
Exploiting Process Lifetime Distributions forDynamic Load BalancingMor Harchol-BalterandAllen B. DowneyUniversity of California, BerkeleyWe consider policies for CPU load balancing in networks of workstations. We address the ques-tion whether preemptive migration (migrating active processes) is necessary, or whether remoteexecution (migrating processes only at the time of birth) is su�cient for load balancing. We showthat resolving this isssue is strongly tied to understanding the process lifetime distribution. Ourmeasurements indicate that the distribution of lifetimes for UNIX process is Pareto (heavy-tailed),with a consistent functional form over a variety of workloads. We show how to apply this distri-bution to derive a preemptive migration policy that requires no hand-tuned parameters. We use atrace-driven simulation to show that our preemptive migration strategy is far more e�ective thanremote execution, even when the memory transfer cost is high.Categories and Subject Descriptors: unknown [unknown]: unknown|unknownGeneral Terms: unknownAdditional Key Words and Phrases: Load balancing, load sharing, migration, remote execution,workload modeling, trace-driven simulation, network of workstations, heavy-tailed, Pareto distri-bution1. INTRODUCTIONMost systems that perform load balancing use remote execution (i.e. non-preemptivemigration) based on a priori knowledge of process behavior, often in the form of alist of process names eligible for migration. Although some systems are capable ofmigrating active processes, most do so only for reasons other than load balancing,such as preserving autonomy. A previous analytic study by Eager et al. discouragesMor Harchol-Balter supported by National Physical Science Consortium (NPSC) Fellowship andNSF grant number CCR-9201092. Allen Downey partially supported by NSF (DARA) grantDMW-8919074.An earlier version of this paper appeared in the Proceedings of the ACM Sigmetrics Conferenceon Measurement and Modeling of Computer Systems (May 23-26,1996) pp. 13-24.Address: fharchol,downeyg@cs.berkeley.edu, University of California, Berkeley, CA 94720.Permission to make digital or hard copies of part or all of this work for personal or classroom use isgranted without fee provided that copies are not made or distributed for pro�t or direct commercialadvantage and that copies show this notice on the �rst page or initial screen of a display alongwith the full citation. Copyrights for components of this work owned by others than ACM mustbe honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post onservers, to redistribute to lists, or to use any component of this work in other works, requires priorspeci�c permission and/or a fee. Permissions may be requested from Publications Dept, ACMInc., 1515 Broadway, New York, NY 10036 USA, fax +1 (212) 869-0481, or permissions@acm.org.

2 � M. Harchol-Balter and A. B. Downeyimplementing preemptive migration for load balancing, showing that the additionalperformance bene�t of preemptive migration is small compared with the bene�t ofsimple non-preemptive migration schemes [Eager et al. 1988]. But simulation stud-ies, which can use more realistic workload descriptions, and implemented systemshave shown greater bene�ts for preemptive migration [Krueger and Livny 1988][Barak et al. 1993]. This paper uses a measured distribution of process lifetimesand a trace-driven simulation to investigate these con
icting results.1.1 Load balancing taxonomyOn a network of shared processors, CPU load balancing is the idea of migrating pro-cesses across the network from hosts with high loads to hosts with lower loads. Themotivation for load balancing is to reduce the average completion time of processesand improve the utilization of the processors. Analytic models and simulation stud-ies have demonstrated the performance bene�ts of load balancing, and these resultshave been con�rmed in existing distributed systems (see Section 1.4).An important part of the load balancing strategy is the migration policy, whichdetermines when migrations occur and which processes are migrated. This is thequestion we address in this paper. The other half of a load balancing strategy isthe location policy | the selection a new host for the migrated process. Previouswork has suggested that simply choosing the target host with the shortest CPU runqueue is both simple and e�ective [Zhou 1987] [Kunz 1991]. Our work con�rms therelative unimportance of location policy.Process migration for purposes of load balancing comes in two forms: remoteexecution, also called non-preemptive migration, in which some new processes are(possibly automatically) executed on remote hosts, and preemptive migration, inwhich running processes may be suspended, moved to a remote host, and restarted.In non-preemptive migration only newborn processes are migrated.Load balancing may be done explicitly (by the user) or implicitly (by the system).Implicit migration policies may or may not use a priori information about thefunction of processes, how long they will run, etc.Since the cost of remote execution is usually signi�cant relative to the averagelifetime of processes, implicit non-preemptive policies require some a priori infor-mation about job lifetimes. This information is often implemented as an eligibilitylist that speci�es by process name which processes are worth migrating [Svensson1990] [Zhou et al. 1993].In contrast, most preemptive migration policies do not use a priori information,since this is often di�cult to maintain and preemptive strategies can perform wellwithout it. These systems use only system-visible data like the current age of eachprocess or its memory size.This paper examines the performance bene�ts of preemptive, implicit loadbalancing strategies that assume no a priori information about processes.We answer the following two questions:(1) Is preemptive migration worthwhile, given the additional cost (CPU and la-tency) associated with migrating an active process?(2) Which active processes, if any, are worth migrating?

Exploiting Process Lifetime Distributions for Dynamic Load Balancing � 31.2 Process modelIn our model, processes use two resources: CPU and memory (we do not considerI/O). Thus, we use \age" to mean CPU age (the CPU time a process has usedthus far) and \lifetime" to mean CPU lifetime (the total CPU time from start tocompletion). We assume that processors implement time-sharing with round-robinscheduling; in Section 7 we discuss the e�ect of other local scheduling policies. Sinceprocesses may be delayed while on the run queue or while migrating, the slowdownimposed on a process isSlowdown of process p = wall-time(p)CPU-time(p)where wall time is the total time a process spends running, waiting in queue, ormigrating.1.3 OutlineThe e�ectiveness of load balancing | either by remote execution or preemptivemigration | depends strongly on the nature of the workload, including the distri-bution of process lifetimes and the arrival process. This paper presents empiricalobservations about the workload on a network of UNIX workstations, and uses atrace-driven simulation to evaluate the impact of this workload on proposed loadbalancing strategies.Section 2 presents a study of the distribution of process lifetimes for a variety ofworkloads in an academic environment, including instructional machines, researchmachines, and machines used for system administration. We �nd that the distri-bution is predictable with goodness of �t greater than 99% and consistent acrossa variety of machines and workloads. As a rule of thumb, the probability that aprocess with CPU age of one second uses more than T seconds of total CPU timeis 1=T (see Figure 1).Our measurements are consistent with those of Leland and Ott [Leland and Ott1986], but this prior work has been incorporated in few subsequent analytic andsimulator studies of load balancing. This omission is unfortunate, since the resultsof these are sensitive to the lifetime model (see Section 2.2).Our observations of lifetime distributions have the following consequences forload balancing:|They suggest that it is preferable to migrate older processes because these pro-cesses have a higher probability of living long enough (eventually using enoughCPU) to amortize their migration cost.|A functional model of the distribution provides an analytic tool for deriving theeligibility of a process for migration as a function of its current age, migrationcost, and the loads at its source and target host.In Section 3 we derive a migration eligibility criterion that guarantees that theslowdown imposed on a migrant process is lower in expectation than it would bewithout migration. According to this criterion, a process is eligible for migrationonly if its CPU age > 1n�m �migration cost

4 � M. Harchol-Balter and A. B. Downeywhere n (respectively m) is the number of processes at the source (target) host.In Section 5 we use a trace-driven simulation to compare our preemptive migra-tion policy with a non-preemptive policy based on name-lists. The simulator usesstart times and durations from traces of a real system, and migration costs chosenfrom a measured distribution.We use the simulator to run three experiments: �rst we evaluate the e�ect ofmigration cost on the relative performance of the two strategies. Not surprisingly,we �nd that as the cost of preemptive migration increases, it becomes less e�ective.Nevertheless, preemptive migration performs better than non-preemptive migrationeven with surprisingly large migration costs, despite several conservative assump-tions that give non-preemptive migration an unfair advantage.Next we choose a speci�c model of preemptive and non-preemptive migrationcosts based on real systems (see Section 4), and use this model to compare the twomigration strategies in more detail. We �nd that preemptive migration reducesthe mean delay (queueing and migration) by 35{50%, compared to non-preemptivemigration. We also propose several alternative metrics intended to measure users'perception of system performance. By these metrics, the additional bene�ts ofpreemptive migration compared to non-preemptive migration appear even moresigni�cant.In Section 5.4 we discuss in detail why a simple preemptive migration policy ismore e�ective than even a well-tuned non-preemptive migration policy. In Sec-tion 5.5 we use the simulator to compare our preemptive migration strategy withpreviously proposed preemptive strategies.We �nish with a criticism of our model in Section 6, a discussion of future workin Section 7 and conclusions in Section 8.1.4 Related work1.4.1 Systems. Although several systems have the mechanism to migrate activejobs, few have implemented implicit load balancing policies. Most systems onlyallow for explicit load balancing. That is, there is no load balancing policy; the userdecides which processes to migrate, and when. Examples include Accent [Zayas1987], Locus [Thiel 1991], Utopia [Zhou et al. 1993], DEMOS/MP [Powell andMiller 1983], V [Theimer et al. 1985], NEST [Agrawal and Ezzet 1987], RHODOS[De Paoli and Goscinski 1995], and MIST [Casas et al. 1995].A few systems have implicit load balancing policies, however they are strictly non-preemptive policies (active processes are only migrated for purposes other than loadbalancing, such as preserving workstation autonomy). Examples include Amoeba[Tanenbaum et al. 1990], Charlotte [Artsy and Finkel 1989], Sprite [Douglis andOusterhout 1991], Condor [Litzkow et al. 1988], and Mach [Milojicic 1993]. Ingeneral, non-preemptive load balancing policies depend on a priori informationabout processes; e.g., explicit knowledge about the runtimes of processes or user-provided lists of migratable processes [Agrawal and Ezzet 1987] [Litzkow and Livny1990] [Douglis and Ousterhout 1991] [Zhou et al. 1993].One existing system that has implemented implemented automated preemptiveload balancing is MOSIX [Barak et al. 1993]. Our results support the MOSIX claimthat their scheme is e�ective and robust.

