𝑡 ∈

[
𝑈 𝑗 ,𝑈 𝑗 + 1

𝛼

)
with a random

walk defined by two independent Poisson processes: (1) {𝑌𝑎 (𝑡) : 𝑡 ∈ R+} with rate 𝑘𝜆 = 𝜇𝑅, and (2)

{𝑌𝑑 (𝑡) : 𝑡 ∈ R+} with rate 𝑘𝜇 (𝑅− 𝑗). Let a randomwalk𝑄 𝑗 (𝑡) start from𝑄 𝑗 (0) = 0 and be defined as

𝑄 𝑗 (𝑡) = 𝑌𝑎 (𝑡) −𝑌𝑑 (𝑡). Let 𝜏 = min{𝑡 > 0 : 𝑄 𝑗 (𝑡) < 0}. Then we can couple the arrival and departure

processes of our system during the time interval

[
𝑈 𝑗 ,𝑈 𝑗 +min

{
1

𝛼
, 𝜏

})
with {𝑌𝑎 (𝑡) : 𝑡 ∈ R+} and

{𝑌𝑑 (𝑡) : 𝑡 ∈ R+} during
[
0,min

{
1

𝛼
, 𝜏

})
, respectively. As a result,

Pr

(
𝑈 𝑗+1 −𝑈 𝑗 ≤

1

𝛼

)
= Pr

(
𝜏 ≤ 1

𝛼

)
≥ 𝑅 − 𝑗

𝑅
𝑒−𝛾 ,

where 𝛾 = − 1

2
ln(1 − 𝑒−4) ≈ 0.009, and the inequality follows from Lemma B.2 in Appendix B.

Noting that𝑈 𝑗+1 −𝑈 𝑗 for 𝑗 = 0, 1, . . . , 𝑅 − 1 are independent, we get

Pr (𝑛∗ ≥ 𝑖) ≥ 𝑒−𝛾𝑖
𝑖−1∏
𝑗=0

𝑅 − 𝑗

𝑅
.

Continuing from the tail sum formula for expectation, we have

E [𝑛∗] =
𝑅∑︁
𝑖=1

Pr (𝑛∗ ≥ 𝑖)

≥
𝑅∑︁
𝑖=1

𝑒−𝛾𝑖
𝑖−1∏
𝑗=0

𝑅 − 𝑗

𝑅

=

𝑅∑︁
𝑖=1

𝑒−𝛾𝑖
𝑅!

(𝑅 − 𝑖)!𝑅𝑖

≥
𝑅−1∑︁
𝑖=1

𝑒−𝛾𝑖
(
1 + 𝑖

𝑅 − 𝑖

)𝑅−𝑖+ 1

2

𝑒−𝑖−
1

12 + 𝑒−𝛾𝑅
𝑅!

𝑅𝑅
(15)

≥ 𝑒−
1

12

𝑅−1∑︁
𝑖=1

𝑒−𝛾𝑖𝑒−
𝑖2

𝑅 , (16)

where (15) is obtained by applying Stirling’s lower and upper bounds to 𝑅! and (𝑅− 𝑖)!, respectively,
for 𝑖 = 1, 2, . . . , 𝑅 − 1; and (16) follows from the inequality (1 + 𝑥

𝑦
)𝑦 ≥ 𝑒

𝑦𝑥

𝑥+𝑦
and some simple

bounding. Notice that the form of the sum in (16) is similar to that of a Gaussian integral. We can

indeed lower-bound it by making use of the integral, thus obtaining the final bound as desired. We

refer the readers to Appendix C for the bounding and calculation details. □

6.2 Proof of Claim 6.2
Proof. We first write the expected cumulative reward up to time𝑈𝑛∗ + 1

𝛼
as

E

[∫ 𝑈𝑛∗+ 1

𝛼

0

𝑄 (𝑡)d𝑡
]

=

𝑅∑︁
𝑖=0

E

[∫ 𝑈𝑖+ 1

𝛼

0

𝑄 (𝑡)d𝑡
����� 𝑛∗ = 𝑖

]
· Pr (𝑛∗ = 𝑖)
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≥
𝑅∑︁
𝑖=0

E

[∫ 𝑈𝑖+ 1

𝛼

𝑈𝑖

𝑄 (𝑡)d𝑡
����� 𝑛∗ = 𝑖

]
· Pr (𝑛∗ = 𝑖)

=

𝑅∑︁
𝑖=0

E

[∫ 𝑈𝑖+ 1

𝛼

𝑈𝑖

𝑄 (𝑡)d𝑡
����� 𝑈1 −𝑈0 ≤

1

𝛼
, . . . ,𝑈𝑖 −𝑈𝑖−1 ≤

1

𝛼
,𝑈𝑖+1 −𝑈𝑖 >

1

𝛼

]
· Pr (𝑛∗ = 𝑖)

=

𝑅∑︁
𝑖=0

E

[∫ 𝑈𝑖+ 1

𝛼

𝑈𝑖

𝑄 (𝑡)d𝑡
����� 𝑈𝑖+1 −𝑈𝑖 >

1

𝛼

]
· Pr (𝑛∗ = 𝑖) (17)

To bound E
[∫ 𝑈𝑖+ 1

𝛼

𝑈𝑖
𝑄 (𝑡)d𝑡

��� 𝑛∗ = 𝑖

]
for each 𝑖 = 0, 1, . . . , 𝑅 − 1, we consider the same coupling

between

{
𝑄 (𝑡) : 𝑡 ∈

[
𝑈𝑖 ,𝑈𝑖 + 1

𝛼

)}
and

{
𝑄𝑖 (𝑡) : 𝑡 ∈

[
0, 1

𝛼

)}
as that in the proof of Claim 6.1. It is not

hard to see that{
𝑄 (𝑡) : 𝑡 ∈

[
𝑈𝑖 ,𝑈𝑖 +

1

𝛼

) ���� 𝑈𝑖+1 −𝑈𝑖 >
1

𝛼

}
𝑑
=

{
𝑄𝑖 (𝑡) : 𝑡 ∈

[
0,

1

𝛼

) ���� 𝑄𝑖 (𝑡) ≥ 0 for all 𝑡 ∈
[
0,

1

𝛼

)}
.

Therefore, by Lemma B.3 in Appendix B,

E

[∫ 𝑈𝑖+ 1

𝛼

𝑈𝑖

𝑄 (𝑡)d𝑡
����� 𝑈𝑖+1 −𝑈𝑖 >

1

𝛼

]
= E

[∫ 1

𝛼

0

𝑄𝑖 (𝑡)d𝑡
����� 𝑄𝑖 (𝑡) ≥ 0 for all 𝑡 ∈

[
0,

1

𝛼

)]
≥ 1

2

(
1

𝛼

)
2

𝜇𝑖.

Thus,

E

[∫ 𝑈𝑛∗+ 1

𝛼

0

𝑄 (𝑡)d𝑡
]
≥

𝑅∑︁
𝑖=0

1

2

(
1

𝛼

)
2

𝜇𝑖 · Pr (𝑛∗ = 𝑖)

=
1

2

(
1

𝛼

)
2

𝜇E [𝑛∗]

≥ 1

2

(
1

𝛼

)
2

𝜇
√
𝑅

2

,

where the last inequality follows from Claim 6.1. This completes the proof. □

6.3 Proof of Claim 6.3
Proof. We first write the expected cumulative reward after time𝑈𝑛∗ + 1

𝛼
as

E

[∫ 𝑋

𝑈𝑛∗+ 1

𝛼

𝑄 (𝑡)d𝑡
]

=

𝑅∑︁
𝑖=0

E

[∫ 𝑋

𝑈𝑖+ 1

𝛼

𝑄 (𝑡)d𝑡
����� 𝑛∗ = 𝑖

]
· Pr (𝑛∗ = 𝑖)

=

𝑅∑︁
𝑖=0

E

[
E

[∫ 𝑋

𝑈𝑖+ 1

𝛼

𝑄 (𝑡)d𝑡
����� S (

𝑈𝑖 +
1

𝛼

)
, 𝑛∗ = 𝑖

] ����� 𝑛∗ = 𝑖

]
· Pr (𝑛∗ = 𝑖)

=

𝑅∑︁
𝑖=0

E

[
E

[∫ 𝑋

𝑈𝑖+ 1

𝛼

𝑄 (𝑡)d𝑡
����� S (

𝑈𝑖 +
1

𝛼

)
,𝑈1 −𝑈0 ≤

1

𝛼
, . . . ,𝑈𝑖 −𝑈𝑖−1 ≤

1

𝛼
,𝑈𝑖+1 −𝑈𝑖 >

1

𝛼

] ����� 𝑛∗ = 𝑖

]
· Pr (𝑛∗ = 𝑖) .
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Note that 𝑈𝑖+1 − 𝑈𝑖 > 1

𝛼
is equivalent to 𝑍 (𝑡) ≥ 𝑛 − 𝑖 for all 𝑡 ∈

[
𝑈𝑖 ,𝑈𝑖 + 1

𝛼

]
. Therefore, since

𝑈𝑖 + 1

𝛼
is a stopping time, given the state S

(
𝑈𝑖 + 1

𝛼

)
, the queue length 𝑄 (𝑡) for 𝑡 ∈

[
𝑈𝑖 + 1

𝛼
, 𝑋

]
is

independent from𝑈1 −𝑈0 ≤ 1

𝛼
, . . . ,𝑈𝑖 −𝑈𝑖−1 ≤ 1

𝛼
,𝑈𝑖+1 −𝑈𝑖 >

1

𝛼
. Thus,

E

[∫ 𝑋

𝑈𝑛∗+ 1

𝛼

𝑄 (𝑡)d𝑡
]
=

𝑅∑︁
𝑖=0

E

[
E

[∫ 𝑋

𝑈𝑖+ 1

𝛼

𝑄 (𝑡)d𝑡
����� S (

𝑈𝑖 +
1

𝛼

)] ����� 𝑛∗ = 𝑖

]
· Pr (𝑛∗ = 𝑖) . (18)

We now construct a coupling to lower-boundE
[∫ 𝑋

𝑈𝑖+ 1

𝛼

𝑄 (𝑡)d𝑡
��� S (

𝑈𝑖 + 1

𝛼

) ]
for each 𝑖 = 0, 1, . . . , 𝑅.

Note that the number of busy servers in the system is always smaller than or equal to 𝑘 . So

we can construct an M/M/1 queue 𝑄 (𝑡) with arrival rate 𝑘𝜆, service rate 𝑘𝜇, and initial state

𝑄 (0) =
[
𝑁

(
𝑈𝑖 + 1

𝛼

)
− 𝑘

]+ ≤ 𝑄
(
𝑈𝑖 + 1

𝛼

)
, where the arrival process is coupled with the arrival

process in our system and the service process dominates the service process in our system. Let

𝑈 ∗ ≜ min{𝑡 ≥ 0 : 𝑄 (𝑡) = 0} be the end of the initial busy period. Then given S
(
𝑈𝑖 + 1

𝛼

)
, the queue

length 𝑄 (𝑡) in our system for each 𝑡 ∈
[
𝑈𝑖 + 1

𝛼
,𝑈𝑖 + 1

𝛼
+𝑈 ∗)

is lower bounded by 𝑄
(
𝑡 −𝑈𝑖 − 1

𝛼

)
,

and it can be verified that𝑈𝑖 + 1

𝛼
+𝑈 ∗ ≤ 𝑋 . Therefore,

E

[∫ 𝑋

𝑈𝑖+ 1

𝛼

𝑄 (𝑡)d𝑡
����� S (

𝑈𝑖 +
1

𝛼

)]
≥ E

[∫ 𝑈 ∗

0

𝑄 (𝑡)d𝑡
����� 𝑄 (0) =

[
𝑁

(
𝑈𝑖 +

1

𝛼

)
− 𝑘

]+]
= 𝑔

( [
𝑁

(
𝑈𝑖 +

1

𝛼

)
− 𝑘

]+)
.

Inserting the bound above back to (18) gives

E

[∫ 𝑋

𝑈𝑛∗+ 1

𝛼

𝑄 (𝑡)d𝑡
]
=

𝑅∑︁
𝑖=0

E

[
𝑔

( [
𝑁

(
𝑈𝑖 +

1

𝛼

)
− 𝑘

]+) ���� 𝑛∗ = 𝑖

]
· Pr (𝑛∗ = 𝑖) .

Consider the same coupling as that in the proof of Claim 6.2 for 𝑡 ∈
[
𝑈𝑖 ,𝑈𝑖 + 1

𝛼

)
. By Lemma B.3 in

Appendix B, we have that E
[
𝑁

(
𝑈𝑖 + 1

𝛼

) �� 𝑛∗ = 𝑖
]
=

𝜇

𝛼
𝑖 + 𝑅 − 𝑖 . Therefore,

E

[∫ 𝑋

𝑈𝑛∗+ 1

𝛼

𝑄 (𝑡)d𝑡
]
≥

𝑅∑︁
𝑖=0

𝑔

( [( 𝜇
𝛼
− 1

)
𝑖 − 𝑘 (1 − 𝜌)

]+)
· Pr (𝑛∗ = 𝑖)

= E
[
𝑔

( [( 𝜇
𝛼
− 1

)
𝑛∗ − 𝑘 (1 − 𝜌)

]+)]
≥ 𝑔

( [( 𝜇
𝛼
− 1

)
E [𝑛∗] − 𝑘 (1 − 𝜌)

]+)
= 𝑔

([( 𝜇
𝛼
− 1

) √
𝑅

2

− 𝑘 (1 − 𝜌)
]+)

,

where both inequalities follow from the convexity of the function 𝑔( [·]+), and the last equality

follows from Claim 6.1. This completes the proof. □

7 CONCLUSION AND FUTUREWORK
Summary. This paper is the first to analyze multiserver systems (M/M/k) with setup times, where

the setup time is Deterministic (M/M/k/Setup-Deterministic). We derive a lower bound on the

mean delay (waiting time) in the M/M/k/Setup-Deterministic, showing that the mean delay scales

as 1/
√
𝑘 , with the number of servers 𝑘 .
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Impact. Our work has three main takeaways. First, we show that, when modeling real systems

with large setup times, it is imperative that one models the effect of setup times. Our lower

bound proves that, when considering mean delay (waiting time), systems with setup exhibit a

fundamentally different scaling behavior than systems without setup (visualized in Figure 1). In

particular, the ratio of the delay of systems with setup and those without setup grows exponentially

in the number of servers, 𝑘 . Second, we demonstrate in simulation that the scaling behavior of

setup systems depends on the setup distribution. When setup times are large compared to service

times, modeling setup times as Exponential random variables (as was done in nearly all previous

theoretical work) tends to severely underestimate the detrimental effect of setup times on delay.