Exploiting Process Lifetime Distributions for Dynamic Load Balancing � 51.4.2 Studies. Although few systems incorporate migration policies, there havebeen many simulation and analytical studies of various migration policies. Mostof these studies have focused on load balancing by remote execution [Livny andMelman 1982] [Wang and Morris 1985] [Casavant and Kuhl 1987] [Zhou 1987] [Pul-idas et al. 1988] [Kunz 1991] [Bonomi and Kumar 1990] [Evans and Butt 1993] [Linand Raghavendra 1993] [Mirchandaney et al. 1990] [Zhang et al. 1995] [Zhou andFerrari 1987] [Ha�c and Jin 1990] [Eager et al. 1986].Only a few studies address preemptive migration policies [Leland and Ott 1986][Krueger and Livny 1988]. The Leland and Ott migration policy is also age based,but doesn't take migration cost into account.Eager et. al.,[Eager et al. 1988], conclude that the additional performance bene�tof preemptive migration is too small compared with the bene�t of non-preemptivemigration to make preemptive migration worthwhile. This result has been widelycited, and in several cases used to justify the decision not to implement preemptivemigration, as in the Utopia system, [Zhou et al. 1993]. Our work di�ers from[Eager et al. 1988] in both system model and workload description. [Eager et al.1988] model a server farm in which incoming jobs have no a�nity for a particularprocessor, and thus the cost of initial placement (remote execution) is free. This isdi�erent from our model, a network of workstations, in which incoming jobs arriveat a particular host and the cost of moving them away, even by remote execution,is signi�cant compared to most process lifetimes. Also, [Eager et al. 1988] use adegenerate hyperexponential distribution of lifetimes that includes few jobs withnon-zero lifetimes. When the coe�cient of variation of this distribution matchesthe distributions we observed, fewer than 4% of the simulated processes have non-zero lifetimes. With so few jobs (and balanced initial placement) there is seldomany load imbalance in the system, and thus little bene�t for preemptive migration.Furthermore, the [Eager et al. 1988] process lifetime distribution is exponential forjobs with non-zero lifetimes, the consequences of which we discuss in Section 2.2.For a more detailed explanation of this distribution and its e�ect on the study, see[Downey and Harchol-Balter 1995].Krueger and Livny investigate the bene�ts of supplementing non-preemptive mi-gration with preemptive migration and �nd that preemptive migration is worth-while. They use a hyperexponential lifetime distribution that approximates closelythe distribution we observed; as a result, their �ndings are largely in accord withours. One di�erence between their work and ours is that they used a syntheticworkload with Poisson arrivals. The workload we observed, and used in our trace-driven simulations, exhibits serial correlation; i.e. it is more bursty than a Poissonprocess. Another di�erence is that their migration policy requires several hand-tuned parameters. In Section 3.1 we show how to use the distribution of lifetimesto eliminate these parameters.Like us, Bryant and Finkel discuss the distribution of process lifetimes and itse�ect on preemptive migration policy, but their hypothetical distributions are notbased on system measurements [Bryant and Finkel 1981]. Also like us, they choosemigrant processes on the basis of expected slowdown on the source and target hosts,but their estimation of those slowdowns is very di�erent from ours. In particular,they use the distribution of process lifetimes to predict a host's future load as afunction of its current load and the ages of the processes running there. We have

6 � M. Harchol-Balter and A. B. Downeyexamined this issue and found (1) that this model fails to predict future loadsbecause it ignores future arrivals, and (2) that current load is the best predictor offuture load (see Section 3.1). Thus, in our estimates of slowdown, we assume thatthe future load on a host is equal to the current load.2. DISTRIBUTION OF LIFETIMESThe general shape of the distribution of process lifetimes in an academic environ-ment has been known for a long time [Rosin 1965]: there are many short jobs anda few long jobs, and the variance of the distribution is greater than that of anexponential distribution.In 1986, Cabrera measured UNIX processes and found that over 40% doubledtheir current age [Cabrera 1986]. That same year, Leland and Ott proposed afunctional form for the process lifetime distribution, based on measurements of thelifetimes of 9.5 million UNIX processes between 1984 and 1985 [Leland and Ott1986]. They conclude that process lifetimes have a UBNE (used-better-than-new-in-expectation) type of distribution. That is, the greater the current CPU age ofa process, the greater its expected remaining CPU lifetime. Speci�cally, they �ndthat for T > 3 seconds, the probability of a process's lifetime exceeding T secondsis rT k, where �1:25 < k < �1:05 and r normalizes the distribution.In contrast, Rommel [Rommel 1991] claims that his measurements show that\long processes have exponential service times." Many subsequent studies assumean exponential lifetime distribution.Because of the importance of the process lifetime distribution for load balancingpolicies, we performed an independent study of this distribution, and found that thefunctional form proposed by Leland and Ott �ts the observed distributions well, forprocesses with lifetimes greater than 1 second. This functional form is consistentacross a variety of machines and workloads, and although the parameter, k, variesfrom -1.3 to -.8, it is generally near -1. Thus, as a rule of thumb,|The probability that a process with age 1 second uses at least T seconds of totalCPU time is about 1=T .|The probability that a process with age T seconds uses at least an additionalT seconds of CPU time is about 1=2. Thus, the median remaining lifetime of aprocess is equal to its current age.Section 2.1 describes our measurements and the distribution of lifetimes we ob-served. Section 2.2 discusses other models for the distribution of lifetimes, andargues that the particular shape of this distribution is critical for evaluating migra-tion policies.2.1 Lifetime distribution when lifetime > 1sTo determine the distribution of lifetimes for UNIX processes, we measured thelifetimes of over one million processes, generated from a variety of academic work-loads, including instructional machines, research machines, and machines used forsystem administration. We obtained our data using the UNIX command lastcomm,which outputs the CPU time used by each completed process.Figure 1 shows the distribution of lifetimes from one of the machines. The plotshows only processes whose lifetimes exceed one second. The dotted (heavy) line

Exploiting Process Lifetime Distributions for Dynamic Load Balancing � 7
Distribution of process lifetimes

(fraction of processes with duration > T)

Duration (T secs.)

0.0

0.2

0.4

0.6

0.8

1.0

1 2 4 8 16 32 64

Distribution of process lifetimes (log plot)
(fraction of processes with duration > T)

Duration (T secs.)

1

1/2

1/4

1/8

1/16

1/32

1/64

1 2 4 8 16 32 64Fig. 1. (a) Distribution of lifetimes for processes with lifetimes greater than 1 second, observedon machine po mid-semester. The dotted (thicker) line shows the measured distribution; the solid(thinner) line shows the least squares curve �t. (b) The same distribution on a log-log scale. Thestraight line in log-log space indicates that the distribution can be modeled by T k, where k is theslope of the line.

8 � M. Harchol-Balter and A. B. Downeyshows the measured distribution; the solid (thinner) line shows the least-squares �tto the data using the proposed functional form PrfLifetime > Tg = T k.By visual inspection, it is clear that the proposed model �ts the observed datawell. In contrast, Figure 2 shows that it is impossible to �nd an exponential curvethat �ts the distribution of lifetimes we observed.For all the machines we studied, the distribution of process lifetimes �ts a curveof the form T k, with k varying from �1:3 to �0:8 for di�erent machines. Table 1shows the value of the parameter for each machine we studied, estimated by aniteratively weighted least-squares �t (with no intercept, in accordance with thefunctional model). We calculated these estimates with the BLSS command robust[Abrahams and Rizzardi 1988].The standard error associated with each estimate gives a con�dence interval forthat parameter (all of these parameters are statistically signi�cant at a high degreeof certainty). The R2 value indicates the goodness of �t of the model | the valuesshown here indicate that the �tted curve accounts for greater than 99% of thevariation of the observed values. Thus, the goodness of �t of these models is high(for an explanation of R2 values, see [Larsen and Marx 1986]).Table 2 shows the cumulative distribution function, probability density function,and conditional distribution function for process lifetimes. The second columnshows these functions when k = �1, which we will assume for our analysis inSection 3.The functional form we are proposing (the �tted distribution) has the propertythat its moments (mean, variance, etc.) are in�nite. Of course, since the observeddistributions have �nite sample size, they have �nite mean (0.4 seconds) and co-e�cient of variation (5{7). One must be cautious when summarizing long-taileddistributions, though, because calculated moments tend to be dominated by a fewoutliers. In our analyses we use more robust summary statistics (order statisticslike the median, or the estimated parameter k) to summarize distributions, ratherthan moments.2.1.1 Process with lifetime < 1 second. For processes with lifetimes less than 1second, we did not �nd a consistent functional form; however, for the machineswe studied these processes had an even lower hazard rate than those of age > 1second. That is, the probability that a process of age T < 1 seconds lives another Tseconds is always greater than 1=2. Thus for jobs with lifetimes less than 1 second,the median remaining lifetime is greater than the current age.2.2 Why the distribution is criticalMany prior studies of process migration assume an exponential distribution of pro-cess lifetimes, both in analytical papers [Lin and Raghavendra 1993] [Mirchandaneyet al. 1990] [Eager et al. 1986] [Ahmad et al. 1991] and in simulation studies [Kunz1991] [Pulidas et al. 1988] [Wang and Morris 1985] [Evans and Butt 1993] [Livnyand Melman 1982] [Zhang et al. 1995] [Chowdhury 1990]. The reasons for this as-sumption include: (1) analytic tractability, and (2) the belief that even if the actuallifetime distribution is in fact not exponential, assuming an exponential distributionwill not a�ect the results of load balancing studies.Regarding the �rst point, although the functional form that we and Leland and