Third, our theoretical analysis suggests that the prevailing wisdom of “be very careful when turning

off servers” is well-founded. In our analysis, most of the waiting happens during the “accumulation

phase," which is a period where so many servers have been turned off that we enter a period of

transient instability, which doesn’t end until the Deterministic setup time completes. This motivates

the need to consider better policies for dealing with Deterministic setup times.

Future work. One natural direction of future work is creating an upper bound on delay to match

our existing lower bound. While our lower bound is important in that it gives us a lower bound

on the needed capacity, we need the upper bound to tell us whether our lower bound is close to

tight. Another direction of future work is the analysis of more sophisticated setup policies, that

avoid shutting off servers too aggressively just to turn them on again later. Several such policies

are discussed at the end of Section 2. Many of these policies are interested in both minimizing

mean delay and also minimizing power consumption. Unfortunately, these policies have only been

analyzed under Exponentially-distributed setup times. It would be interesting to study how their

performance is affected by Deterministic setup times.
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A UPPER BOUND ON CYCLE LENGTH
In this section, we prove our upper bound on the expected cycle lengthE [𝑋 ] in Lemma 5.1, whichwe

restate as LemmaA.1 below for ease of reference. Recall that, at time 0, the system is in the stateS(0)
where 𝑍 (0) = 𝑁 (0) = 𝑅. Recall also that the cycle length𝑋 = min {𝑡 > 0 : 𝑍 (𝑡−) = 𝑅 + 1, 𝑍 (𝑡) = 𝑅}
is the amount of time until we next turn off the (𝑅 + 1)-th server.

Lemma A.1 (Upper Bound on Cycle Length). Let 𝑋 be the cycle length defined in (9). Then for
three constants 𝐶1, 𝐶2, and 𝐶3 that do not depend on system parameters, we have

E [𝑋 ] ≤ 𝐶1

(
3

𝛼

)
+ 1

𝛼
+ ℎ

(
𝐶2

𝜇
√
𝑅

𝛼

)
+ 𝐶3

𝜇
log

(
𝐶2

𝜇
√
𝑅

𝛼

)
. (19)

As discussed, we split our analysis into two claims bounding E [𝑇𝐴] and E [𝑇𝐵]. We spend the

remainder of this section proving these claims.

Claim A.1. For any 1/𝛼
1/𝜇 > 1000 and 𝑅 > 128,

E [𝑇𝐴] ≤
(
1 − 7𝑒−4

) (
3

𝛼

)
+ 7𝑒−4

(
10

𝛼
+ 10

𝜇

)
.

Claim A.2. Let ℎ(𝑥) = 𝑥
𝑘𝜇 (1−𝜌 ) be the expected length of a busy period started by 𝑥 jobs in an M/M/1

with arrival rate 𝑘𝜆 and departure rate 𝑘𝜇. Let 𝑗∗ be the smallest index such that 𝜇

𝛼
𝑗∗ ≥ 8𝜎 + 𝑗∗ + 1,

where 𝜎 =

√︃
𝑘𝜆
𝛼
.

E [𝑇𝐵] ≤
1

𝛼
+

(
2

(1 − 𝑒−4)2

) [
4𝜎 + 1 + 3

𝜇
√
𝑅

𝛼

]
𝑘𝜇 (1 − 𝜌) + 2

𝜇
log

((
1

1 − 𝑒−4

)
2

[
4𝜎 + 1 + 3

𝜇
√
𝑅

𝛼

])
.

A.1 Proof of Claim A.1
We begin by showing the upper bound on E [𝑇𝐴]. We repeat the approach given in Section 5.
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To bound E [𝑇𝐴], we condition on an event E. Before we can define E, we need to define two

quantities and two random variables. We begin with the quantities. Let 𝜎 ≜
√︃

𝑘𝜆
𝛼

represent the

standard deviation in the number of job arrivals over
1

𝛼
time. Let the critical threshold 𝑗∗ ≜

1

1/𝛼
1/𝜇 −1

(8𝜎 + 1). We give more intuition about these quantities later; for now, we define the random

variables. Let the hitting time𝑈 𝑗 ≜ min {𝑡 > 0 : 𝑍 (𝑡) = 𝑅 − 𝑗} be the first time the system has only

𝑅 − 𝑗 servers on. Let the slingshot index 𝑛∗ ≜ min

{
𝑗 ∈ 𝒁+

: 𝑈 𝑗+1 −𝑈 𝑗 >
1

𝛼

}
be the smallest value

of 𝑗 for which the ( 𝑗 + 1)-th hitting time𝑈 𝑗+1 occurs more than
1

𝛼
time away from its predecessor.

We now use these definitions to define the event E. Let E be the intersection of the following

three events:

• Let E1 be the event that 𝑛
∗ ≥ 𝑗∗. In other words, define 𝜂1 ≜ 𝑈𝑛∗ + 1

𝛼
and let

E1 ≜

{
𝑈 𝑗∗ +

1

𝛼
≤ 𝜂1

}
.

• Let E2 be the event that, in the
1

𝛼
time after 𝑈 𝑗∗ , the total number of jobs 𝑁 (𝑡) reaches

4𝜎 + 𝑅 + 1. In other words, let 𝜂2 ≜ min {𝑡 > 𝜂1 : 𝑁 (𝑡) ≥ 4𝜎 + 𝑅 + 1} and define

E2 ≜

{
𝜂2 ≤ 𝑈 𝑗∗ +

1

𝛼

}
.

• Let E3 be the event that, after reaching 𝑁 (𝜂2) = 4𝜎 + 𝑅 + 1, the total number of jobs

𝑁 (𝑡) stays above 𝑅 + 1 until the number of busy servers 𝑍 (𝑡) is at least 𝑅 + 1. Let 𝜂3 ≜
min {𝑡 ≥ 𝜂2 : 𝑍 (𝑡) ≥ 𝑅 + 1}. Then we can define E3 as

E3 ≜

{
𝜂3 ≤ 𝜂2 +

1

𝛼

}
.

We explain why this definition suffices. First, note that, if 𝑁 (𝑡) stays above 𝑅 + 1 for
1

𝛼
time,

then the (𝑅 + 1)-th server must finish setting up during that time, i.e. the stopping time

𝜂3 ≤ 𝜂2 + 1

𝛼
. Next, note that, if the number of jobs 𝑁 (𝑡) drops below 𝑅 + 1 before 𝑍 (𝑡) ≥ 𝑅 + 1,

then it must be the case that 𝜂3 > 𝜂2 + 1

𝛼
, since it takes at least

1

𝛼
time before we can set up

another server.

We illustrate some of these critical time instants in Figure 6.

With the event E defined as such, it follows that

E [𝑇𝐴 |E] ≤ E [𝜂3 |E] ≤ E [𝜂2 |E] +
1

𝛼
≤ E [𝜂1 |E] +

1

𝛼
.

This implies

E [𝑇𝐴] = Pr (E) E [𝑇𝐴 |E] + Pr (E𝑐 ) E [𝑇𝐴 |E𝑐 ]

≤ Pr (E)
(
E [𝜂1 |E] +

1

𝛼

)
+ Pr (E𝑐 ) E [𝑇𝐴 |E𝑐 ]

≤ E [𝜂1] + Pr (E) 1
𝛼
+ Pr (E𝑐 ) E [𝑇𝐴 |E𝑐 ] .

We spend the rest of this section proving upper bounds on the probability Pr (E𝑐 ), the expectation
E [𝜂1], and the conditional expectation E [𝑇𝐴 |E𝑐 ]. Our upper bound on E [𝑇𝐴 |E𝑐 ] will be larger
than

1

𝛼
, so this will suffice to prove the claim. In particular, we prove the following claims.

Claim A.3. For the event E described above,

Pr (E𝑐 ) = Pr

(
E𝑐
1
∪ E𝑐

2
∪ E𝑐

3

)
≤ 7𝑒−4.
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Claim A.4. Recall the definitions of the hitting time𝑈 𝑗 = min {𝑡 > 0 : 𝑍 (𝑡) = 𝑅 − 𝑗}, the slingshot
index 𝑛∗ = min

{
𝑗 ∈ W : 𝑈 𝑗+1 −𝑈 𝑗 >

1

𝛼

}
, and the stopping time 𝜂1 = 𝑈𝑛∗ + 1

𝛼
. Then the expected

duration of the slingshot period 𝜂1 can be bounded as

E [𝜂1] ≤
1

𝛼
+𝐶4

1

√
𝛼𝜇

≤ 2

𝛼
.

Claim A.5. For the event E outlined above,

E [𝑇𝐴 |E𝑐 ] ≤ 5

(
2

𝛼
+ 1.01

𝜇

)
.

Clearly, these claims suffice to prove Claim A.1. We prove each in turn.

A.1.1 Proof of Claim A.3. To prove Claim A.3, we obtain upper bounds of ≈ 𝑒−4 for each probability
Pr

(
E𝑐
𝑖

)
, then apply a union bound.

Bound of Pr
(
E𝑐
1

)
. We begin by bounding the probability of event E1. Before we begin manipulat-

ing the probability Pr (E1) = Pr (𝑛∗ ≥ 𝑗∗), we describe the behavior of the system in a useful way.

Recall the definitions of the hitting time 𝑈 𝑗 = min {𝑡 > 0 : 𝑍 (𝑡) = 𝑅 − 𝑗} and the slingshot index

𝑛∗ = min

{
𝑗 ∈ 𝒁+

: 𝑈 𝑗+1 −𝑈 𝑗 >
1

𝛼

}
.

We begin by arguing that the slingshot period is actually a sequence of stopped random walks

in continuous time. First, we observe that each step 𝑗 in this process ends at a well-defined

stopping time min

(
𝑈 𝑗+1,𝑈 𝑗 + 1

𝛼

)
. Next, we show that the departure rate is static during each step.

As mentioned in the previous paragraph, since the queue is empty at every hitting time 𝑈 𝑗 and

each step has a maximum length of
1

𝛼
, the departure rate of the system can not increase during a

step. Furthermore, because no additional servers are set up during a step, every time we turn off a

server must be the first time we turn off that server. Since a step ends when a server is turned off, it

follows that, during each step, the number of busy servers 𝑍 (𝑡) (and thus the departure rate) stays

the same. Since the arrival rate is also fixed at 𝑘𝜆, during each step, the behavior of the number

of jobs 𝑁 (𝑡) during step 𝑗 is exactly the behavior of a biased discrete random walk driven by a

Poisson process, i.e. the time between each job arrival/departure is distributed Exp(2𝑘𝜆 − 𝜇 𝑗) and
is an arrival with probability 𝑝 = 𝑅

2𝑅− 𝑗
and a departure with probability 𝑞 = 1 − 𝑝 .

We now use this observation to prove our bound. Let 𝜏 𝑗 be the 1-to-0 first passage time in the

Poisson-driven random walk, like that discussed in the previous paragraph. Note that, due to the

Markovian structure of our system, the distribution of 𝜏 𝑗 (and, in fact,𝑈 𝑗+1 −𝑈 𝑗 ) is independent

of all other 𝜏𝑖 ’s (and (𝑈𝑖+1 − 𝑈𝑖 )’s, respectively) for 𝑖 ≠ 𝑗 . Applying this knowledge, along with

Lemma B.2, gives

Pr (𝑛∗ ≥ 𝑗∗) = Pr

(
∩𝑗∗−1
𝑖=0

{
𝑈𝑖+1 −𝑈𝑖 ≤

1

𝛼

})
= Pr

(
∩𝑗∗−1
𝑖=0

{
𝑈𝑖+1 −𝑈𝑖 ≤

1

𝛼

})
=

𝑗∗−1∏
𝑖=0

Pr

(
𝑈𝑖+1 −𝑈𝑖 ≤

1

𝛼

)
=

𝑗∗−1∏
𝑖=0

Pr

(
𝜏𝑖 ≤

1

𝛼

)
≥

𝑗∗−1∏
𝑖=0

𝑒−
7

𝜎

(
𝑅 − 𝑖

𝑅

)
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= 𝑒−
7

𝜎
𝑗∗ 1

𝑅 𝑗∗
𝑅!

(𝑅 − 𝑗∗)! .

Applying Stirling’s approximation,

1

𝑅 𝑗∗
𝑅!