Exploiting Process Lifetime Distributions for Dynamic Load Balancing � 9Name Number Number Estimated Std R2of of Procs Distrib. ErrorHost Procs > 1 secpo1 77440 4107 T�0:97 .016 0.997po2 154368 11468 T�1:22 .012 0.999po3 111997 7524 T�1:27 .021 0.997cory 182523 14253 T�0:88 .030 0.982pors 141950 10402 T�0:94 .015 0.997bugs 83600 4940 T�0:82 .007 0.999faith 76507 3328 T�0:78 .045 0.964Table 1. The estimated lifetime distribution for each machine measured, and the associatedgoodness of �t statistics. Description of machines: po is a heavily-used DECserver5000/240,used primarily for undergraduate coursework. Po1, po2, and po3 refer to measurements madeon po mid-semester, late-semester, and end-semester. Cory is a heavily-used machine, used forcoursework and research. Porsche is a less frequently-used machine, used primarily for researchon scienti�c computing. Bugs is a heavily-used machine, used primarily for multimedia research.Faith is an infrequently-used machine, used both for video applications and system administration.
Observed distribution and two curve fits
(fraction of processes with duration > T)

Duration (T secs.)

kT fit
(one parameter)

exponential fit
(two parameters)

1

1/2

1/4

1/8

1/16

1/32

1/64

1 2 4 8 16 32Fig. 2. In log-log space, this plot shows the distribution of lifetimes for the 13000 processes fromour traces with lifetimes greater than second, and two attempts to �t a curve to this data. Oneof the �ts is based on the model proposed in this paper, T k. The other �t is an exponentialcurve, c � e��T . Although the exponential curve is given the bene�t of an extra free parameter,it fails to model the observed data. The proposed model �ts well. Both �ts were performed byiteratively-weighted least squares.

10 � M. Harchol-Balter and A. B. DowneyDistribution of lifetimes for processes > 1 sec When k = �1Pr fL > T secg = T k 1=TPr fT < L < T + dT secg = �kT k�1dT 1=T 2 � dTPr fL > b sec j age = ag= � ba�k a=bTable 2. The cumulative distribution function, probability density function, and conditionaldistribution function for the process lifetime L. The second column shows the functional form ofeach for the typical value k = 1.Ott propose cannot be used in queueing models as easily as an exponential distribu-tion, it nevertheless lends itself to some forms of analysis, as we show in Section 3.1.Regarding the second point, we argue that the particular shape of the lifetimedistribution a�ects the performance of migration policies, and therefore that itis important to model this distribution accurately. Speci�cally, the choice of amigration policy depends on how the expected remaining lifetime of a job varieswith age. In our observations we found a distribution with the UBNE property |the expected remaining lifetime of a job increases linearly with age. As a result, wechose a migration policy that migrates only old jobs.But di�erent distributions yield in di�erent relationships between the age of aprocess and its remaining lifetime. For example, a uniform distribution has theNBUE property | the expected remaining lifetime decreases linearly with age.Thus if the distribution of lifetimes were uniform, the migration policy shouldchoose to migrate only young processes. In this case, we expect non-preemptivemigration to perform better than preemptive migration.As another example, the exponential distribution is memoryless | the remaininglifetime of a job is independent of its age. In this case, since all processes have thesame expected lifetimes, the migration policy might choose to migrate the processwith the lowest migration cost, regardless of age.As a �nal example, processes whose lifetimes are chosen from a uniform logdistribution (a uniform distribution in log-space) have a remaining lifetime thatincreases up to a point and then begins to decrease. In this case, the best migrationpolicy might be to migrate jobs that are old enough, but not too old.Thus di�erent distributions, even with the same mean and variance, can lead todi�erent migration policies. In order to evaluate a proposed policy, it is criticalto choose a distribution model with the appropriate relationship between expectedremaining lifetime and age.Some studies have used hyperexponential distributions to model the distributionof lifetimes. These distributions may or may not have the right behavior, dependingon how accurately they �t observed distributions. [Krueger and Livny 1988] usea three-stage hyperexponential with parameters estimated to �t observed values.This distribution has the appropriate UBNE property. But the two-stage hyperex-ponential distribution [Eager et al. 1988] use is memoryless; the remaining lifetimeof a job is independent of its age (for jobs with nonzero lifetimes). According to thisdistribution, migration policy is irrelevant; all processes are equally good candidatesfor migration. This result is clearly in con
ict with our observations.

Exploiting Process Lifetime Distributions for Dynamic Load Balancing � 11Assuming the wrong lifetime distribution may also underestimate the bene�ts ofpreemptive migration. The heavy tail of our measured lifetime distribution impliesthat a tiny fraction of the jobs require more CPU than all the other jobs combined.As we'll discuss in Section 5.4, part of the power of preemptive migration is itsability to identify those few hogs. In a lifetime distribution without such a heavytail, preemptive migration might not be as e�ective.3. MIGRATION POLICYA migration policy is based on two decisions: when to migrate processes and whichprocesses to migrate. The �rst question concerns how often or at what times thesystem checks for eligible migrants. We address this issue brie
y in Section 5.1.1.The focus of this paper is the second question, also known as the selection policy:Given that the load at a host is too high, how do we choose which processto migrate?Our heuristic is to migrate processes that are expected to have long remaininglifetimes. The motivation for this heuristic is twofold. From the process's perspec-tive, migration time has a large impact on response time. A process would chooseto migrate only if the migration overhead could be amortized over a longer lifetime.From the perspective of the source host, it takes a signi�cant amount of work topackage a process for migration. The host would only choose to migrate processesthat are likely to be more expensive to run than to migrate.Many existing migration policies only migrate newborn processes (no preemp-tion), because these processes have no allocated memory and thus their migrationcost is low. The idea of migrating newborn processes might also stem from thefallacy that process lifetimes have an exponential distribution, implying that allprocesses have equal expected remaining lifetimes regardless of their age, so oneshould migrate the cheapest processes. The problem with only migrating newbornprocesses is that, according to the process lifetime distribution, newborn processesare unlikely to live long enough to justify the cost of remote execution. In fact,our measurements show that over 70% of processes have lifetimes smaller than thesmallest non-preemptive migration cost (see Table 3).Thus a newborn migration policy is only justi�ed if the system has prior knowl-edge about processes and can selectively migrate processes likely to be CPU hogs.We have found, though, that the ability of the system to predict process lifetimesby name is limited (Section 5.4).Can we do better? The distribution of lifetimes implies that we expect and oldprocess to run longer than a young process; thus, it is preferable to migrate oldprocesses.There are two potential problems with this approach. First, since the vast ma-jority of processes are short, there might not be enough old processes to have asigni�cant load balancing e�ect. In fact, although there are few long-lived pro-cesses, they account for a large part of the total CPU load. According to ourmeasurements, typically fewer than 4% of processes live longer than 2 seconds, yetthese processes make up more than 60% of the total CPU load. This is due tothe long tail of the process lifetime distribution. Furthermore, we will see that theability to migrate even a few large jobs can have a large e�ect on system perfor-

12 � M. Harchol-Balter and A. B. Downeymance, since a single long process on a busy host imposes slowdowns on many shortprocesses.A second problem with migrating old processes is that the migration cost for anactive process is much greater than the cost of remote execution. If preemptivemigration is done carelessly, this additional cost might overwhelm the bene�t ofmigrating processes with longer expected lives.3.1 Our Migration PolicyFor this reason, we propose a strategy that guarantees that every migration im-proves the expected performance of the migrant process and the other processesat the source host. This strategy migrates a process only if it improves the ex-pected slowdown of the process, where slowdown is de�ned as in Section 1.2. Ofcourse, processes on the target host are slowed by an arriving migrant, but on amoderately-loaded system there are almost always idle hosts; thus the number ofprocesses at the target host is usually zero. In any case, the number of processesat the target is always less than the number at the source.If there is no process on the host that satis�es the above migration criterion, nomigration is done. If migration costs are high, few processes will be eligible formigration; in the extreme there will be no migration at all. But in no case is theperformance of the system worse (in expectation) than the performance withoutmigration.Using the distribution of process lifetimes, we calculate the expected slowdownimposed on a migrant process, and use this result to derive a minimum age formigration based on the cost of migration. Denoting the age of the migrant processby a; the cost of migration by c; the (eventual total) lifetime of the migrant by L,the number of processes at the source host by n; and the number of processes atthe target host (including the migrant) by m, we have:E fslowdown of migrantg= Z 1t=aPr� Lifetime ofmigrant is t � �� Slowdown givenlifetime is t � dt= Z 1t=aPr ft � L < t+ dtjL � ag � na+ c+m(t� a)t= Z 1t=a at2 � na+ c+m(t� a)t dt= 12 � ca +m+ n�If there are n processes at a heavily loaded host, then a process should be eligiblefor migration only if its expected slowdown after migration is less than n (which isthe slowdown it expects in the absence of migration).Thus, we require 12 (ca +m+ n) < n, which impliesMinimum migration age = Migration costn�mWe can extend this analysis to the case of heterogeneous processor speeds by

Exploiting Process Lifetime Distributions for Dynamic Load Balancing � 13applying a scale factor to n or m.This analysis assumes that current load predicts future load; that is, that the loadat the source and target hosts will be constant during the migration. In an attemptto evaluate this assumption, and possibly improve it, we considered a number ofalternative load predictors, including (1) taking a load average (over an intervalof time), (2) summing the ages of the processes running on the host, and a (3)calculating a prediction of survivors and future arrivals based on the distributionmodel proposed here. We found that current (instantaneous) load is the best singlepredictor, and that using several predictive variables in combination did not greatlyimprove the accuracy of prediction. These results are in accord with Zhou [Zhou1987] and Kunz [Kunz 1991].3.2 Prior Preemptive PoliciesOnly a few preemptive strategies have been implemented in real systems or proposedin prior studies. The three that we have found are, like ours, based on the principlethat a process should be migrated if it is old enough.In many cases, the de�nition of old enough depends on a \voodoo" constant1: afree parameter whose value is chosen without explanation, and that would need tobe re-tuned for a di�erent system or another workload.Under Leland and Ott's policy, a process p is eligible for migration ifage(p) > ages of k younger jobs at hostwhere k is a free parameter called MINCRIT [Leland and Ott 1986]. Kruegerand Livny's policy, like ours, takes the job's migration cost into account. A processp is eligible for migration ifage(p) > 0:1 �migration cost(p)but they do not explain how they chose the value 0:1 [Krueger and Livny 1988].The MOSIX policy is similar [Barak et al. 1993]; a process is eligible for migrationif age(p) > 1:0 �migration cost(p):The choice of the constant (1:0) in the MOSIX policy ensures that the slowdownof a migrant process is never more than 2, since in the worst case the migrantcompletes immediately upon arrival at the target.Despite this justi�cation, the choice of the maximum slowdown (2) is arbitrary.We expect the MOSIX policy to be too restrictive, for two reasons. First, it ignoresthe slowdown that would be imposed at the source host in the absence of migra-tion (presumably there is more than one process there, or the system would notbe attempting to migrate processes away). Second, it is based on the worst-caseslowdown rather than the expected slowdown. In Section 5.5, we show that thebest choice for this parameter, for our workload, is usually near 0.4, but it dependson load.1This term was coined by Professor John Ousterhout at U.C. Berkeley.

14 � M. Harchol-Balter and A. B. Downey4. MODEL OF MIGRATION COSTSMigration cost has such a large e�ect on the performance of preemptive load bal-ancing; this section presents the model of migration costs we use in our simulationstudies.We model the cost of migrating an active process as the sum of a �xed migrationcost for migrating the process's system state and a memory transfer cost that isproportional to the amount of the process's memory that must be transferred.We model remote execution cost as a �xed cost; it is the same for all processes.The cost of remote execution includes sending the command and arguments to theremote host, logging in or otherwise authenticating the process, and creating a newshell and environment on the remote host.Throughout this paper, we use the following notation:|r: the cost of remote execution, in seconds|f : the �xed cost of preemptive migration, in seconds|b: the memory transfer bandwidth, in MB per second|m: the memory size of migrant processes, in MBand thus: cost of remote execution = rcost of preemptive migration = f +m=bwhere the quotient m=b is the memory transfer cost.4.1 Memory transfer costsThe amount of a process's memory that must be transferred during preemptivemigration depends on properties of the distributed system. Douglis and Ousterhout[Douglis and Ousterhout 1991] have an excellent discussion of this issue, and weborrow from them here.At the most, it might be necessary to transfer a process's entire memory. On asystem like Sprite, which integrates virtual memory with a distributed �le system,it is only necessary to write dirty pages to the �le system before migration. Whenthe process is restarted at the target host, it will retrieve these pages. In this casethe cost of migration is proportional to the size of the resident set rather than thesize of memory.In systems that use precopying, such as V [Theimer et al. 1985], pages are trans-ferred while the program continues to run at the source host. When the job stopsexecution at the source, it will have to transfer again any pages that have becomedirty during the precopy. Although the number of pages transferred might be in-creased, the delay imposed on the migrant process is greatly decreased. Additionaltechniques can reduce the cost of transferring memory even more [Zayas 1987].4.2 Migration costs in real systemsThe speci�c parameters of migration cost depend not only on the nature of thesystem (as discussed above) but also on the speed of the network. Tables 3 and 4show reported costs from a variety of real systems. Later we will use a trace-drivensimulator to evaluate the e�ect of these parameters on system performance. We

Exploiting Process Lifetime Distributions for Dynamic Load Balancing � 15System Hardware Cost of rexec, rSprite SPARCstation1 0.33 sec[Douglis and Ousterhout 1991] 10Mb/sec EthernetGLUNIX HP workstations 0.25 to 0.5 sec[Vahdat et al. 1994] [Vahdat 1995] ATM networkMIST HP9000/720 0.33 sec[Prouty 1996] 10Mb/sec EthernetUtopia DEC 3100 and SPARC IPC 0.1 sec[Zhou et al. 1993] EthernetTable 3. Cost of non-preemptive migration in various systems. Some of these numbers wereobtained from personal communication with the authors.System Hardware Fixed InverseCost, f Bandwidth, 1=bSprite SPARCstation1 0.33 sec 2.00 sec/MB[Douglis and Ousterhout 1991] 10Mb/sec EthernetMOSIX Intel Pentium 90MHz 0.006 sec 0.44 sec/MB[Barak et al. 1993] [Braverman 1995] and 486 66MHzMIST HP9000/720s 0.24 sec 0.99 sec/MB[Prouty 1996] 10Mb/sec EthernetTable 4. Values for preemptive migration costs from various systems. Many of these numberswere obtained from personal communication with the authors. The memory transfer cost is theproduct of the inverse bandwidth, 1=b, and the amount of memory that must be transferred, m.will make the pessimistic simpli�cation that a migrant's entire memory must betransferred, although, as pointed out above, this is not necessarily the case.5. TRACE-DRIVEN SIMULATIONIn this section we present the results of a trace-driven simulation of process mi-gration. We compare two migration strategies: our proposed age-based preemptivemigration strategy (Section 3.1) and a non-preemptive strategy that migrates new-born processes according to the process name (similar to strategies proposed by[Wang et al. 1993] and [Svensson 1990]). With the intention of �nding a conser-vative estimate of the bene�t of preemptive migration, we give the name-basedstrategy the bene�t of several unrealistic advantages; for example, the name-listsare derived from the same trace data used by the simulator.Section 5.1 describes the simulator and the two strategies in more detail. Weuse the simulator to run three experiments. First, in Section 5.2, we evaluatethe sensitivity of each strategy to the migration costs r, f , b, and m discussedin Section 4. Next, in Section 5.3, we choose values for these parameters that arerepresentative of current systems and compare the performance of the two strategiesin detail. In Section 5.4 we discuss why the preemptive policy outperforms thenon-preemptive policy. Lastly, in Section 5.5, we evaluate the analytic criterionfor migration age proposed in Section 3.1, compared to criteria used in previousstudies.

16 � M. Harchol-Balter and A. B. Downey5.1 The simulatorWe have implemented a trace-driven simulation of a network of six identical workstations.2We selected six daytime intervals from the traces on machine po (see Section 2.1),each from 9:00 a.m. to 5:00 p.m. From the six traces we extracted the start timesand CPU durations of the processes. We then simulated a network where each ofsix hosts executes (concurrently with the others) the process arrivals from one ofthe daytime traces.Although the workloads on the six hosts are homogeneous in terms of the jobmix and distribution of lifetimes, there is considerable variation in the level ofactivity during the eight-hour trace. For most of the traces, every arriving process�nds at least one idle host in the system, but in the two busiest traces, a smallfraction of processes (0:1%) arrive to �nd all hosts busy. In order to evaluate thee�ect of changes in system load, we divided the eight-hour trace into eight one-hourintervals. We refer to these as runs 0 through 7, where the runs are sorted fromlowest to highest load. Run 0 has a total of 15000 processes submitted to the sixsimulated hosts; Run 7 has 30000 processes. The average duration of processes (forall runs) is 0.4 seconds. Thus the total utilization of the system, �, is between 0.27and 0.54.The birth process of jobs at our hosts is burstier than a Poisson process. For agiven run and a given host, the serial correlation in interarrival times is typicallybetween .08 and .24, which is signi�cantly higher than one would expect from aPoisson process (uncorrelated interarrival times yield a serial correlation of 0.0;perfect correlation is 1.0).Although the start times and durations of the processes come from trace data,the memory size of each process, which determines its migration cost, is chosenrandomly from a measured distribution (see Section 5.2). This simpli�cation oblit-erates any correlations between memory size and other process characteristics, butit allows us to control the mean memory size as a parameter and examine its e�ecton system performance.In our system model, we assume that processes are always ready to run; i.e. theyare never blocked on I/O. During a given time interval, we divide CPU time equallyamong the processes on the host (processor sharing).In real systems, part of the migration time is spent on the source host packagingthe transferred pages, part in transit in the network, and part on the target hostunpacking the data. The size of these parts and whether they can be overlappeddepend on details of the system. In our simulation we charge the entire cost ofmigration to the source host. This simpli�cation is conservative in the sense thatit makes preemptive migration less e�ective.5.1.1 Strategies. We compare the preemptive migration strategy proposed in Sec-tion 3.1 with a non-preemptive migration strategy, where the non-preemptive strat-egy is given unfair advantages. For purposes of comparison, we have tried to makethe policies as simple and as similar as possible. For both types of migration, weconsider performing a migration only when a new process is born, even though a2The trace-driven simulator and the trace data are available athttp://http.cs.berkeley.edu/�harchol/loadbalancing.html.