(𝑅 − 𝑗∗)! ≥
1

𝑅 𝑗∗
𝑒−

1

12

(
𝑅

𝑒

)𝑅 (
𝑒

𝑅 − 𝑗∗

)𝑅− 𝑗∗
√︄

𝑅

𝑅 − 𝑗∗

≥ 𝑒−
1

12

(
1 + 𝑗∗

𝑅 − 𝑗∗

)𝑅− 𝑗∗+ 1

2

𝑒− 𝑗∗

≥ 𝑒−
1

12

(
1 + 𝑗∗

𝑅 − 𝑗∗

)𝑅− 𝑗∗

𝑒− 𝑗∗

≥ 𝑒−
1

12 𝑒 𝑗
∗− ( 𝑗∗ )2

𝑅 𝑒− 𝑗∗
(20)

= 𝑒−
1

12
− ( 𝑗∗ )2

𝑅 ,

wherewe havemade use of the inequality

(
1 + 𝑥

𝑦

)𝑦
≥ 𝑒

𝑥𝑦

𝑥+𝑦
. Note that 𝑗∗ = 8𝜎+1

𝜇

𝛼
−1 ≤

(
1000

998

)
(8.01)

√︃
𝛼
𝜇

√
𝑅,

thus,

Pr (𝑛∗ ≥ 𝑗∗) ≥ 𝑒−
3.5
𝜎
𝑗∗𝑒−

1

12
− ( 𝑗∗ )2

𝑅

≥ 𝑒−93
𝜇

𝛼 ≥ 𝑒−0.093,

which implies that

Pr

(
E𝑐
1

)
≤ 5𝑒−4.

Bound of Pr
(
E𝑐
2

)
. Recall that E2 is the event that, in the

1

𝛼
time after 𝑈 𝑗∗ , the total number of

jobs 𝑁 (𝑡) reaches 4𝜎 + 𝑅 + 1. We bound Pr

(
E𝑐
2

)
by constructing a coupled system with a smaller

number of jobs �̃� (𝑡), then proving the result for that system using martingale techniques.

We begin by constructing the coupled system �̃� (𝑡). Recall that, within 1

𝛼
of any hitting time𝑈 𝑗 ,

the departure rate 𝜇𝑍 (𝑡) can only decrease. Let 𝑌𝑎 (𝑡) be a Poisson process of rate 𝑘𝜆 and 𝑌𝑑 (𝑡) be a
Poisson process of rate 𝜇 (𝑅 − 𝑗∗). If we consider the system �̃� (𝑡) = 𝑅 − 𝑗 +𝑌𝑎 (𝑡 −𝑈 𝑗∗ ) −𝑌𝑑 (𝑡 −𝑈 𝑗∗ ),
then, by choosing the natural coupling, the departure rate of the original system is always greater

than the departure rate of the coupled system. Using the natural coupling, we maintain that the

number of jobs 𝑁 (𝑡) ≥ �̃� (𝑡) for 𝑡 ∈
[
𝑈 𝑗∗ ,𝑈 𝑗∗ + 1

𝛼

]
. As such, it suffices to show the result for the

coupled system.

To show the result for the coupled system, we use Doob’s submartingale inequality. First, note

that the coupled number of jobs �̃� (𝑡) = 𝑅 − 𝑗 + 𝑌𝑎 (𝑡 −𝑈 𝑗∗ ) − 𝑌𝑑 (𝑡 −𝑈 𝑗∗ ) is a submartingale, since

Poisson processes have independent increments, and the departure rate is smaller than the arrival

rate. Applying Doob’s submartingale inequality,

Pr

(
sup

𝑡 ∈[𝑈 𝑗∗ ,𝑈 𝑗∗+ 1

𝛼
]
𝑁 (𝑡) ≤ 4𝜎 + 𝑅 + 1

)
≤ Pr

(
sup

𝑡 ∈[𝑈 𝑗∗ ,𝑈 𝑗∗+ 1

𝛼

�̃� (𝑡) ≤ 4𝜎 + 𝑅 + 1

)
= Pr

(
sup

𝑡 ∈[0, 1
𝛼
]
𝑌𝑎 (𝑡) − 𝑌𝑑 (𝑡) ≤ 4𝜎 + 𝑗∗ + 1

)
≤ Pr

(
𝑌𝑎

(
1

𝛼

)
− 𝑌𝑑

(
1

𝛼

)
≤ 4𝜎 + 𝑗 + 1

)
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= Pr

(
exp

(
−𝜃

[
𝑌𝑎

(
1

𝛼

)
− 𝑌𝑑

(
1

𝛼

)] )
≥ exp (−𝜃 (4𝜎 + 𝑗 + 1))

)
For brevity, we let 𝑌 ∗

𝑎 ≜ 𝑌𝑎
(
1

𝛼

)
and 𝑌 ∗

𝑑
≜ 𝑌𝑑

(
1

𝛼

)
. Recall that, for any 𝑌 ∼ Poisson(𝜈) and any

real 𝜃 , the moment generating function E
[
𝑒𝜃𝑌

]
= exp

(
−𝜈 + 𝜈𝑒𝜃

)
, that E

[
𝑌 ∗
𝑎

]
= 𝑘𝜆

𝛼
= 𝜎2

, and that

E
[
𝑌 ∗
𝑑
− 𝑌 ∗

𝑎

]
= − 𝜇

𝛼
𝑗∗ = −(8𝜎 + 𝑗∗ + 1). Letting 𝜖 = 2

𝜎
and 𝜃 = ln(1 + 𝜖) ≤ 𝜖 , and noting that 𝑌 ∗

𝑑
and

𝑌 ∗
𝑎 are independent,

Pr

(
exp

(
−𝜃

[
𝑌𝑎

(
1

𝛼

)
− 𝑌𝑑

(
1

𝛼

)] )
≥ exp (−𝜃 (4𝜎 + 𝑗 + 1))

)
≤
E

[
𝑒−𝜃 (𝑌

∗
𝑎 )

]
E

[
𝑒𝜃 (𝑌

∗
𝑑
) ]

𝑒−𝜃 (4𝜎+𝑗∗+1)

≤ exp

(
−𝜎2 (1 − 𝑒−𝜃 ) − (𝜎2 − 𝜇 𝑗∗

𝛼
) (1 − 𝑒𝜃 ) + 𝜃 (4𝜎 + 𝑗∗ + 1)

)
≤ exp

(
−𝜎2 ( 𝜖

1 + 𝜖
) − (𝜎2 + 𝜇 𝑗∗

𝛼
) (−𝜖) + 𝜖 (4𝜎 + 𝑗∗ + 1)

)
= exp

(
𝜎2

𝜖2

1 + 𝜖
− 𝜖 (4𝜎)

)
≤ exp

(
𝜎2𝜖2 − 𝜖 (4𝜎)

)
≤ exp (−4) ,

as desired.

Bound on Pr

(
E𝑐
3

)
. Recall the definition of 𝜂2 = min {𝑡 > 𝜂1 : 𝑁 (𝑡) = 4𝜎 + 𝑅 + 1} as the first

moment after the slingshot period that 𝑁 (𝑡) reaches 4𝜎 +𝑅+1 and 𝜂3 = min {𝑡 > 𝜂2 : 𝑍 (𝑡) ≥ 𝑅 + 1}
as the first moment after 𝜂2 that occurs after the accumulation phase. To bound the probability of

the event E3 =
{
𝜂3 ≤ 𝜂2 + 1

𝛼

}
, we again make an argument based on a coupling to a martingale.

Just as in our bound for Pr

(
E𝑐
2

)
, upon reaching 𝑁 (𝜂2) = 4𝜎 + 𝑅 + 1, until the 𝑅 + 1-th server turns

on, we can lower bound the change in 𝑁 (𝑡) with the difference between two Poisson processes

𝑋𝑎 (𝑡) and 𝑋𝑑 (𝑡) of rate 𝑘𝜆 = 𝜇 (𝑅) again coupling each process with the arrival and departure

process of our original system. Without loss of generality, assume that, at time 𝑡 < 𝑇𝐴, we are in a

state S(𝑡) = 𝑠 with 𝑍 ≤ 𝑅 and 𝑁 = 4𝜎 + 𝑅 + 1. Let 𝛽 =𝑊𝑅+1 (𝑡) be the remaining setup time for the

𝑅 + 1-th server. Then, we show the following

Pr

(
inf

ℓ∈ (𝑡,𝑡+𝛽 ]
𝑁 (ℓ) < 𝑅 + 1

����S(𝑡) = 𝑠

)
≤ 𝑒−4 . (21)

Since we begin with 𝑁 (𝜂2) = 4𝜎 +𝑅 + 1, we must bound the probability that 𝑋𝑑 (ℓ) −𝑋𝑎 (ℓ) never
exceeds 4𝜎 for ℓ ∈ [𝜂2, 𝜂2 + 𝛽]; note that 𝑋𝑑 (ℓ) − 𝑋𝑎 (ℓ) is itself a martingale, since

E [𝑋𝑑 (𝑠 + 𝛿) − 𝑋𝑎 (𝑠 + 𝛿) |F𝑠 ] = 𝑋𝑑 (𝑠) + E [𝑋𝑑 (𝑠 + 𝛿) − 𝑋𝑑 (𝑠) |F𝑠 ] − 𝑋𝑎 (𝑠) − E [𝑋𝑎 (𝑠 + 𝛿) − 𝑋𝑎 (𝑠) |F𝑠 ]
= 𝑋𝑑 (𝑠) − 𝑋𝑎 (𝑠)

from the independent increments property. Note that E
[
𝑋𝑎 (𝑡 + 1

𝛼
)
]
= 𝑘𝜆

𝛼
= 𝜎2

. Proceeding with

our extended Chernoff bound, noting that 𝛽 ≤ 1

𝛼
,

Pr

(
inf

ℓ∈ (𝜂2,𝜂2+𝛽 ]
𝑁 (ℓ) < 𝑅 + 1

����S(𝜂2) = 𝑠

)
≤ Pr

(
inf

ℓ∈ (𝜂2,𝜂2+𝛽 ]
4𝜎 + 𝑅 + 1 + 𝑋𝑎 (ℓ) − 𝑋𝑑 (ℓ) < 𝑅 + 1

����S(𝜂2) = 𝑠

)
= Pr

(
sup

ℓ∈ (𝜂2,𝜂2+𝛽 ]
𝑋𝑑 (ℓ) − 𝑋𝑎 (ℓ) ≥ 4𝜎 + 1

)
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≤
E

[
𝑒𝜃𝑋𝑑 (𝛽+𝜂2 )

]
E

[
𝑒−𝜃𝑋𝑑 (𝛽+𝜂2 )

]
𝑒𝜃 (4𝜎+1)

= exp

(
𝜎2 (−2 + 𝑒𝜃 + 𝑒−𝜃 − 𝜃 (4𝜎 + 1)

)
.

Let 𝜃 = 2

𝜎
and note the inequalities 𝑒𝜃 + 𝑒−𝜃 = 2𝑐𝑜𝑠ℎ(𝜃 ) ≤ 𝑒

𝜃2

2 and 𝑒𝑥 ≥ 1

1−𝑥 . Proceeding,

exp

(
𝜎2 (−2 + 𝑒𝜃 + 𝑒−𝜃 − 𝜃 (4𝜎 + 1)

)
≤ exp

(
𝜎2 (−2 + 2𝑒

𝜃2

2 − 𝜃 (4𝜎 + 1)
)

≤ exp

(
𝜎2 (−2 + 2𝑒

𝜃2

2 − 𝜃 (4𝜎 + 1)
)

≤ exp

(
𝜎2 (−2 + 2

(
1

1 − 𝜃 2

2

)
− 𝜃 (4𝜎 + 1)

)
,

which, after simplification, becomes ≤ 𝑒−4. Note the last line holds for 𝜎 > 9 >
√
18 + 4.

Combining the bounds. Now, applying a union bound over the events E𝑐
1
, E𝑐

2
, and E𝑐

3
,

Pr

(
E𝐶

)
≤ Pr

(
𝐸𝑐
1

)
+ Pr

(
𝐸𝑐
2

)
+ Pr

(
𝐸𝑐
3

)
≤ 7𝑒−4.

A.1.2 Proof of Claim A.4. We now bound the expected length of the slingshot period E [𝜂1].
Recall the definitions of the hitting time 𝑈 𝑗 = min {𝑡 > 0 : 𝑍 (𝑡) = 𝑅 − 𝑗}, the slingshot index

𝑛∗ = min

{
𝑗 ∈ 𝒁+

: 𝑈 𝑗+1 −𝑈 𝑗 >
1

𝛼

}
, and the stopping time 𝜂1 = 𝑈𝑛∗ + 1

𝛼
. We prove this result by

using the randomwalk tools developed in the proof of Claim A.3 to bound the expected contribution

of each step in the slingshot period.

We first describe the expected contribution of each step, then bound this expected contribution,

then sum these bounds across all steps. To begin, note that the 𝑗-th step, if it occurs, takes time

min

(
𝑈 𝑗+1 −𝑈 𝑗 ,

1

𝛼

)
, and that the length of this step is independent of the previous system history.

Thus, the expected contribution of the 𝑗-th step is

Pr ( 𝑗-th step occurs) E
[
min

(
𝑈 𝑗+1 −𝑈 𝑗 ,

1

𝛼

)]
= Pr (𝑛∗ ≥ 𝑗) E

[
min

(
𝑈 𝑗+1 −𝑈 𝑗 ,

1

𝛼

)]
.