Exploiting Process Lifetime Distributions for Dynamic Load Balancing � 17preemptive strategy might bene�t by initiating migrations at other times. Also,for both strategies, a host is considered heavily-loaded any time it contains morethan one process; in other words, any time it would be sensible to consider mi-gration. Finally, we use the same location policy in both cases: the host with thelowest instantaneous load is chosen as the target host (ties are broken by randomselection).Thus the only di�erence between the two migration policies is which processesare considered eligible for migration:Name-based non-preemptive migration. A process is eligible for migration only ifits name is on a list of processes that tend to be long-lived. If an eligible processis born at a heavily-loaded host, the process is executed remotely on the selectedhost. Processes cannot be migrated once they have begun execution.The performance of this strategy depends on the list of eligible process names.We derived this list by sorting the processes from the traces according to name andduration and selecting the 15 common names with the longest mean durations. Wechose a threshold on mean duration that is empirically optimal (for this set of runs).Adding more names to the list detracts from the performance of the system, as itallows more short-lived processes to be migrated. Removing names from the listdetracts from performance as it becomes impossible to migrate enough processesto balance the load e�ectively. Since we used the trace data itself to construct thelist, our results may overestimate the performance bene�ts of this strategy.Age-based preemptive migration. A process is eligible for migration only if it hasaged for some fraction of its migration cost. Based on the derivation in Section 3.1,this fraction is 1n�m , where n (respectively m) is the number of processes at thesource (target) host. When a new process is born at a heavily-loaded host, allprocesses that satisfy the migration criterion are migrated away.This strategy understates the performance bene�ts of preemptive migration, be-cause it does not allow the system to initiate migrations except when a new processarrives.As described in Section 3.1, we also modeled other location policies based onmore complicated predictors of future loads, but none of these predictors yieldedsigni�cantly better performance than the instantaneous load we use here.We also considered the e�ect of allowing preemptive migration at times otherthan when a new process arrives. Ideally, one would like to initiate a migrationwhenever a process becomes eligible (since the eligibility criterion guarantees thatthe performance of the migrant will improve in expectation). One of the strategieswe considered performs periodic checks of each process on a heavily-loaded hostto see if any satisfy the criterion. The performance of this strategy is signi�cantlybetter than that of the simpler policy (migrating only at process arrival times).5.1.2 Metrics. We evaluate the e�ectiveness of each strategy according to thefollowing performance metrics:Mean slowdown. Slowdown is the ratio of wall-clock execution time to CPU time(thus, it is always greater than one). The average slowdown of all jobs is a commonmetric of system performance. When we compute the ratio of mean slowdowns (asfrom di�erent strategies) we will use normalized slowdown, which is the ratio of

18 � M. Harchol-Balter and A. B. Downey
Distribution of slowdowns

Slowdown

Fraction
of procs

0

0.1

0.2

0.3

0.4

0.5

1 2 3 4 5 6 7 8 9 10Fig. 3. Distribution of process slowdowns for run 0 (with no migration). Most processes su�ersmall slowdowns, but the processes in the tail of the distribution are more noticeable and annoyingto users.inactive time (the excess slowdown caused by queueing and migration delays) toCPU time. For example, if the (unnormalized) mean slowdown drops from 2:0 to1:5, the ratio of normalized mean slowdowns is 0:5=1:0 = 0:5: a 50% reduction indelay.Mean slowdown alone is not a su�cient measure of the di�erence in performanceof the two strategies; it understates the advantages of the preemptive strategy forthese two reasons:|Skewed distribution of slowdowns: Even in the absence of migration, the majorityof processes su�er small slowdowns (typically 80% are less than 3.0. See Figure 3).The value of the mean slowdown is dominated by this majority.|User perception: From the user's point of view, the important processes are theones in the tail of the distribution, because although they are the minority, theycause the most noticeable and annoying delays. Eliminating these delays mighthave a small e�ect on the mean slowdown, but a large e�ect on a user's perceptionof performance.Therefore, we will also consider the following three metrics:Variance of slowdown. This metric is often cited as a measure of the unpre-dictability of response time [Silberschatz et al. 1994], which is a nuisance for userstrying to schedule tasks. In light of the distribution of slowdowns, however, itmay be more meaningful to interpret this metric as a measure of the length of thetail of the distribution; i.e. the number of jobs that experience long delays. (SeeFigure 5b).Number of severely slowed processes. In order to quantify the number of notice-able delays explicitly, we consider the number (or percentage) of processes that areseverely impacted by queueing and migration penalties. (See Figures 5c and 5d).

Exploiting Process Lifetime Distributions for Dynamic Load Balancing � 19Mean slowdown of long jobs. Delays in longer jobs (those with lifetimes greaterthan :5 seconds) are more perceivable to users than delays in short jobs. (SeeFigure 6).5.2 Sensitivity to migration costsIn this section we compare the performance of the non-preemptive and preemptivestrategies over a range of values of r, f , b and m (the migration cost parametersde�ned in Section 4).For the following experiments, we chose the remote execution cost r = :3 seconds.We considered a range for the �xed migration cost of :1 < f < 10 seconds.The memory transfer cost is the quotient of m (the memory size of the migrantprocess) and b (the bandwidth of the network). We chose the memory transfer costfrom a distribution with the same shape as the distribution of process lifetimes,setting the mean memory transfer cost (MMTC) to a range of values from 1 to 64seconds. The shape of this distribution is based on an informal study of memory-usepatterns on the same machines from which we collected trace data. The importantfeature of this distribution is that there are many jobs with small memory demandsand a few jobs with very large memory demands. Empirically, the exact form of thisdistribution does not a�ect the performance of either migration strategy strongly,but of course the mean (MMTC) does have a strong e�ect.Figures 4a and 4b are contour plots of the ratio of the performance of the twomigration strategies using normalized slowdown. Speci�cally, for each of the eightone-hour runs we calculate the mean (respectively standard deviation) of the slow-down imposed on all processes that complete during the hour. For each run, wethen take the ratio of the means (standard deviations) of the two strategies. Lastlywe take the geometric mean of the eight ratios (for discussion of the geometricmean, see [Hennessy and Patterson 1990]).The two axes in Figure 4 represent the two components of the cost of preemp-tive migration, namely the �xed cost, f , and the MMTC, m=b. The cost of non-preemptive migration, r, is �xed at 0:3 seconds. As expected, increasing either the�xed cost of migration or the MMTC hurts the performance of preemptive migra-tion. The contour line marked 1:0 indicates the crossover where the performanceof preemptive and non-preemptive migration is equal (the ratio is 1:0). For smallervalues of the cost parameters, preemptive migration performs better; for example,if the �xed migration cost is 0.3 seconds and the MMTC is 2 seconds, the nor-malized mean slowdown with preemptive migration is almost 40% lower than withnon-preemptive migration. When the �xed cost of migration or the MMTC arevery high, almost all processes are ineligible for preemptive migration; thus, thepreemptive strategy does almost no migrations. The non-preemptive strategy isuna�ected by these costs so the non-preemptive strategy can be more e�ective.Figure 4b shows the e�ect of migration costs on the standard deviation of slow-downs. The crossover point | where non-preemptive migration surpasses preemp-tive migration | is considerably higher here than in Figure 4a. Thus there isa region where preemptive migration yields a higher mean slowdown than non-preemptive migration, but a lower standard deviation. The reason for this is thatnon-preemptive migration occasionally chooses a process for remote execution thatturns out to be short-lived. These processes su�er large delays (relative to their

20 � M. Harchol-Balter and A. B. Downey

1 2 4 8 16 32 64
0.1

1

3

10

Mean memory transfer cost (sec.)

F
ix

ed
 m

ig
ra

tio
n

co
st

 (
se

c.
)

Ratio of mean slowdowns

PREEMPTIVE
BETTER HERE

NON−PREEMPTIVE
BETTER HERE

X

0.6

0.7

0.8

0.9

1.0
1.1

1.2

(a)

1 2 4 8 16 32 64
0.1

1

3

10

Mean memory transfer cost (sec.)