For the bound on Pr (𝑛∗ ≥ 𝑗), note that

Pr (𝑛∗ ≥ 𝑗) =
𝑗−1∏
𝑖=0

Pr

(
𝜏 𝑗 ≤

1

𝛼

)
≤

𝑗−1∏
𝑖=0

Pr

(
𝜏 𝑗 ≤ ∞

)
=

𝑗−1∏
𝑖=0

𝑅 − 𝑖

𝑅

≤ 𝑒−
1

𝑅

∑𝑗−1
𝑖=0

𝑖

= 𝑒−
𝑗 ( 𝑗−1)
2𝑅

For the bound on E
[
𝜏 𝑗 ∧ 1

𝛼

]
, first note that E

[
𝜏 𝑗 ∧ 1

𝛼

]
=

∫ 1

𝛼

0
Pr

(
𝜏 𝑗 > 𝑥

)
d𝑥 . Applying our bound

on the tail from Lemma B.2,

E

[
𝜏 𝑗 ∧

1

𝛼

]
=

∫ 1

𝛼

0

Pr

(
𝜏 𝑗 > 𝑥

)
d𝑥
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=

∫ 1

𝛼

0

min

((
1 − 𝑅 − 𝑗

𝑅

)
+ 𝐶
√
𝑘𝜆𝑥

, 1

)
d𝑥

=
𝐶2

𝑘𝜆
+

(
𝑗

𝑅

) [
1

𝛼
− 𝐶2

𝑘𝜆

]
+

∫ 1

𝛼

𝐶2

𝑘𝜆

𝐶
√
𝑘𝜆𝑥

d𝑥

≤ 𝐶2

𝑘𝜆
+

(
𝑗

𝑅

) [
1

𝛼
− 𝐶2

𝑘𝜆

]
+

[
2𝐶

√
𝑥

√
𝑘𝜆

] 1

𝛼

𝐶2

𝑘𝜆

=
𝐶2

𝑘𝜆
+

(
𝑗

𝑅

) [
1

𝛼
− 𝐶2

𝑘𝜆

]
+

[
2𝐶
√
𝑅

√︄
1

𝜇𝛼
− 2𝐶2

𝑘𝜆

]
≤ 𝑗

𝑅

1

𝛼
+ 2𝐶
√
𝑅

√︄
1

𝜇𝛼
.

Now we split the last two terms and then sum them individually.

𝑅∑︁
𝑗=0

Pr (𝑛∗ ≥ 𝑗) E
[
𝜏 𝑗 ∧

1

𝛼

]
≤

𝑅∑︁
𝑗=0

[
𝑗

𝑅

1

𝛼
+ 2𝐶
√
𝑅

√︄
1

𝜇𝛼

]
𝑗−1∏
𝑖=0

𝑅 − 𝑖

𝑅

=
1

𝛼

𝑅∑︁
𝑗=0

𝑗

𝑅

𝑗−1∏
𝑖=0

𝑅 − 𝑖

𝑅
+ 2𝐶
√
𝑅

√︄
1

𝜇𝛼

𝑅∑︁
𝑗=0

𝑗−1∏
𝑖=0

𝑅 − 𝑖

𝑅

=
1

𝛼
+ 2𝐶
√
𝑅

√︄
1

𝜇𝛼

𝑅∑︁
𝑗=0

𝑗−1∏
𝑖=0

𝑅 − 𝑖

𝑅

≤ 1

𝛼
+ 2𝐶
√
𝑅

√︄
1

𝜇𝛼

𝑅∑︁
𝑗=0

𝑒−
1

2𝑅
𝑗 ( 𝑗−1)

=
1

𝛼
+ 2𝐶
√
𝑅

√︄
1

𝜇𝛼

𝑅∑︁
𝑗=0

𝑒−
1

2𝑅 ( ( 𝑗− 1

2
)2− 1

4
) .

Turning the sum into an integral,

𝑅∑︁
𝑗=0

𝑒−
1

2𝑅 ( ( 𝑗− 1

2
)2− 1

4
) ≤ 2 +

∫ 𝑅

1

𝑒−
1

2𝑅 ( (𝑥− 1

2
)2− 1

4
)
d𝑥 ≤ 2 + 1

2

√
2𝜋𝑅.

Substituting this into our previous formula, we obtain

𝑅∑︁
𝑗=0

Pr (𝑛∗ ≥ 𝑗) E
[
𝜏 𝑗 ∧

1

𝛼

]
≤ 1

𝛼
+ 2𝐶
√
𝑅

√︄
1

𝜇𝛼

𝑅∑︁
𝑗=0

𝑒−
1

2𝑅 ( ( 𝑗− 1

2
)2− 1

4
)

≤ 1

𝛼
+ 2𝐶
√
𝑅

√︄
1

𝜇𝛼

[
2 + 1

2

√
2𝜋𝑅

]
≤ 1

𝛼
+ 3𝐶
√
𝛼𝜇

,

where in the last step we have used that the offered load 𝑅 ≥ 100. For 𝐶 = 7 and
1/𝛼
1/𝜇 > 1000, we

obtain

E [𝜂1] ≤
2

𝛼
.
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A.1.3 Proof of Claim A.5. We prove Claim A.5 by showing that, from any state 𝑠 , with probability

1

5
the residual time 𝑇𝐴 − 𝑡 ≤ 2

𝛼
+ 1.01

𝜇
. The argument comes down to two simple subclaims.

(1) For any state S(𝑡) = 𝑠1 with 𝑍 ≤ 𝑅 and 𝑁 ≥ 𝑅,

Pr

(
𝑇𝐴 − 𝑡 <

2

𝛼

����S(𝑡) = 𝑠1

)
≥ 1

5

.

(2) Consider the alternative case, where state S(𝑡) = 𝑠2 with 𝑍 < 𝑁 < 𝑅 − 1. Given 𝑡 , let

𝑇𝑅 = inf {ℓ > 0 : 𝑁 (𝑡 + ℓ) = 𝑅} be the first time you return to 𝑁 (𝑡 +𝑇𝑅) = 𝑅. Then

E [𝑇𝑅 |S(𝑡) = 𝑠2] ≤
1.01

𝜇
. (22)

Before proving these subclaims, we complete the proof of the main claim. Without loss of generality,

consider a state S(𝑡) with 𝑁 ≥ 𝑅. Conditioning on whether 𝑁 stays above 𝑅 + 1,

E [𝑇𝐴 − 𝑡 |S(𝑡) = 𝑠] ≤
(
2

𝛼
+ 1.01

𝜇

)
+ 1

5

(0) + 4

5

(
1.01

𝜇
+ E [𝑇𝐴 −𝑇𝑅]

)
≤ 5

[
2

𝛼
+ 2

𝜇

]
,

where we’ve used the slack in our estimate of
1

5
to clean up the 1.01.

We now prove each subclaim in turn.

First subclaim. We prove this again through a coupling argument. Consider two competing

independent Poisson processes of rate 𝑘𝜆, 𝑋𝑎 (ℓ) and 𝑋𝑑 (ℓ), with 𝑋𝑎 (𝑡) = 𝑋𝑑 (𝑡). As we argued
before, the change in 𝑁 can be lower bounded by the change in 𝑋𝑎 (ℓ) − 𝑋𝑑 (ℓ). By symmetry,

Pr

(
sup

𝑡 ∈[0, 1
𝛼
]
𝑋𝑎 (𝑡) − 𝑋𝑑 (𝑡) > 𝐶

)
= Pr

(
inf

𝑡 ∈[0, 1
𝛼
]
𝑋𝑎 (𝑡) − 𝑋𝑑 (𝑡) < −𝐶

)
,

for any𝐶 . Fix𝐶 and call this probability 𝑝1. Then the probability that 𝑁 (ℓ) reaches 𝑁 (ℓ) +𝐶 +1 in 1

𝛼

time is 𝑝1, and the probability that, after reaching 𝑁 (ℓ) +𝐶 + 1, it does not come back down to 𝑁 (ℓ)
in

1

𝛼
time is (1 − 𝑝1). All that remains is to show that there exists some 𝐶 such that 𝑝1 (1 − 𝑝1) ≥ 1

5
.

To see this, note that, by Poisson splitting, this supremum is essentially the supremum of an

unbiased discrete random walk 𝑉 ( 𝑗) with a random number of steps 𝑇 ∼ Poisson(2𝑘𝜆
𝛼
). Let

𝑝
(𝑇 )
𝐶

= Pr

(
sup

1≤𝑖≤𝑇 𝑉 (𝑖) > 𝐶
)
be the probability that 𝑉 (𝑖) reaches 𝐶 in 𝑇 steps. By conditioning

on the first outcome, we can see that, for 𝐶 ≥ 0

𝑝
(𝑇 )
𝐶

=
1

2

𝑝
(𝑇−1)
𝐶−1 + 1

2

𝑝
(𝑇−1)
𝐶+1

≤ 1

2

𝑝
(𝑇 )
𝐶−1 +

1

2

𝑝
(𝑇 )
𝐶+1;

It follows that the differences 𝑝
(𝑇 )
𝐶−1 − 𝑝

(𝑇 )
𝐶

are decreasing with 𝐶 . To complete the proof we need

only show that 𝑝
(𝑇 )
𝐶−1 − 𝑝

(𝑇 )
𝐶

does not decrease too quickly. One can easily verify that the supremum

is > 1 with probability > 1

2
. It follows from the previous property that, since at least two points are

above
1

2
(including 0), there must exist a point with 𝑝 (1 − 𝑝) ≥ 1

3

2

3
≥ 1

5
.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 56. Publication date: December 2022.



The M/M/k with Deterministic Setup Times 56:31

Second subclaim. We prove this subclaim via an analogy to the𝑀/𝑀/1. Consider a state with
𝑁 (𝑡) = 𝑅 − 𝑖 . Then the number of busy servers 𝑍 (𝑡) ≤ 𝑅 − 𝑖 . Now consider a flipped system, where

arrivals occur at rate 𝑍 (𝑡) and departures occur at rate 𝑘𝜆. We desire the expected time of the busy

period in this flipped system. With some probability, we finish within
1

𝛼
time. If we do, our expected

time must be ≤ 1

𝜇
, via a coupling argument. Moreover, the probability that such a busy period lasts

longer than
1

𝛼
is ≤ 𝛼

𝜇
, by Markov’s inequality. It follows that the expected time to return is

E [𝜏→𝑅] ≤
1

𝜇
+ 𝛼

𝜇
E [𝜏→𝑅] ≤

1

𝜇 − 𝛼

≤ 1.01

𝜇
,

for
𝜇

𝛼
> 100. This completes the proof.

A.2 Proof of Claim A.2
Recall that 𝑇𝐵 = min {𝑡 > 0 : 𝑍 (𝑇𝐴 + 𝑡) = 𝑅} is the next time the 𝑅 + 1th server is turned off. Recall

that 𝑗∗ is the smallest index such that
𝜇

𝛼
𝑗∗ ≥ 8𝜎 + 𝑗∗ + 1. We now prove Claim A.2, which states that

E [𝑇𝐵] ≤
1

𝛼
+

(
2

(1 − 𝑒−4)2

) [
4𝜎 + 1 + 𝜇

𝛼
3

√
𝑅

]
𝑘𝜇 (1 − 𝜌) + 2

𝜇
log

((
1

1 − 𝑒−4

)
2 [

4𝜎 + 1 + 𝜇

𝛼
3

√
𝑅

] )
,

where ℎ(𝑦) is the length of a busy period started by 𝑦 jobs. To prove the claim, we first give an

upper bound on the conditional expectation E [𝑇𝐵 |S(𝑇𝐴) = 𝑠] for any state 𝑠 with 𝑄 (𝑇𝐴) = 𝑥 ; note

that 𝑍 (𝑇𝐴) = 𝑅 + 1 by definition. After proving that bound, we give an upper bound on E [𝑄 (𝑇𝐴)],
by relating it to E

[
inf𝑡 ∈ (0,𝑇𝐴 ) 𝑍 (𝑡)

]
. More specifically, we show the following claims.

Claim A.6. Let S(𝑇𝐴) = 𝑠 be a state with 𝑄 (𝑇𝐴) = 𝑥 . Then,

E [𝑇𝐵 |S(𝑇𝐴) = 𝑠] ≤ 1

𝛼
+ 2

𝑥

𝑘𝜇 (1 − 𝜌) + 2

log(𝑥)
𝜇

.

Claim A.7. Recall that 𝑇𝐴 = min {𝑡 > 0 : 𝑍 (𝑡) = 𝑅 + 1}. Let 𝑍 ∗ = inf𝑡 ∈ (0,𝑇𝐴 ) 𝑍 (𝑡) be the minimal

number of busy servers reached during a cycle. Recall that 𝜎 =

√︃
𝑘𝜆
𝛼
. Then

E [𝑄 (𝑇𝐴)] ≤
1

1 − 𝑒−4

[
4𝜎 + 𝜇

𝛼
E [𝑅 − 𝑍 ∗]

]
.

Claim A.8. Recall that 𝑍 ∗ = inf𝑡 ∈ (0,𝑇𝐴 ) 𝑍 (𝑡) is the minimal number of busy servers reached during
a cycle.

E [𝑅 − 𝑍 ∗] ≤ (2 + 1

1 − 𝑒−4
)
√
𝑅 ≤ 3

1 − 𝑒−4
√
𝑅,

Combined these claims clearly give way to Claim A.6. We devote the remainder of this section

to their proofs.

A.2.1 Proof of Claim A.6. Recall that Claim A.6 says that, given a state S(𝑇𝐴) = 𝑠 with 𝑄 (𝑇𝐴) = 𝑥 ,

E [𝑇𝐵 |S(𝑇𝐴) = 𝑠] ≤ 1

𝛼
+ 2

⌈log(𝑥)⌉ + 1

𝜇
+ 𝑥

𝜇𝑘 (1 − 𝜌)
Note that the same bound must also hold for the conditional expectation E [𝑇𝐵 |𝑄 (𝑇𝐴) = 𝑥].

Proof. We prove this via casework and induction. There are two major cases, based on whether

𝑥 ≤ 𝑘 (1 − 𝜌). Before discussing the major cases, we treat the base case, when 𝑥 = 1.
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Base case. In the base case, the system is in a state where𝑄 (𝑡) = 1. The number of jobs 𝑁 (𝑡) here
is upper bounded by a the number of jobs in a system where servers can only turn off; denote these

with a hat and a subscript OFF. The expected time remaining time before �̂�OFF (𝑡) = 𝑍OFF (𝑡) = 𝑅 is

simply the length of two M/M/1 busy periods, where the arrival rate is 𝑘𝜆 and the service rate is

𝜇 (𝑅 + 1) = 𝑘𝜆 + 𝜇. Thus, the expected remaining time in this over system is precisely
2

𝜇
.