F
ix

ed
 m

ig
ra

tio
n

co
st

 (
se

c.
)

Ratio of std of slowdowns

PREEMPTIVE
BETTER EXCEPT
UPPER RIGHTX

0.5

0.6

0.7

0.8

0.9

1.0

(b)

Fig. 4. (a) The performance of preemptive migration relative to non-preemptive migration dete-riorates as the cost of preemptive migration increases. The two axes are the two components ofthe preemptive migration cost. The cost of non-preemptive migration is held �xed. The X marksthe particular set of parameters we will consider in the next section. (b) The standard deviationof slowdown may give a better indication of a user's perception of system performance than meanslowdown. By this metric, the bene�t of preemptive migration is even more signi�cant.

Exploiting Process Lifetime Distributions for Dynamic Load Balancing � 21run times) and add to the tail of the distribution of slowdowns. In the next section,we show cases in which the standard deviation of slowdowns is actually worse withnon-preemptive migration than with no migration at all (three of the eight runs).5.3 Comparison of preemptive and non-preemptive strategiesIn this section we choose migration cost parameters representative of current sys-tems (see Section 4.2) and use them to examine more closely the performance ofthe two migration strategies. The values we chose are:|r: the cost of remote execution, 0.3 seconds|f : the �xed cost of preemptive migration, 0.3 seconds|b: the memory transfer bandwidth, 0.5 MB per second|m: the mean memory size of migrant processes, 1 MBIn Figures 4a and 4b, the point corresponding to these parameter values is markedwith an X. Figure 5 shows the performance of the two migration strategies at thispoint (compared to the case of no migration).Non-preemptive migration reduces the normalized mean slowdown (Figure 5a)by less than 20% for most runs (and 40% for the two runs with the highest loads).Preemptive migration reduces the normalized mean slowdown by 50% for mostruns (and more than 60% for two of the runs). The performance improvement ofpreemptive migration over non-preemptive migration is typically between 35% and50%.As discussed above, we feel that the mean slowdown (normalized or not) under-states the performance bene�ts of preemptive migration. We have proposed othermetrics to try to quantify these bene�ts. Figure 5b shows the standard deviationof slowdowns, which re
ects the number of severely impacted processes. Figures 5cand 5d explicitly measure the number of severely impacted processes, according totwo di�erent thresholds of acceptable slowdown. By these metrics, the bene�ts ofmigration in general appear greater, and the discrepancy between preemptive andnon-preemptive migration appears much greater. For example in Figure 5d, in theabsence of migration, 7 { 18% of processes are slowed by a factor of 5 or more.Non-preemptive migration is able to eliminate 42{62% of these, which is a signi�-cant bene�t, but preemptive migration consistently eliminates nearly all (86{97%)severe delays.An important observation from Figure 5b is that for several runs, non-preemptivemigration actually makes the performance of the system worse than if there wereno migration at all. For the preemptive migration strategy, this outcome is nearlyimpossible, since migrations are only performed if they improve the slowdowns ofall processes involved (in expectation). In the worst case, then, the preemptivestrategy will do no worse than the case of no migration (in expectation).Another bene�t of preemptive migration is graceful degradation of system per-formance as load increases (as shown in Figure 5). In the presence of preemptivemigration, both the mean and standard deviation of slowdown are nearly constant,regardless of the overall load on the system.

22 � M. Harchol-Balter and A. B. Downey
Mean slowdown

0 1 2 3 4 5 6 7
run number

1.0

2.0

3.0

4.0
no migration

non-preemptive, name-based migration
preemptive, age-based migration

Standard deviation of slowdown

0 1 2 3 4 5 6 7
run number

0.0

1.0

2.0

3.0

4.0
no migration

non-preemptive, name-based migration
preemptive, age-based migration

Processes slowed by a factor of 3 or more

0 1 2 3 4 5 6 7
run number

0%

10%

20%

30%

no migration
non-preemptive, name-based migration

preemptive, age-based migration

Processes slowed by a factor of 5 or more

0 1 2 3 4 5 6 7
run number

0%

5%

10%

15%

20%
no migration

non-preemptive, name-based migration
preemptive, age-based migration

Fig. 5. (a) Mean slowdown. (b) Standard deviation of slowdown. (c) Percentage of processesslowed by a factor of 3 or more. (d) Percentage of processes slowed by a factor of 5 or more.

Exploiting Process Lifetime Distributions for Dynamic Load Balancing � 235.4 Why preemptive migration outperforms non-preemptive migrationThe alternate metrics discussed above shed some light on the reasons for the perfor-mance di�erence between preemptive and non-preemptive migration. We considertwo kinds of mistakes a migration system might make:Failing to migrate long-lived jobs. This type of error imposes moderate slowdownson a potential migrant, and, more importantly, in
icts delays on short jobs thatare forced to share a processor with a CPU hog. Under non-preemptive migration,this error occurs whenever a long-lived process is not on the name-list, possiblybecause it is an unknown program or an unusually long execution of a typicallyshort-lived program. Preemptive migration can correct these errors by migratinglong jobs later in their lives.Migrating short-lived jobs. This type of error imposes large slowdowns on themigrated process, wastes network resources, and fails to e�ect signi�cant load bal-ancing. Under non-preemptive migration, this error occurs when a process whosename is on the eligible list turns out to be short-lived. Our preemptive migrationstrategy all but eliminates this type of error by guaranteeing that the performanceof a migrant improves in expectation.Even occasional mistakes of the �rst kind can have a large impact on performance,because one long job on a busy machine will impede many small jobs. This e�ect isaggravated by the serial correlation between arrival times (see Section 5.1), whichsuggests that a busy host is likely to receive many future arrivals.Thus, an important feature of a migration policy is its ability to identify long-livedjobs for migration. To evaluate this ability, we consider the average lifetime of theprocesses chosen for migration under each policy. Under non-preemptive migration,the average lifetime of migrant processes was 2:0 seconds (the mean lifetime for allprocesses is 0:4 seconds), and the median lifetime of migrants was 0:9 seconds. Thenon-preemptive policy migrated about 1% of all jobs, which accounted for 5:7% ofthe total CPU.The preemptive migration policy was better able to identify long jobs; the aver-age lifetime of migrant processes under preemptive migration was 4:9 seconds; themedian lifetime of migrants was 2:0 seconds. The preemptive policy migrated 4%of all jobs, but since these migrants were long-lived, they accounted for 55% of thetotal CPU.Thus the primary reason for the success of preemptive migration is its ability toidentify long jobs accurately and to migrate those jobs away from busy hosts.The second type of error did not have as great an impact on the mean slow-down for all processes, but it did impose large slowdowns on some small processes.These outliers are re
ected in the standard deviation of slowdowns | because thenon-preemptive policy sometimes migrates very short jobs, it can make the stan-dard deviation of slowdowns worse than with no migration (see Figure 5b). Theage-based preemptive migration criterion eliminates most errors of this type byguaranteeing that the performance of the migrant will improve in expectation.There is, however, one type of migration error that is more problematic for pre-emptive migration than for non-preemptive migration: stale load information. Atarget host may have a low load when a migration is initiated, but its load mayhave increased by the time the migrant arrives. This is more likely for a preemptive

24 � M. Harchol-Balter and A. B. Downeymigration because the migration time is longer. In our simulations, we found thatthese errors do occur, although infrequently enough that they do not have a severeimpact on performance.Speci�cally, we counted the number of migrant processes that arrived at a targethost and found that the load was higher than it had been at the source host whenmigration began. For most runs, this occurred less than 0:5% of the time (for tworuns with high loads it was 0:7%). Somewhat more often, 3% of the time, a migrantprocess arrived at a target host and found that the load at the target was greaterthan the current load at the source. These results suggest that the performance ofa preemptive migration strategy might be improved by a reservation system as inMOSIX.One other potential problem with preemptive migration is the volume of net-work tra�c that results from large memory transfers. In our simulations, we didnot model network congestion, on the assumption that the tra�c generated by mi-gration would not be excessive. This assumption seems to be reasonable: underour preemptive migration strategy fewer than 4% of processes are migrated onceand fewer than :25% of processes are migrated more than once. Furthermore, thereis seldom more than one migration in progress at a time.In summary, the advantage of preemptive migration | its ability to identify longjobs and move them away from busy hosts | overcomes its disadvantages (longermigration times and stale load information).5.4.1 E�ect of migration on short and long jobs. We have claimed that identify-ing long jobs and migrating them away from busy hosts helps not only the long jobs(which run on more lightly-loaded hosts) but also the short jobs that run on thesource host. To test this claim, we divided the processes into three lifetime groupsand measured the performance bene�t for each group due to migration. The num-ber of jobs in short group is roughly ten times the number in the medium group,which in turn is roughly ten times the number in the long group. Figure 6 showsthat migration reduces the mean slowdown of all three groups: for non-preemptivemigration the improvement is the same for all groups; under preemptive migrationthe long jobs enjoy a slightly greater bene�t.This breakdown by lifetime group is useful for evaluating various metrics of sys-tem performance. The metric we are using here, slowdown, gives equal weight toall jobs; as a result, the mean slowdown metric is dominated by the most populousgroup, short jobs. Another common metric, residence time, e�ectively weights jobsaccording to their lifetimes. Thus the mean residence time metric re
ects, primar-ily, the performance bene�t for long jobs. Under the mean residence time metric,then, preemptive migration appears even more e�ective.5.5 Evaluation of analytic migration criterionAs derived in Section 3.1, the minimum age for a migrant process according to ouranalytic criterion is Minimummigration age = Migration costn�mwhere n is the load at the source host andm is the load at the target host (including

Exploiting Process Lifetime Distributions for Dynamic Load Balancing � 25
Mean slowdown by age group

no migration
non−preemptive migration

preemptive migration

Duration

1.0

1.5

2.0

2.5

3.0

dur < .5s .5s < dur < 5s dur > 5s.Fig. 6. Mean slowdown broken down by lifetime group.
Mean slowdown

1.0

1.5

2.0

2.5

(0.3) (0.5) (0.5) (0.3) (0.3) (0.5) (0.8) (0.9)

best fixed parametric min. age
analytic minimum age

0 1 2 3 4 5 6 7Fig. 7. The mean slowdown for eight runs, using the two criteria for minimum migration age.The value of the best �xed parameter � is shown in parentheses for each run.