Case 1: 𝑥 ≤ 𝑘 (1 − 𝜌). Without loss of generality, assume 𝑥 ∈ [2𝑙−1, 2ℓ ], and let 𝛽 =𝑊𝑅+2ℓ−1 be
the remaining setup time for the (𝑅 + 2

ℓ−1)-th server. In this case, we show that

E [𝑇𝐵 |S(𝑇𝐴) = 𝑠] ≤ 𝛽 + 2

log(𝑥) + 1

𝜇

Assume inductively that, for any state S(𝑇𝐴 + 𝑡) = 𝑠2 with𝑄 (𝑇𝐴 + 𝑡) = [2ℓ−2, 2ℓ−1), number of busy

servers 𝑍 (𝑇𝐴 + 𝑡) ≥ 𝑅 + 1, and for𝑊𝑅+2ℓ−1 ≤ 𝛽 − 𝛾 , we know that

E [𝑇𝐵 − 𝑡 |S(𝑇𝐴 + 𝑡) = 𝑠2] ≤ 𝛽 − 𝛾 + 2

ℓ

𝜇
.

Without loss of generality, call the current time 0. Let 𝜏 = min

{
𝑡 > 0 : 𝑁 (𝑡) ≤ 2

ℓ−1 + 𝑅
}
. We case

on whether 𝜏 < 𝛽 .

Consider the case where 𝜏 < 𝛽 . After 𝜏 time, the system has 𝑁 (𝜏) = 2
ℓ−1 +𝑅 +1 and we can apply

our inductive hypothesis, with𝑊𝑅+1+2ℓ−2 ≤ 𝛽 − 𝜏 . From that hypothesis, the remaining expected

time from this point is ≤ 𝛽 − 𝜏 + 2
ℓ
𝜇
.

Now, consider the case 𝜏 ≥ 𝛽 . Using martingale arguments, we bound the combined conditional

expectation

𝑃𝑟 (𝜏 ≥ 𝛽)E [remaining time|𝜏 ≥ 𝛽] ≤ 2

𝜇
+ Pr

(
𝜏spec = 𝛽

) [
𝛽 + 2ℓ

𝜇

]
.

Define 𝜏spec = min {𝜏, 𝛽}; then 𝜏spec is a.s. bounded (by 𝛽). Note that, until the number of busy

servers 𝑍 becomes less than 𝑅 (which must happen after time 𝛽), the number of jobs 𝑁 (𝑡) is
a supermartingale, i.e., it has negative drift in a strong sense. From Doob’s Optional Stopping

Theorem, it follows that

E [𝑁 (0)] ≥ E
[
𝑁 (𝜏spec)

]
≥ Pr

(
𝜏spec = 𝛽

)
E

[
𝑁 (𝜏spec)

��𝜏spec ≤ 𝛽
]
.

We bound the conditional remaining time by considering a coupled system, which decomposes

into a sequence of M/M/1 busy periods. Consider a coupled system where servers can only turn

OFF from this point onward. Then the number of jobs in this coupled system �̂�OFF ≥ 𝑁 , meaning

that the time until the cycle ends (𝑍OFF = �̂�OFF = 𝑅) in the coupled system is strictly larger than

in the original system. Let 𝐵𝑃 (𝑎, 𝑏, 𝑐) denote the expected length of an M/M/1 busy period with

arrival rate 𝑎, service rate 𝑏, and initial number of jobs 𝑐 . Then 𝐵𝑃 (𝑎, 𝑏, 𝑐) = 𝑐
𝑏−𝑎 . It is direct that

E [remaining time original system]
≤ E [remaining time in OFF system]

= 𝐵𝑃 (𝑘𝜆, 𝜇 (𝑅 + 2
ℓ−1), 𝑦) +

2
ℓ−1∑︁
𝑗=1

𝐵𝑃 (𝑘𝜆, 𝜇 (𝑅 + 𝑖), 1)

=
𝑦

𝜇2ℓ−1
+

2
ℓ−1∑︁
𝑗=1

1

𝜇𝑖

=
𝑦

𝜇2ℓ−1
+ 𝐻

2
ℓ−1

𝜇
.
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It follows that

Pr

(
𝜏spec = 𝛽

)
E

[
remaining time

��𝜏spec = 𝛽
]

≤ Pr

(
𝜏spec = 𝛽

) [
𝛽 +
E

[
𝑁 (𝜏spec)

��𝜏spec = 𝛽
]

𝜇2ℓ−1
+ 𝐻

2
ℓ−1

𝜇
.

]
≤ E [𝑁 (0)]

𝜇2ℓ−1
+ Pr

(
𝜏spec = 𝛽

) [
𝛽 + 𝐻

2
ℓ−1

𝜇

]
≤ 2

𝜇
+ Pr

(
𝜏spec = 𝛽

) [
𝛽 + 2ℓ

𝜇

]
Combining the two cases, we find that, for any state 𝑠 such that 𝑍 ≥ 𝑅 + 1, 2

ℓ−1 + 𝑅 ≤ 𝑁 < 2
ℓ + 𝑅],

and𝑊𝑅+2ℓ−1 = 𝛽 ,

E [remaining time|S(0) = 𝑠] ≤ Pr

(
𝜏spec < 𝛽

) [
𝜏spec + 𝛽 − 𝜏spec +

ℓ

𝜇

]
+ 2

𝜇
+ Pr

(
𝜏spec = 𝛽

) [
𝛽 + 2ℓ

𝜇

]
= 𝛽 + 2

ℓ + 1

𝜇
,

≤ 1

𝛼
+ 2

⌈log(𝑥)⌉ + 1

𝜇

as desired.

Second case: 𝑥 > 𝑘 (1 − 𝜌). To handle this case, we use an exactly analogous argument as the

inductive case above, except that we define 𝜏spec = min {𝑡 > 0 : 𝑁 (𝑡) ≤ 𝑘} and set 𝛽 =𝑊𝑘 . Casing

on whether 𝜏spec < 𝛽 , we find that, if 𝜏spec < 𝛽 , then the expected conditional remaining time

≤ 𝜏spec +
(
𝛽 − 𝜏spec + 2

⌈log(𝑘 (1−𝜌 ) ⌉+1
𝜇

)
. In the other case, if 𝜏spec ≥ 𝛽 , then we again couple to the

OFF system. This gives that

E
[
remaining time;𝜏spec = 𝛽

]
≤ +𝑥 − 𝑘 (1 − 𝜌)

𝜇𝑘 (1 − 𝜌) + Pr

(
𝜏spec = 𝛽

) [
𝛽 + 2

⌈log(𝑘 (1 − 𝜌)⌉ + 1

𝜇

]
.

Combined, these show that

E [remaining time] ≤ 𝛽 + 2

⌈log(𝑘 (1 − 𝜌)⌉ + 1

𝜇
+ 𝑥 − 𝑘 (1 − 𝜌)

𝜇𝑘 (1 − 𝜌) ,

proving the larger case.

Combining the results for these cases proves the claim, since, for any state 𝑠 such that 𝑄 = 𝑥 and

𝑍 = 𝑅 + 1,

E [𝑇𝐵 |S(𝑇𝐴) = 𝑠] ≤ 1

𝛼
+ 2

⌈log (min {𝑥, 𝑘 (1 − 𝜌)})⌉ + 1

𝜇
+ [𝑥 − 𝑘 (1 − 𝜌)]+

𝜇𝑘 (1 − 𝜌)

≤ 1

𝛼
+ 2

⌈log(𝑥)⌉ + 1

𝜇
+ 𝑥

𝜇𝑘 (1 − 𝜌) .

□
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A.2.2 Proof of Claim A.7. Since our bound on the E [𝑇𝐵 |𝑄 (𝑇𝐴) = 𝑥] is concave in 𝑥 , to complete our

result it suffices to bound E [𝑄 (𝑇𝐴)]. Recall the minimal number of servers 𝑍 ∗ = min𝑡 ∈[0,𝑇𝐴 ) 𝑍 (𝑡).
In Claim A.7, we reduce the bounding of E [𝑄 (𝑇𝐴)] to bounding E [𝑅 − 𝑍 ∗].

E [𝑄 (𝑇𝐴)] ≤
1

1 − 𝑒−4

[
4𝜎 + 1 + 𝜇

𝛼
E [𝑅 − 𝑍 ∗]

]
.

Weprove this claim by considering the behavior of the system immediately prior to the accumulation

time 𝑇𝐴.

Proof. Notice that, since 𝑍 (𝑇𝐴) = 𝑅 + 1 by definition, it suffices to estimate E [𝑁 (𝑇𝐴)]. We

begin by first classifying the trajectories leading up to time 𝑇𝐴 into two different classes. Let

𝑇𝑅 = sup {0 < 𝑡 < 𝑇𝐴 : 𝑁 (𝑡) ≤ 𝑅} be the last time before 𝑇𝐴 that 𝑁 (𝑡) ≤ 𝑅. Recall the threshold

𝑀 = 4

√︃
𝑘𝜆
𝛼
. We now condition on whether, in the interval [𝑇𝑅,𝑇𝐴], the number of jobs 𝑁 (𝑡) was

ever larger than𝑀 + 𝑅.

E [𝑁 (𝑇𝐴)] = Pr

(
sup

𝑡 ∈ (𝑇𝑅 ,𝑇𝐴 ]
𝑁 (𝑡) ≤ 𝑀 + 𝑅

)
E

[
𝑁 (𝑇𝐴)

����� sup

𝑡 ∈ (𝑇𝑅 ,𝑇𝐴 ]
𝑁 (𝑡) ≤ 𝑀 + 𝑅

]
+ Pr

(
sup

𝑡 ∈ (𝑇𝑅 ,𝑇𝐴 ]
𝑁 (𝑡) > 𝑀 + 𝑅

)
E

[
𝑁 (𝑇𝐴)

����� sup

𝑡 ∈ (𝑇𝑅 ,𝑇𝐴 ]
𝑁 (𝑡) > 𝑀 + 𝑅

]
.

The first conditional expectation we can upper bound directly by𝑀 + 𝑅. We focus on the second

conditional expectation, and let 𝑇𝑀 = min {𝑇𝑅 < 𝑡 < 𝑇𝐴 : 𝑁 (𝑡) > 𝑀 + 𝑅} be the moment after time

𝑇𝑅 when 𝑁 (𝑡) rises above the threshold 𝑀 + 𝑅. Given the observed state at time 𝑇𝑀 , the value

of 𝑁 (𝑇𝐴) is a sample of a specific conditional random variable, whose expectation we bound via

martingale arguments.

In particular, consider any state S(𝑇𝑀 ) with number of jobs 𝑁 (𝑇𝑀 ) = 𝑀 +𝑅+1, number of jobs in

service 𝑍 (𝑇𝑀 ) = 𝑅 − 𝑖 , and remaining setup for 𝑅 + 1-th server𝑊𝑅+1 (𝑇𝑀 ) = 𝛽 . By memorylessness,

the distribution of 𝑁 (𝑇𝐴) under our conditions is precisely

𝑁 (𝑇𝐴) =𝑑
[
𝑁 (𝛽)

����S(0) = 𝑠, min

𝑡 ∈ (0,𝛽 )
𝑁 (𝑡) ≥ 𝑅 + 1

]
.

We bound the conditional expectation of this random variable by relating it to a stopped mar-

tingale. Consider the system which begins in state 𝑠 at time 0. Let the stopping time 𝜏work =

𝛽 ∧min {𝑡 > 0 : 𝑁 (𝑡) ≤ 𝑅} be either when the 𝑅 + 1-th server stops setting up or when the 𝑅 + 1-th
server next turns on, whichever comes sooner. Let 𝑑 (𝑡) = 𝑘𝜆 − 𝜇𝑍 (𝑡) be the signed difference

between the arrival rate and service rate; note that, for 𝑡 ∈ [0, 𝜏work), one can compute 𝑑 (𝑡) exactly
from the initial state 𝑠 . Recalling the view of the arrival and departure processes as independent

Poisson processes with (possibly) variable rates, it is immediate that 𝑁 (𝑡)−
∫ 𝑡

0
𝑑 (𝑠)d𝑠 is a martingale

on the interval [0, 𝜏work). Applying Doob’s Optional Stopping Theorem, we have that

E [𝑁 (0)] = E
[
𝑁 (𝜏work) −

∫ 𝜏work

0

𝑑 (𝑠)d𝑠
]
.

Since 𝑁 (𝜏work) | 𝜏work < 𝛽 = 𝑅 by definition,

E [𝑁 (𝜏work)] = Pr (𝜏work < 𝛽) 𝑅 + Pr (𝜏work = 𝛽) E [𝑁 (𝜏work) |𝜏work = 𝛽] .
Rearranging (and subtracting 𝑅 for convenience), we find that

E [𝑁 (𝜏work) − 𝑅 |𝜏work = 𝛽] . = 1

Pr (𝜏work = 𝛽)

[
E [𝑁0] − 𝑅 + E

[∫ 𝜏work

0

𝑑 (𝑠)d𝑠
] ]
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=
1

Pr (𝜏work = 𝛽)

[
𝑀 + 1 + E

[∫ 𝜏work

0

𝑑 (𝑠)d𝑠
] ]

≤ 1

Pr (𝜏work = 𝛽) [𝑀 + 1 + 𝜇𝑖E [𝜏work]] ,

≤ 1

Pr (𝜏work = 𝛽)

[
𝑀 + 1 + 𝜇𝑖

1

𝛼

]
,

where the second-to-last line follows from the fact that the number of busy servers𝑍 (𝑡) is increasing
for 𝑡 ∈ [0, 𝜏work], and the last line from the fact that 𝜏work ≤ 𝛽 ≤ 1

𝛼
. To complete our analysis of the

conditional expectation for the state 𝑠 , we require only a lower bound for Pr (𝜏work = 𝛽). But, by
coupling the system to an M/M/1 with both arrival rate and departure rate 𝑘𝜆, we have already

computed a lower bound, in Claim A.1. There, we showed that, keeping in mind that S(0) = 𝑠 here,

Pr (𝜏work = 𝛽) ≥ 𝑝2 = 1 − 𝑒−4.