26 � M. Harchol-Balter and A. B. Downeythe potential migrant).We compare the analytic criterion with the �xed parameter criterion:Minimummigration age = � �Migration costwhere � is a free parameter. This parameter is meant to model preemptive mi-gration strategies in the literature, as discussed in Section 3.2. For comparison,we will use the best �xed parameter, which is, for each run, the value that yieldsthe smallest mean slowdown. Of course, this gives the �xed parameter criterion aconsiderable advantage.Figure 7 compares the performance of the analytic minimum age criterion withthe best �xed parameter. The best �xed parameter varies considerably from runto run, and appears to be roughly correlated with the average load during the run(the runs are sorted in increasing order of total load).The performance of the analytic criterion is always within a few percent of theperformance of the best �xed value criterion. The advantage of the analytic criterionis that it is parameterless, and therefore more robust across a variety of workloads.We feel that the elimination of one free parameter is a useful result in an area withso many (usually hand-tuned) parameters.This result also suggests that the parameter used by Krueger and Livny (� = 0:1)is too low, and the parameter used in MOSIX (� = 1:0) is too high, at least forthis workload (see Section 3.2).6. WEAKNESSES OF THE MODELOur simulation ignores a number of factors that would a�ect the performance ofmigration in real systems:CPU-bound jobs only. Our model considers all jobs CPU-bound; thus, their re-sponse time necessarily improves if they run on a host with a lighter load. For I/Obound jobs, however, CPU contention has little e�ect on response time. These jobswould bene�t less from migration. To see how large a role this plays in our results,we noted the names of the processes that appear most frequently in our traces(with CPU time greater than 1 second, since these are the processes most likely tobe migrated). The most common names were cc1plus and cc1, both of which areCPU bound. Next most frequent were: trn, cpp, ld, jove (a version of emacs), andps. So although some jobs in our traces are in reality interactive, our simple modelis reasonable for many of the most common jobs. In Section 7 we discuss furtherimplications of a workload including interactive, I/O-bound, and non-migratablejobs.Environment. Our migration strategy takes advantage of the used-better-than-new property of process lifetimes. In an environment with a di�erent distribution,this strategy will not be e�ective.Local scheduling. We assume that local scheduling on the hosts is similar toround-robin. Other policies, like feedback scheduling, can reduce the impact oflong jobs on the performance of short jobs, and thereby reduce the need for loadbalancing. We explore this issue in more detail in Section 7 and �nd that preemptivemigration is still bene�cial under feedback scheduling.

Exploiting Process Lifetime Distributions for Dynamic Load Balancing � 27Memory size. One weakness of our model is that we chose memory sizes froma measured distribution and therefore our model ignores any correlation betweenmemory size and other process characteristics. To justify this simpli�cation, weconducted an informal study of processes in our department, and found no corre-lation between memory size and process CPU usage. Krueger and Livny reporta similar observation [Krueger and Livny 1988]. Thus, this may be a reasonablesimpli�cation.Network contention. Our model does not consider the e�ect of increased networktra�c as a result of process migration. We observe, however, that for the load levelswe simulated, migrations are occasional (one every few seconds), and that there isseldom more than one migration in progress at a time.7. FUTURE WORKIn our workload model we have assumed that all processes are CPU-bound. Of pri-mary interest in future work is including interactive, I/O-bound, and non-migratablejobs into our workload.In a workload that includes interactive jobs, I/O-bound jobs, and daemons, therewill be some jobs that should not or cannot be migrated. An I/O-bound job, forexample, will not necessarily run faster on a more lightly-loaded host, and mightrun slower if it is migrated away from the disk or other I/O device it uses. Amigrated interactive job might bene�t by running on a more lightly-loaded hostif it uses signi�cant CPU time, but will su�er performance penalties for all futureinteractions. Finally, some jobs (e.g. many daemons) cannot be migrated awayfrom their hosts.The policy we proposed for preemptive migration can be extended to deal ap-propriately with interactive and I/O bound jobs by including in the de�nition ofmigration cost the additional costs that will be imposed on these jobs after mi-gration, including network delays, access to non-local data, etc. The estimates ofthese costs might be based on the recent behavior of the job; e.g. the number andfrequency of I/O requests and interactions. Jobs that are explicitly forbidden tomigrate could be assigned an in�nite migration cost.The presence of a set of jobs that are either expensive or impossible to migratemight reduce the ability of the migration policy to move work around the networkand balance loads e�ectively. However, we observe that the majority of long-livedjobs are, in fact, CPU-bound, and it is these long-lived jobs that consume themajority of CPU time. Thus, even if the migration policy were only able to migratea subset of the jobs in the system, it could still have a signi�cant load-balancinge�ect.Another way in which the proposed migration policy should be altered in a moregeneral environment is that n (the number of jobs at the source) andm (the numberof jobs at the target host) should distinguish between CPU-bound jobs and othertypes of jobs, since only CPU-bound jobs a�ect CPU contention, and therefore aresigni�cant in CPU load balancing.Another important consideration in load balancing is the e�ect of local schedulingat the hosts. Most prior studies of load balancing have assumed, as we do, that thelocal scheduling is round-robin (or processor-sharing). A few assume �rst-come-�rst-serve (FCFS) scheduling, but fewer still have studied the e�ect of feedback

28 � M. Harchol-Balter and A. B. Downeyscheduling, where processes that have used the least CPU time are given priorityover older processes. We simulated feedback scheduling and found that it greatlyreduced mean slowdown (from approximately 2:5 to between 1:2 and 1:7, dependingon load) even without migration. Thus, the potential bene�t of either type ofmigration is greatly reduced.We evaluated the non-preemptive migration policy from Section 5.1.1 under feed-back scheduling, and found that it often makes things worse, increasing the meanslowdown in 5 of the 8 runs, and only decreasing it by 11% in the best case (highestload).To evaluate our preemptive policy, we had to change the migration criterionto re
ect the e�ect of local scheduling. Under processor sharing, we assume thatthe slowdown imposed on a process is equal to the number of processes on thehost. Under feedback scheduling, the slowdown is closer to the number of youngerprocesses, since older processes have lower priority. Thus, we modi�ed the migrationcriterion in Section 3.1 so that n and m are the number of processes at the sourceand target hosts that are younger than the migrant process. Using this criterion,preemptive migration reduces mean normalized slowdown by 12{32%, and reducesthe number of severely slowed processes (slowdown greater than 5) by 30{60%.An issue that remains unresolved is whether feedback scheduling is as e�ective inreal systems as it was in our simulations. For example, decay-usage scheduling asused in UNIX has some characteristics of both round-robin and feedback policies[Epema 1995]. Young jobs do have some precedence, but old jobs that performinteraction or other I/O are given higher priority, which allows them to interferewith short jobs. In our experiments on a SPARC workstation running SunOS, wefound that a long-running job that performs periodic I/O can obtain more than 50%of the CPU time, even if it is sharing a host with much younger processes. Themore recent lottery scheduling behaves more like processor-sharing [Waldspurgerand Weihl 1994]. To understand the e�ect of local scheduling on load balancingrequires a process model that includes interaction and I/O.8. CONCLUSIONS|To evaluate migration strategies, it is important to model the distribution ofprocess lifetimes accurately. Assuming an exponential distribution can underes-timate the bene�ts of preemptive migration, because it ignores the fact that oldjobs are expected to be long-lived. Even a lifetime distribution that matches themeasured distribution in both mean and variance may be misleading in designingand evaluating load balancing policies.|Preemptive migration outperforms non-preemptive migration even when memory-transfer costs are high, for the following reason: non-preemptive name-basedstrategies choose processes for migration that are expected to have long lives. Ifthis prediction is wrong, and a process runs longer than expected, it cannot bemigrated away, and many subsequent small processes will be delayed. A preemp-tive strategy is able to predict lifetimes more accurately (based on age) and, moreimportantly, if the prediction is wrong, the system can recover by migrating theprocess later.|Migrating a long job away from a busy host helps not only the long job, but