Thus,

E [𝑁 (𝜏work) − 𝑅 |𝜏work = 𝛽] ≤ 1

𝑝2

[
𝑀 + 1 + 𝜇𝑖

1

𝛼

]
,

And, moving back to our original system,

E

[
𝑁 (𝑇𝐴)

����� sup

𝑡 ∈ (𝑇𝑅 ,𝑇𝐴 ]
𝑁 (𝑡) > 𝑀 + 𝑅,S(𝑇𝑀 ) = 𝑠

]
≤ 1

𝑝2

[
𝑀 + 1 + 𝜇

𝛼
𝑖

]
+ 𝑅,

where one should recall that 𝑖 = 𝑅−𝑍 (𝑇𝑀 ) is the only term on the right side of this inequality which

depends on the initial state 𝑠 . This completes our bound of the conditional expectation; we proceed

by extending this bound to the unconditioned case. First, note that, where 𝑇𝑀 is well-defined, we

can apply the lower bound 𝑍 (𝑇𝑀 ) ≥ 𝑍 ∗
. Moreover, for a state S(𝑇𝑀 ) = 𝑠 such that 𝑖 = 𝑅 − 𝑍 (𝑇𝑀 ),

we have that 𝑖 ≤ 𝑅 − E
[
𝑍 ∗

���S(𝑇𝑀 ) = 𝑠, sup𝑡 ∈ (𝑇𝑅 ,𝑇𝐴 ] 𝑁 (𝑡) > 𝑀 + 𝑅
]
. Applying the tower property

over the time 𝑇𝑀 state S(𝑇𝑀 ), we have that

E

[
𝑁 (𝑇𝐴)

����� sup

𝑡 ∈ (𝑇𝑅 ,𝑇𝐴 ]
𝑁 (𝑡) > 𝑀 + 𝑅

]
≤ 1

𝑝2

[
𝑀 + 1 + 𝜇E

[
𝑅 − 𝑍 ∗

����� sup

𝑡 ∈ (𝑇𝑅 ,𝑇𝐴 ]
𝑁 (𝑡) > 𝑀 + 𝑅

]
1

𝛼

]
+ 𝑅.

Since 𝑍 (0) = 𝑅 and the probability 𝑝2 ≤ 1, we also know that

E

[
𝑁 (𝑇𝐴)

����� sup

𝑡 ∈ (𝑇𝑅 ,𝑇𝐴 ]
𝑁 (𝑡) ≤ 𝑀 + 𝑅

]
≤ 𝑀 + 𝑅 + 1

≤ 1

𝑝2

[
𝑀 + 1 + 𝜇

𝛼
E

[
𝑅 − 𝑍 ∗

����� sup

𝑡 ∈ (𝑇𝑅 ,𝑇𝐴 ]
𝑁 (𝑡) ≤ 𝑀 + 𝑅

] ]
+ 𝑅.

It follows that

E [𝑁 (𝑇𝐴)] ≤
1

𝑝2

[
𝑀 + 1 + 𝜇

𝛼
E [𝑅 − 𝑍 ∗]

]
+ 𝑅,

And, since 𝑄 (𝑇𝐴) = 𝑁 (𝑇𝐴) − 𝑍 (𝑇𝐴) = 𝑁 (𝑇𝐴) − (𝑅 + 1),

E [𝑄 (𝑇𝐴)] ≤
1

𝑝2

[
𝑀 + 1 + 𝜇

𝛼
E [𝑅 − 𝑍 ∗]

]
− 1
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≤ 1

1 − 𝑒−4

[
4𝜎 + 1 + 𝜇

𝛼
E [𝑅 − 𝑍 ∗]

]
,

which proves the claim. □

A.2.3 Proof of Claim A.8. To complete our bound on E [𝑄 (𝑇𝐴)] (and thus E [𝑇𝐵] and E [𝑋 ]), we
bound the expected maximum number of servers we shut off during a cycle. In particular, we show

Claim A.8:

E [𝑅 − 𝑍 ∗] ≤ 3

1 − 𝑒−4
√
𝑅

Proof. We upper bound E [𝑅 − 𝑍 ∗] by first upper bounding the tail probability Pr (𝑅 − 𝑍 ∗ > 𝑖),
then upper bounding the sum of these tail probabilities.

For positive integer 𝑗 , recall that

𝑈 𝑗 = min {𝑡 > 0 : 𝑍 (𝑡) = 𝑅 − 𝑖}
is the first time the number of busy servers 𝑍 (𝑡) = 𝑅− 𝑖 . Recall that𝑇𝐴 = min {𝑡 > 0 : 𝑍 (𝑡) = 𝑅 + 1}.
We state a few observations. First, since busy servers turn off one at a time, the inequality𝑈 𝑗+1 ≥ 𝑈 𝑗

must hold. Second, note that 𝑈 𝑗 ≤ 𝑇𝐴 if and only if 𝑍 ∗ ≤ 𝑅 − 𝑗 . Third, note that, at time 𝑈 𝑗 , we

know the precise state of the system, since a departure must occur while the queue is empty in

order to turn off a server. In particular, the number of busy servers: 𝑍 (𝑈 𝑗 ) = 𝑅 − 𝑗 , the queue length

𝑄 (𝑈 𝑗 ) = 0, and, accordingly, there are no servers in setup. Thus,

Pr (𝑅 − 𝑍 ∗ ≥ 𝑖) = Pr (𝑍 ∗ ≤ 𝑅 − 𝑖) = Pr (𝑈𝑖 ≤ 𝑇𝐴)

= Pr

(
𝑖⋂
𝑗=1

𝑈 𝑗 ≤ 𝑇𝐴

)
=

𝑖∏
𝑗=1

Pr

(
𝑈 𝑗 ≤ 𝑇𝐴

����� 𝑗−1⋂
ℓ=1

𝑈ℓ ≤ 𝑇𝐴

)
=

𝑖∏
𝑗=1

Pr

(
𝑈 𝑗 ≤ 𝑇𝐴

��𝑈 𝑗−1 ≤ 𝑇𝐴
)

=

𝑖∏
𝑗=1

(
1 − Pr

(
𝑈 𝑗 > 𝑇𝐴

��𝑈 𝑗−1 ≤ 𝑇𝐴
) )
.

We proceed from here by lower bounding Pr

(
𝑈 𝑗 > 𝑇𝐴

��𝑈 𝑗−1 ≤ 𝑇𝐴
)
. Let 𝑐2 = 2 and 𝐶3 =

1

1−𝑒−4 . In

particular, we claim that, for 𝑗 ≥ 𝑐2
√
𝑅,

Pr

(
𝑈 𝑗 > 𝑇𝐴

��𝑈 𝑗−1 ≤ 𝑇𝐴
)
≥ 1

𝐶3

√
𝑅
.

Before proving this subordinate claim, we show how to use it to complete the upper bound on

E [𝑅 − 𝑍 ∗]. The idea is to bound it via a Geometric series:

E [𝑅 − 𝑍 ∗] =
𝑅∑︁
𝑖=1

Pr (𝑅 − 𝑍 ∗ ≥ 𝑖)

≤
⌈
𝑐2
√
𝑅

⌉
− 1 +

𝑅∑︁
𝑖=⌈𝑐2

√
𝑅⌉

Pr (𝑅 − 𝑍 ∗ ≥ 𝑖)

≤
⌈
𝑐2
√
𝑅

⌉
− 1 +

∞∑︁
𝑖=0

(
1 − 1

𝐶3

√
𝑅

) 𝑗
≤

⌈
𝑐2
√
𝑅

⌉
− 1 +𝐶3

√
𝑅

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 56. Publication date: December 2022.



The M/M/k with Deterministic Setup Times 56:37

≤ (𝑐2 +𝐶3)
√
𝑅.

All that remains is to show that for 𝑗 ≥ 𝑐2
√
𝑅,

Pr

(
𝑈 𝑗+1 > 𝑇𝐴

��𝑈 𝑗 ≤ 𝑇𝐴
)
≥ 1

𝐶3

√
𝑅
.

In other words, we show that, if we begin with𝑍 = 𝑅− 𝑗 − 1 and𝑄 = 0, then with decent probability

the 𝑅 +1-th server turns on before we hit 𝑍 = 𝑅− 𝑗 . We prove this directly, by analyzing a particular

class of trajectories where our desired event occurs.

We first define three events. Let

𝐴 =

{
inf

𝑡 ∈[𝑈 𝑗 ,𝑈 𝑗+ 1

𝛼
]
𝑁 (𝑡) ≥ 𝑅 − 𝑗

}
be the event that the time𝑈 𝑗+1 > 𝑈 𝑗 + 1

𝛼
. Recall that𝑀 = 4𝜎 . Let

𝐵 =

{
sup

𝑡 ∈[𝑈 𝑗 ,𝑈 𝑗+ 1

𝛼
]
𝑁 (𝑡) > 𝑀 + 𝑅

}
be the event that 𝑁 rises above the threshold𝑀 in the first

1

𝛼
after time𝑈 𝑗 . Define

𝜏𝑀 = min

{
𝑡 > 𝑈 𝑗 : 𝑁 (𝑡) > 𝑀 + 𝑅

}
as the moment that 𝑁 crosses that threshold, and recall that𝑊𝑅+1 is the remaining setup time left

on the 𝑅 + 1-th server. Finally, let

𝐶 =

{
min

𝑡 ∈[𝜏𝑀 ,𝜏𝑀+𝑊𝑅+1 (𝜏𝑀 ) )
𝑁 (𝑡) ≥ 𝑅 + 1

}
be the event that the 𝑅 + 1-th server turns on before the number of jobs 𝑁 has a chance to dip back

down below 𝑅. Examining our probability of interest,

Pr

(
𝑈 𝑗+1 > 𝑇𝐴

��𝑈 𝑗 ≤ 𝑇𝐴
)
≥ Pr (𝐴 ∩ 𝐵 ∩𝐶)
= Pr (𝐶 |𝐴 ∩ 𝐵) Pr (𝐴 ∩ 𝐵)
≥ Pr (𝐶 |𝐴 ∩ 𝐵) (Pr (𝐴) + Pr (𝐵) − 1) .

We have previously shown that for any state 𝑠 such that 𝑍 ≤ 𝑅 and 𝑁 = 𝑀 + 𝑅 + 1,

Pr (𝐶 |𝐴 ∩ 𝐵 |S(𝜏𝑀 ) = 𝑠) ≥ 𝑝2 = 1 − 𝑒−4;

it follows that the same bound holds for Pr (𝐶 |𝐴 ∩ 𝐵).
Continuing on, since no servers can turn within

1

𝛼
of time𝑈 𝑗 , we can bound

Pr (𝐴) = Pr

(
inf𝑡 ∈[𝑈 𝑗 ,𝑈 𝑗+ 1

𝛼
] 𝑁 (𝑡) ≥ 𝑅 − 𝑗

)
via analogy to the return probability of a biased random

walk. Consider a biased random walk 𝑉 with upwards probability 𝑝 = 𝑘𝜆
𝑘𝜆+𝜇 (𝑅− 𝑗 ) and downwards

probability 𝑞 = 1 − 𝑝 . We can upper bound the probability we stay up with the classical 1 − 𝑞

𝑝
=

𝑗

𝑅

result. We now focus on bounding the final term Pr (𝐵) = Pr

(
sup𝑡 ∈[𝑈 𝑗 ,𝑈 𝑗+ 1

𝛼
] 𝑁 (𝑡) > 𝑀 + 𝑅

)
. We

lower bound the probability that the 𝑁 crosses the threshold by time 𝑈 𝑗 + 1

𝛼
by considering the

probability that 𝑁 (𝑈 𝑗 + 1

𝛼
) > 𝑀 + 𝑅, then performing a Chernoff-style bound on the negated event.

Let 𝑌𝑎 ∼ Poisson

(
𝑘𝜆
𝛼

)
be the distribution of arrivals between time 𝑈 𝑗 and 𝑈 𝑗 + 1

𝛼
. One can see via
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a coupling argument that the departure rate can only decrease in this interval. Thus, we can upper

bound the number of departures with 𝑌𝑑 ∼ Poisson

(
𝜇 (𝑅− 𝑗 )

𝛼

)
. Summarizing,

Pr (𝐵) ≥ Pr

(
𝑁

(
𝑈 𝑗 +

1

𝛼

)
> 𝑀 + 𝑅

)
≥ Pr (𝑌𝑎 − 𝑌𝑑 > 𝑀 + 𝑗)
= 1 − Pr (𝑌𝑎 − 𝑌𝑑 ≤ 𝑀 + 𝑗) .

We continue with our Chernoff bound.

Pr (𝑌𝑎 − 𝑌𝑑 ≤ 𝑀 + 𝑗) = Pr (−𝜃 (𝑌𝑎 − 𝑌𝑑 ) ≥ −𝜃 (𝑀 + 𝑗))

= Pr

(
𝑒−𝜃 (𝑌𝑎−𝑌𝑑 ) ≥ 𝑒−𝜃 (𝑀+𝑗 )

)
≤ E

[
𝑒𝜃𝑌𝑑

]
E

[
𝑒−𝜃𝑌𝑎

]
𝑒𝜃 (𝑀+𝑗 )

= exp

(
E [𝑌𝑑 ] (𝑒𝜃 − 1) + E [𝑌𝑎] (𝑒−𝜃 − 1) + 𝜃 (𝑀 + 𝑗)

)
.

Choosing 𝜃 = ln(1 + 𝜖) and 𝜖 = 𝑐

[√︃
𝑘𝜆
𝛼

]−1
= 𝑐 (𝜎)−1,

Pr (𝑌𝑎 − 𝑌𝑑 ≤ 𝑀 + 𝑗) ≤ exp

(
E [𝑌𝑑 ] (𝑒𝜃 − 1) + E [𝑌𝑎] (𝑒−𝜃 − 1) + 𝜃 (𝑀 + 𝑗)

)
= exp

(
E [𝑌𝑑 ] (𝜖) + E [𝑌𝑎]

(
− 𝜖

1 + 𝜖

)
+ ln(1 + 𝜖) (𝑀 + 𝑗)

)
≤ exp

(
E [𝑌𝑑 ] 𝜖2 + [E [𝑌𝑎] − E [𝑌𝑑 ]]

(
− 𝜖

1 + 𝜖

)
+ 𝜖 (𝑀 + 𝑗)

)
≤ exp

(
𝑘𝜆

𝛼
𝜖2 +

[
𝑗

𝛼

] (
− 𝜖

1 + 𝜖

)
+ 𝜖 (𝑀 + 𝑗)

)
≤ exp

(
𝑐2 +

[
𝑗

√
𝑅

√︂
𝜇

𝛼

] (
− 𝑐

1 + 𝜖

)
+ 𝑐 +

√︂
𝛼

𝜇

𝑗
√
𝑅

)
≤ exp

(
𝑐2 + 𝑐 +

[
𝑐2

√︂
𝜇

𝛼

] (
− 𝑐

1 + 𝜖
+ 𝛼

𝜇

))
We make some simplifying assumptions to get an intelligible result. Set 𝑐 = 1. Let 𝜖−1 =

√︃
𝑘𝜆
𝛼

≥ 3,

let the ratio

√︃
𝜇

𝛼
≥ ln(𝑅), and let the offered load 𝑅 ≥ 𝑒4. Then

Pr (𝑌𝑎 − 𝑌𝑑 ≤ 𝑀 + 𝑗) ≤ exp

(
2 +

[
𝑐2

√︂
𝜇

𝛼

] (
−1

2

))
≤ exp

(
2 − 𝑐2

2

ln(𝑅)
)
=

𝑒2

𝑅
𝑐
2

2

=
1

√
𝑅

𝑒2

𝑅
𝑐
2
−1
2

=
1

√
𝑅

𝑒2

𝑅1/2

≤ 1

√
𝑅
,

where we have used the fact that 𝑐2 = 2. Returning to our previous claim, we find that

Pr (𝐵) ≤ 1 − 1

√
𝑅
,
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And thus,

Pr

(
𝑈 𝑗+1 > 𝑇𝐴

��𝑈 𝑗 ≤ 𝑇𝐴
)
≥ Pr (𝐶 |𝐴 ∩ 𝐵) (Pr (𝐴) + Pr (𝐵) − 1)

≥ 𝑝2

(
2

√
𝑅
+ 1 − 1

√
𝑅
− 1

)
≥ 𝑝2

1

√
𝑅
,

where 𝑝2 = 1 − 𝑒−4. Returning to our original claim, it follows that

E [𝑅 − 𝑍 ∗] ≤ (2 + 1

1 − 𝑒−4
)
√
𝑅 ≤ 3

1 − 𝑒−4
√
𝑅,

as desired. □

Plugging this in, we get that (upper bounding with 𝑝2’s)

E [𝑄 (𝑇𝐴)] ≤
(

1

1 − 𝑒−4

)
2 [

4𝜎 + 1 + 𝜇

𝛼
3

√
𝑅

]
,

which implies

E [𝑇𝐵] ≤
1

𝛼
+

(
2

(1 − 𝑒−4)2

) [
4𝜎 + 1 + 𝜇

𝛼
3

√
𝑅

]
𝑘𝜇 (1 − 𝜌) + 2

𝜇
log

((
1

1 − 𝑒−4

)
2 [

4𝜎 + 1 + 𝜇

𝛼
3

√
𝑅

] )
,

as desired.

B LEMMAS ON RANDOMWALKS
This section presents lemmas on the continuous-time random walks used in the proof of Lemma 5.2.

We first consider a discrete-time random walk in Lemma B.1. We then use this lemma to study the

continuous-time random walks in Lemma B.2. Lemma B.3 derives bounds on the continuous-time

random walks given that their values stay nonnegative during a period of time.

Lemma B.1. Consider a discrete-time random walk 𝑋 (·) with upwards probability 𝑝 = 1 − 𝑞 > 1

2
,

starting at 𝑋 (0) = 0. Let the first passage time 𝜏−1 = min {𝑖 ∈ Z+ : 𝑋 (𝑖) = −1}. Then,

𝑞

𝑝

(
1 − 3𝑝√︁

𝜋 (𝑛 + 1)

)
≤ Pr (𝜏−1 ≤ 2𝑛 + 1) ≤ 𝑞

𝑝
. (23)

Proof. The upper bound directly follows from the fact that Pr (𝜏−1 ≤ 2𝑛 + 1) ≤ Pr (𝜏−1 < ∞) and
the classical result Pr (𝜏−1 < ∞) ≤ 𝑞

𝑝
. To prove the lower bound, we first compute Pr (𝜏−1 = 2ℓ + 1)

for each ℓ > 𝑛. Since 𝑋 (0) = 0, to hit the state −1 at time slot 2ℓ + 1, the random walk must be at

state 0 at time slot 2ℓ and does not hit −1 from time 0 to time 2ℓ . So to find Pr (𝜏−1 = 2ℓ + 1), it
suffices to compute the probability that 𝑋 (2ℓ) = 0 and 𝑋 (𝑖) ≠ −1 for all 0 ≤ 𝑖 ≤ 2ℓ ; from there,

with probability 𝑞, we stop and 𝜏−1 = 2ℓ + 1. The number of paths for which this is the case is

simply the Catalan number 𝐶ℓ =
1

ℓ+1
(
2ℓ
ℓ

)
, and the probability of each is 𝑝ℓ𝑞ℓ . Thus,

Pr (𝜏−1 = 2ℓ + 1) = 𝑞 · (𝑝𝑞)ℓ𝐶ℓ .

Therefore,

Pr (𝜏−1 ≤ 2𝑛 + 1) = 1 −
∞∑︁

ℓ=𝑛+1
Pr (𝜏−1 = 2ℓ + 1)
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≥ 𝑞

𝑝

(
1 − 𝑝

∞∑︁
ℓ=𝑛+1

(𝑞𝑝)ℓ𝐶ℓ

)
=
𝑞

𝑝

(
1 − 𝑝

∞∑︁
ℓ=𝑛+1

(𝑞𝑝)ℓ 1

ℓ + 1

(2ℓ)!
ℓ!ℓ!

)
.

Applying Stirling’s approximation gives

Pr (𝜏−1 ≤ 2𝑛 + 1) ≥ 𝑞

𝑝

(
1 − 𝑝

∞∑︁
ℓ=𝑛+1

(𝑞𝑝)ℓ 1

ℓ + 1

1

√
𝜋ℓ

4
ℓ

)
=
𝑞

𝑝

(
1 − 𝑝

√
𝜋

∞∑︁
ℓ=𝑛+1

(4𝑞𝑝)ℓ 1

ℓ + 1

1

√
ℓ

)
≥ 𝑞

𝑝

(
1 − 𝑝

√
𝜋

∞∑︁
ℓ=𝑛+1

1

ℓ3/2

)
,

where we have used that 4𝑞𝑝 ≤ 1 in the last inequality. Noting that

∑∞
ℓ=𝑛+1 ℓ

−3/2 ≤ (𝑛 + 1)−3/2 +∫ ∞
𝑛+1 ℓ

−3/2
dℓ ≤ 3√

𝑛+1 , we have

Pr (𝜏−1 ≤ 2𝑛 + 1) ≥ 𝑞

𝑝

(
1 − 3𝑝√︁

𝜋 (𝑛 + 1)

)
,

as desired. □

We derive the following lemma on a continuous-time random walk using Lemma B.1.

Lemma B.2. For each 𝑖 ∈ Z+ with 0 ≤ 𝑖 ≤ 𝑅, consider two independent Poisson processes 𝑌𝑎 (𝑡)
of rate 𝜇𝑅 and 𝑌𝑑 (𝑡) of rate 𝜇 (𝑅 − 𝑖). Let the first passage time 𝜏 = min {𝑡 > 0 : 𝑌𝑎 (𝑡) − 𝑌𝑑 (𝑡) < 0}.
Then, for any interval of length 𝐿,

𝑅 − 𝑖

𝑅

(
1 − 3

√
3

√
𝜋𝜈𝐿

)
≤ Pr (𝜏 ≤ 𝐿) ≤ 𝑅 − 𝑖

𝑅
,

where 𝜈 = 2𝜇𝑅 − 𝜇𝑖 denotes the total rate of the two Poisson processes.
In particular, assume that 1/𝛼

1/𝜇 ≥ 1000 and 𝑅 ≥ 128. Then

Pr

(
𝜏 ≤ 1

𝛼

)
≥ 𝑅 − 𝑖

𝑅
𝑒−𝛾 ,

where 𝛾 = − 1

2
ln(1 − 𝑒−4) > 0.009.

Proof. The upper bound directly follows from the fact that Pr (𝜏 ≤ 𝐿) ≤ Pr (𝜏 < ∞) and the

classical result that Pr (𝜏 < ∞) ≤ 𝜇 (𝑅−𝑖 )
𝜇𝑅

= 𝑅−𝑖
𝑅
. We focus on proving the lower bound below.

Note that the superposition of the two Poisson processes 𝑌𝑎 (𝑡) and 𝑌𝑑 (𝑡) is a Poisson process

with rate 𝜈 . We refer to events in the combined Poisson process as Poisson events. Conditioned on

a Poisson event, the probability of it being an arrival (i.e. from 𝑌𝑎 (𝑡)) is 𝑝 = 𝑅
2𝑅−𝑖 ≥

1

2
. Let 𝑞 = 1 − 𝑝 .

From here, note that, after conditioning on the number of Poisson events 𝑉 during the interval

[0, 𝐿], we have, essentially, a discrete-time random walk with a finite number 𝑉 of steps with

upwards probability 𝑝 . Recall the first passage time 𝜏−1 for a finite random walk from Lemma B.1.

It can be verified that

Pr (𝜏−1 ≤ 𝑉 | 𝑉 = ℓ) ≥ 𝑞

𝑝

(
1 − 3

√
3𝑝

√
𝜋 ·

√
ℓ + 1

)
≥ 𝑞

𝑝

(
1 − 3

√
3

√
𝜋 ·

√
ℓ + 1

)
.
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Note that 𝜏 ≤ 𝐿 is equivalent to 𝜏−1 ≤ 𝑉 . So

Pr (𝜏 ≤ 𝐿) = Pr (𝜏−1 ≤ 𝑉 )

≥
∞∑︁
ℓ=1

𝑞

𝑝

(
1 − 3

√
3

√
𝜋 ·

√
ℓ + 1

)
· Pr (𝑉 = ℓ)

=
𝑞

𝑝

(
1 − 3

√
3

√
𝜋 · E [𝑉 + 1]

)
.

It then suffices to compute an upper bound for E
[

1√
𝑉+1

]
when 𝑉 ∼ Poisson(𝜈𝐿):

E

[
1

√
𝑉 + 1

]
=

∞∑︁
𝑗=0

𝑒−𝜈𝐿
(𝜈𝐿) 𝑗
𝑗 !

1

√
𝑗 + 1

=
1

𝜈𝐿

∞∑︁
𝑗=0

𝑒−𝜈𝐿
(𝜈𝐿) 𝑗+1
( 𝑗 + 1)!

√︁
𝑗 + 1

=
1

𝜈𝐿

∞∑︁
𝑗=1

𝑒−𝜈𝐿
(𝜈𝐿) 𝑗
( 𝑗)!

√︁
𝑗

=
1

𝜈𝐿
E

[√
𝑉

]
≤ 1

√
𝜈𝐿

,

where we have used the concavity of the square root function. It follows that

Pr (𝜏 ≤ 𝐿) ≥ 𝑞

𝑝

(
1 − 3

√
3

√
𝜋𝜈𝐿

)
.

as desired.

Finally, we set 𝐿 = 1

𝛼
to derive the lower bound on Pr

(
𝜏 ≤ 1

𝛼

)
. Note that under the conditions

on
1/𝛼
1/𝜇 and R, the inequality 1 − 𝑥 ≥ 𝑒−

2.8
2.5

𝑥
holds for 𝑥 =

3

√
3√

𝜋𝜈 1

𝛼

≤ 3

√
3√

𝜋𝜇𝑅 1

𝛼

and
3.3
𝜎

< 𝛾 . Thus,

Pr

(
𝜏 ≤ 1

𝛼

)
≥ 𝑅 − 𝑖

𝑅

©­­«1 −
3

√
3√︃

𝜋𝜈 1

𝛼

ª®®¬
≥ 𝑅 − 𝑖

𝑅
𝑒
− 2.8

2.5
3

√
3√

𝜋𝜇𝑅 1

𝛼

≥ 𝑅 − 𝑖

𝑅
𝑒−

3.3
𝜎

≥ 𝑅 − 𝑖

𝑅
𝑒−𝛾 .

□

Lemma B.3. For each 𝑖 ∈ Z+ with 0 ≤ 𝑖 ≤ 𝑅, let 𝑌𝑎 (𝑡) be a Poisson process of rate 𝑘𝜆, and let 𝑌𝑑 (𝑡)
be a Poisson process of rate 𝜇 (𝑅 − 𝑖). Let �̃� (𝑡) = 𝑌𝑎 (𝑡) −𝑌𝑑 (𝑡) be the difference between these processes.
Then

E

[∫ 1

𝛼

0

�̃� (𝑡)d𝑡
����� �̃� (ℓ) ≥ 0,∀ℓ ∈

[
0,

1

𝛼

)]
≥ 1

2

(
1

𝛼

)
2

𝜇𝑖,
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and

E

[
�̃�

(
1

𝛼

) ���� �̃� (ℓ) ≥ 0,∀ℓ ∈
[
0,

1

𝛼

)]
≥

(
𝜇𝑖

𝛼

)
.

We first establish a shorthand and derive a sufficient condition for the above, which we then

prove. For brevity, define the event ↑ 𝑠 as
↑ 𝑠 ≜

{
�̃� (ℓ) ≥ 0,∀ℓ ∈ [0, 𝑠]

}
.

Also, note that

E
[
�̃� (𝑡)

]
= 𝜇𝑖𝑡,∫ 1

𝛼

0

E
[
�̃� (𝑡)

]
d𝑡 =

1

2

(
1

𝛼

)
2

𝜇𝑖.

Applying Fubini’s theorem,

E

[∫ 1

𝛼

0

�̃� (𝑡)d𝑡
�����↑ 1

𝛼

]
=

∫ 1

𝛼

0

E

[
�̃� (𝑡)

����↑ 1

𝛼

]
d𝑡 .

Thus, it suffices to show that, for all 𝑡 ∈
[
0, 1

𝛼

]
,

E

[
�̃� (𝑡)

����↑ 1

𝛼

]
≥ E

[
�̃� (𝑡)

]
. (24)

To do so, we go through E
[
�̃� (𝑡)

��↑ 𝑡 ] . In particular, we reduce (24) to the following two claims.

Claim B.1. For all 𝑡 ∈
[
0, 1

𝛼

]
,

E

[
�̃� (𝑡)

����↑ 1

𝛼

]
≥ E

[
�̃� (𝑡)

��↑ 𝑡 ] .
Claim B.2. For all 𝑡 ∈

[
0, 1

𝛼

]
,

E
[
�̃� (𝑡)

��↑ 𝑡 ] ≥ E
[
�̃� (𝑡)

]
.

Proof of Claim B.2
We prove the latter claim first. We first cast the problem in the language of stopping times. Let 𝜏𝑠 =

min

{
ℓ > 0 : �̃� (ℓ) = −1

}
be the (possibly infinite) (0 → −1) first passage time in this continuous-

time random walk. Note that the event ↑ 𝑡 is equivalent to the event {𝜏𝑠 > 𝑡}. Thus, we must show

that for any 𝑡 ∈
[
0, 1

𝛼

]
,

E
[
�̃� (𝑡)

��𝜏𝑠 > 𝑡
]
≥ E

[
�̃� (𝑡)

]
. (25)

Fix any 𝑡 ∈
[
0, 1

𝛼

]
. To prove (25), we apply the Optional Stopping Theorem on an appropriate

martingale. Define the martingale𝑀 (·) as
𝑀 (ℓ) ≜ �̃� (ℓ) − 𝜇𝑖ℓ ;

one can verify this is a martingale via the independent increments property of a Poisson process.

Note that for {𝑀 (ℓ) : ℓ ∈ R+}, the time 𝜏𝑠 ∧ 𝑡 is a trivially almost surely bounded stopping time.

Thus, by the Optional Stopping theorem,

E [𝑀 (0)] = 0

= E [𝑀 (𝑡 ∧ 𝜏𝑠 )]
= E

[
�̃� (𝑡 ∧ 𝜏𝑠 )

]
− 𝜇𝑖E [𝑡 ∧ 𝜏𝑠 ]

= Pr (𝜏𝑠 > 𝑡) E
[
�̃� (𝑡)

��𝜏𝑠 > 𝑡
]
+ Pr (𝜏𝑠 ≤ 𝑡) (−1) − 𝜇𝑖E [𝑡 ∧ 𝜏𝑠 ] .
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This implies

E
[
�̃� (𝑡)

��𝜏𝑠 > 𝑡
]
=

1

Pr (𝜏𝑠 > 𝑡) [Pr (𝜏𝑠 ≤ 𝑡) + 𝜇𝑖E [𝑡 ∧ 𝜏𝑠 ]]

≥ 𝜇𝑖𝑡 Pr (𝜏𝑠 > 𝑡)
Pr (𝜏𝑠 > 𝑡)

= 𝜇𝑖𝑡

= E
[
�̃� (𝑡)

]
,

as desired.

Proof of Claim B.1
We wish to show that

E

[
�̃� (𝑡)

����↑ 1

𝛼

]
≥ E

[
�̃� (𝑡)

��↑ 𝑡 ] .
We prove this via stochastic dominance, i.e. we show that for any 𝑦 ≥ 0,

Pr

(
�̃� (𝑡) > 𝑦

����↑ 1

𝛼

)
≥ Pr

(
�̃� (𝑡) > 𝑦

��↑ 𝑡 ) . (26)

For brevity, let the event 𝑌 ≜
{
�̃� (𝑡) > 𝑦

}
. We reduce (26) to an observation and a claim. First,

observe that the event ↑ 1

𝛼
implies the event ↑ 𝑡 , i.e.

↑ 1

𝛼
=↑ 1

𝛼
∩ ↑ 𝑡 .

Second, we make the following claim, whose proof is deferred to later.

Claim B.3. We have

Pr

(
↑ 1

𝛼

����𝑌, ↑ 𝑡 ) ≥ Pr

(
↑ 1

𝛼

����↑ 𝑡 ) .
To complete the proof of Claim B.1, the rest is algebra:

Pr

(
𝑌

����↑ 1

𝛼

)
=
Pr

(
𝑌∩ ↑ 1

𝛼

)
Pr

(
↑ 1

𝛼

)
=
Pr

(
𝑌∩ ↑ 𝑡∩ ↑ 1

𝛼

)
Pr

(
↑ 1

𝛼

) (27)

=
Pr (↑ 𝑡) Pr (𝑌 |↑ 𝑡) Pr

(
↑ 1

𝛼

��↑ 𝑡, 𝑌 )
Pr

(
↑ 1

𝛼

)
≥

Pr (↑ 𝑡) Pr (𝑌 |↑ 𝑡) Pr
(
↑ 1

𝛼

��↑ 𝑡 )
Pr

(
↑ 1

𝛼

) (28)

= Pr (𝑌 |↑ 𝑡) ,

where (27) is an application of our previous observation and (28) is an application of Claim B.3.

After proving Claim B.3, we will be done.
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Proof of Claim B.3
We want to show that

Pr

(
↑ 1

𝛼

����𝑌, ↑ 𝑡 ) ≥ Pr

(
↑ 1

𝛼

����↑ 𝑡 ) .
We argue this by conditioning on the value of �̃� (𝑡), then arguing via stochastic dominance. To

begin, we note that

Pr

(
↑ 1

𝛼

����𝑌, ↑ 𝑡 ) =
∑︁
𝑥>𝑦

Pr

(
↑ 1

𝛼
∩

{
�̃� (𝑡) = 𝑥

}����𝑌, ↑ 𝑡 )
=

∑︁
𝑥>𝑦

Pr

(
↑ 1

𝛼

�����̃� (𝑡) = 𝑥,𝑌, ↑ 𝑡
)
Pr

(
�̃� (𝑡) = 𝑥

��𝑌, ↑ 𝑡 )
=

∑︁
𝑥>𝑦

Pr

(
↑

(
1

𝛼
− 𝑡

)�����̃� (0) = 𝑥

)
Pr

(
�̃� (𝑡) = 𝑥

��𝑌, ↑ 𝑡 ),
where the last step is an application of the Markov property.

We now interpret this summation as an expectation. Let

𝑓 (𝑥) ≜ Pr

(
↑

(
1

𝛼
− 𝑡

)�����̃� (0) = 𝑥

)
.

Then

Pr

(
↑ 1

𝛼

����𝑌, 𝑡 ) =
∑︁
𝑥>𝑦

𝑓 (𝑥) Pr
(
�̃� (𝑡) = 𝑥

��𝑌, ↑ 𝑡 )
= E

[
𝑓

(
�̃� (𝑡)

)���𝑌, ↑ 𝑡 ] ,
and, likewise,

Pr

(
↑ 1

𝛼

����↑ 𝑡 ) = E
[
𝑓

(
�̃� (𝑡)

)���↑ 𝑡 ] .
Now, note that 𝑓 (𝑥) is increasing in𝑥 (from a straightforward coupling argument). Since

[
�̃� (𝑡) | 𝑌, ↑ 𝑡

]
stochastically dominates

[
�̃� (𝑡) |↑ 𝑡

]
, it follows that

E
[
𝑓

(
�̃� (𝑡)

)���𝑌, ↑ 𝑡 ] ≥ E
[
𝑓

(
�̃� (𝑡)

)���↑ 𝑡 ] ,
as desired.

C BOUNDING A GAUSSIAN SUM
We show the following lemma and a corollary.

Lemma C.1. For any 𝑎 > 0 and 𝑏 ≥ 0, we can lower-bound a Gaussian sum as
𝑅−1∑︁
𝑖=1

𝑒−𝑎𝑖
2−𝑏𝑖 ≥ 𝑒

𝑏2

2𝑎

[
1

2

√︂
𝜋

𝑎
− 𝑒−𝑎 (𝑅+

𝑏
2𝑎

)2

𝑎(𝑅 + 𝑏
2𝑎
)
−

(
𝑏

2𝑎
+ 1

)]
.

Proof. We begin with some algebraic manipulations.

𝑅−1∑︁
𝑖=1

𝑒−𝑎𝑖
2−𝑏𝑖 =

𝑅−1∑︁
𝑖=1

𝑒−𝑎 (𝑖+
𝑏
2𝑎

)2+𝑏2

4𝑎 = 𝑒
𝑏2

4𝑎

𝑅−1∑︁
𝑖=1

𝑒−𝑎 (𝑖+
𝑏
2𝑎

)2

≥ 𝑒
𝑏2

4𝑎

∫ 𝑅

1

𝑒−𝑎 (𝑥+
𝑏
2𝑎

)2
d𝑥 (29)
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= 𝑒
𝑏2

4𝑎

[∫ ∞

− 𝑏
2𝑎

𝑒−𝑎 (𝑥+
𝑏
2𝑎

)2
d𝑥 −

∫
1

− 𝑏
2𝑎

𝑒−𝑎 (𝑥+
𝑏
2𝑎

)2
d𝑥 −

∫ ∞

𝑅

𝑒−𝑎 (𝑥+
𝑏
2𝑎

)2
d𝑥

]
,

where (29) follows because the summand is monotone decreasing in 𝑖 . We bound each of these

terms separately. For the first term, we observe from the well-known Gaussian integral formula

that ∫ ∞

− 𝑏
2𝑎

𝑒−𝑎 (𝑥+
𝑏
2𝑎

)2
d𝑥 =

1

2

√︂
𝜋

𝑎
.

For the second term, we note that the integrand is ≤ 1, so that∫
1

− 𝑏
2𝑎

𝑒−𝑎 (𝑥+
𝑏
2𝑎

)2
d𝑥 ≤ 𝑏

2𝑎
+ 1.

For the third term, we note that the integrand is decreasing in 𝑥 and bound the remainder with the

integral of an exponential:∫ ∞

𝑅

𝑒−𝑎 (𝑥+
𝑏
2𝑎

)2
d𝑥 ≤

∫ ∞

𝑅

𝑒−𝑎 (𝑥+
𝑏
2𝑎

) (𝑅+ 𝑏
2𝑎

)
d𝑥

= 𝑒−𝑎 (
𝑏
2𝑎

) (𝑅+ 𝑏
2𝑎

)
∫ ∞

𝑅

𝑒−𝑎 (𝑅+
𝑏
2𝑎

)𝑥
d𝑥

= 𝑒−𝑎 (
𝑏
2𝑎

) (𝑅+ 𝑏
2𝑎

)

[
−𝑒

−𝑎 (𝑅+ 𝑏
2𝑎

)𝑥

𝑎(𝑅 + 𝑏
2𝑎
)

]∞
𝑅

=
𝑒−𝑎 (𝑅+

𝑏
2𝑎

)2

𝑎(𝑅 + 𝑏
2𝑎
)
.

This completes the proof. □

We also have the following corollary.

Corollary C.1.1. Recall that 𝜎 =

√︃
𝜇𝑅

𝛼
. When 𝑎 = 1

𝑅
and 𝑏 = 3.3

𝜎
, this gives

𝑅−1∑︁
𝑖=1

𝑒−
𝑖2

𝑅
− 3.3

𝜎
𝑖 ≥ 𝑒

5.4𝛼
𝜇

[√
𝜋

2

√
𝑅 − 𝑒−𝑅 (1+

1.65
𝜎

)2

1 + 1.65
𝜎

−
(
1.65

√︂
𝛼

𝜇

√
𝑅 + 1

)]
≥

[√
𝜋

2

−
(
1 + 𝑒−𝑅

)
√
𝑅

− 1.65

√︂
𝛼

𝜇

] √
𝑅,

so that, for 𝑅 ≥ 128 and 1/𝛼
1/𝜇 ≥ 1000,

𝑒−
1

12

𝑅−1∑︁
𝑖=1

𝑒−
𝑖2

𝑅
− 3.3

𝜎
𝑖 ≥ 0.745

√
𝑅 ≥ 1

2

√
𝑅. (30)
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