Exploiting Process Lifetime Distributions for Dynamic Load Balancing � 29also the many short jobs that are expected to arrive at the host in the future. Abusy host is expected to receive many arrivals because of the serial correlation(burstiness) of the arrival process.|Using the functional form of the distribution of process lifetimes, we have deriveda criterion for the minimum time a process must age before being migrated. Thiscriterion is parameterless and robust across a range of loads.|Exclusive use of mean slowdown as a metric of system performance understatesthe bene�ts of load balancing as perceived by users, and especially understates thebene�ts of preemptive load balancing. One performance metric which is morerelated to user perception is the number of severely slowed processes. Whilenon-preemptive migration eliminates half of these noticeable delays, preemptivemigration reduces them by a factor of ten.|Although preemptive migration is di�cult to implement, several systems havechosen to implement it for reasons other than load balancing. Our results sug-gest these systems would bene�t from incorporating a preemptive load balancingpolicy.ACKNOWLEDGMENTSWe would like to thank Tom Anderson and the members of the NOW group forcomments and suggestions on our experimental setup. We are also greatly indebtedto the anonymous reviewers from SIGMETRICS and SOSP, and to John Zahorjan,whose comments greatly improved the quality of this paper.REFERENCESAbrahams, D. M. and Rizzardi, F. 1988. The Berkeley Interactive Statistical System. W.W. Norton and Co.Agrawal, R. and Ezzet, A. 1987. Location independent remote execution in NEST. IEEETransactions on Software Engineering 13, 8 (August), 905{912.Ahmad, I., Ghafoor, A., and Mehrotra, K. 1991. Performance prediction of distributedload balancing on multicomputer systems. In Supercomputing (1991), pp. 830{839.Artsy, Y. and Finkel, R. 1989. Designing a process migration facility: The Charlotteexperience. IEEE Computer , 47{56.Barak, A., Shai, G., and Wheeler, R. G. 1993. The MOSIX Distributed OperatingSystem: Load Balancing for UNIX. Springer Verlag, Berlin.Bonomi, F. and Kumar, A. 1990. Adaptive optimal load balancing in a nonhomogeneousmultiserver system with a central job scheduler. IEEE Transactions on Computers 39, 10(October), 1232{1250.Braverman, A. 1995. Personal Communication.Bryant, R. M. and Finkel, R. A. 1981. A stable distributed scheduling algorithm. In 2ndInternational Conference on Distributed Computing Systems (1981), pp. 314{323.Cabrera, F. 1986. The in
uence of workload on load balancing strategies. In Proceedingsof the Usenix Summer Conference (June 1986), pp. 446{458.Casas, J., Clark, D. L., Konuru, R., Otto, S. W., Prouty, R. M., and Walpole, J.1995. Mpvm: A migration transparent version of pvm. Computing Systems 8, 2 (Spring),171{216.Casavant, T. L. and Kuhl, J. G. 1987. Analysis of three dynamic distributed load-balancing strategies with varying global information requirements. In 7th InternationalConference on Distributed Computing Systems (September 1987), pp. 185{192.

30 � M. Harchol-Balter and A. B. DowneyChowdhury, S. 1990. The greedy load sharing algorithm. Journal of Parallel and Dis-tributed Computing 9, 93{99.De Paoli, D. and Goscinski, A. 1995. The rhodos migration facility. Journal of Systemsand Software. Submitted. See also http://www.cm.deakin.edu.au/rhodos/.Douglis, F. and Ousterhout, J. 1991. Transparent process migration: Design alternativesand the sprite implementation. Software { Practice and Experience 21, 8 (August), 757{785.Downey, A. B. and Harchol-Balter, M. 1995. A note on \The limited performancebene�ts of migrating active processes for load sharing". Technical Report UCB/CSD-95-888 (November), University of California, Berkeley.Eager, D. L., Lazowska, E. D., and Zahorjan, J. 1986. Adaptive load sharing in ho-mogeneous distributed systems. IEEE Transactions on Software Engineering 12, 5 (May),662{675.Eager, D. L., Lazowska, E. D., and Zahorjan, J. 1988. The limited performance bene�tsof migrating active processes for load sharing. In ACM Sigmetrics Conference on Measuringand Modeling of Computer Systems (May 1988), pp. 662{675.Epema, D. 1995. An analysis of decay-usage scheduling in multiprocessors. In ACM Sigmet-rics Conference on Measurement and Modeling of Computer Systems (1995), pp. 74{85.Evans, D. J. and Butt, W. U. N. 1993. Dynamic load balancing using task-transfer prob-abilites. Parallel Computing 19, 897{916.Ha�c, A. and Jin, X. 1990. Dynamic load balancing in a distributed system using a sender-initiated algorithm. Journal of Systems Software 11, 79{94.Hennessy, J. L. and Patterson, D. A. 1990. Computer Architecture A Quantitative Ap-proach. Morgan Kaufmann Publishers, San Mateo, CA.Krueger, P. and Livny, M. 1988. A comparison of preemptive and non-preemptive loaddistributing. In 8th International Conference on Distributed Computing Systems (June1988), pp. 123{130.Kunz, T. 1991. The in
uence of di�erent workload descriptions on a heuristic load balancingscheme. IEEE Transactions on Software Engineering 17, 7 (July), 725{730.Larsen, R. J. and Marx, M. L. 1986. An introduction to mathematical statistics and itsapplications (2nd ed.). Prentice Hall, Englewood Cli�s, N.J.Leland, W. E. and Ott, T. J. 1986. Load-balancing heuristics and process behavior. InProceedings of Performance '86 and ACM Sigmetrics, Volume 14 (1986), pp. 54{69.Lin, H.-C. and Raghavendra, C. 1993. A state-aggregation method for analyzing dynamicload-balancing policies. In IEEE 13th International Conference on Distributed ComputingSystems (May 1993), pp. 482{489.Litzkow, M. and Livny, M. 1990. Experience with the Condor distributed batch system.In IEEE Workshop on Experimental Distributed Systems (1990), pp. 97{101.Litzkow, M., Livny, M., and Mutka, M. 1988. Condor - a hunter of idle workstations.In 8th International Conference on Distributed Computing Systems (June 1988).Livny, M. and Melman, M. 1982. Load balancing in homogeneous broadcast distributedsystems. In ACM Computer Network Performance Symposium (April 1982), pp. 47{55.Milojicic, D. S. 1993. Load Distribution: Implementation for the Mach Microkernel. PhDDissertation, University of Kaiserslautern.Mirchandaney, R., Towsley, D., and Stankovic, J. A. 1990. Adaptive load sharingin heterogeneous distributed systems. Journal of Parallel and Distributed Computing 9,331{346.Powell, M. and Miller, B. 1983. Process migrations in DEMOS/MP. In 6th ACM Sym-posium on Operating Systems Principles (November 1983), pp. 110{119.Prouty, R. 1996. Personal Communication.Pulidas, S., Towsley, D., and Stankovic, J. A. 1988. Imbedding gradient estimatorsin load balancing algorithms. In 8th International Conference on Distributed ComputingSystems (June 1988), pp. 482{490.

Exploiting Process Lifetime Distributions for Dynamic Load Balancing � 31Rommel, C. G. 1991. The probability of load balancing success in a homogeneous network.IEEE Transactions on Software Engineering 17, 922{933.Rosin, R. F. 1965. Determining a computing center environment. Communications of theACM 8, 7.Silberschatz, A., Peterson, J., and Galvin, P. 1994. Operating System Concepts, 4thEdition. Addison-Wesley, Reading, MA.Svensson, A. 1990. History, an intelligent load sharing �lter. In IEEE 10th InternationalConference on Distributed Computing Systems (1990), pp. 546{553.Tanenbaum, A., van Renesse, R., van Staveren, H., and Sharp, G. 1990. Experienceswith the Amoeba distributed operating system. Communications of the ACM , 336{346.Theimer, M. M., Lantz, K. A., and Cheriton, D. R. 1985. Preemptable remote executionfacilities for the V-System. In 10th ACM Symposium on Operating Systems Principles(December 1985), pp. 2{12.Thiel, G. 1991. Locus operating system, a transparent system. Computer Communica-tions 14, 6, 336{346.Vahdat, A. 1995. Personal Communication.Vahdat, A. M., Ghormley, D. P., and Anderson, T. E. 1994. E�cient, portable, androbust extension of operating system functionality. Technical Report UCB//CSD-94-842,University of California, Berkeley.Waldspurger, C. A. and Weihl, W. E. 1994. Lottery scheduling: Flexible proportional-share resource management. In Proceedings of the First Symposium on Operating SystemDesign and Implementation (November 1994), pp. 1{11.Wang, J., Zhou, S., K.Ahmed, and Long, W. 1993. LSBATCH: A distributed load sharingbatch system. Technical Report CSRI-286 (April), Computer Systems Research Institute,University of Toronto.Wang, Y.-T. and Morris, R. J. 1985. Load sharing in distributed systems. IEEE Trans-actions on Computers c-94, 3 (March), 204{217.Zayas, E. R. 1987. Attacking the process migration bottleneck. In 11th ACM Symposiumon Operating Systems Principles (1987), pp. 13{24.Zhang, Y., Hakozaki, K., Kameda, H., and Shimizu, K. 1995. A performance comparisonof adaptive and static load balancing in heterogeneous distributed systems. In Proceedingsof the 28th Annual Simulation Symposium (April 1995), pp. 332{340.Zhou, S. 1987. Performance studies for dynamic load balancing in distributed systems.Ph.D. Dissertation, University of California, Berkeley.Zhou, S. and Ferrari, D. 1987. A measurement study of load balancing performance. InIEEE 7th International Conference on Distributed Computing Systems (October 1987),pp. 490{497.Zhou, S., Wang, J., Zheng, X., and Delisle, P. 1993. Utopia: a load-sharing facil-ity for large heterogeneous distributed computing systems. Software { Practice and Ex-peience 23, 2 (December), 1305{1336.

