
Exploring Threshold-based Policies for Load Sharing�Takayuki OsogamiComputer Science DepartmentCarnegie Mellon Universityosogami@cs.cmu.edu Mor Harchol-BalterComputer Science DepartmentCarnegie Mellon Universityharchol@cs.cmu.eduAlan Scheller-WolfTepper School of BusinessCarnegie Mellon Universityawolf@andrew.cmu.edu Li ZhangThomas J. Watson Research CenterIBM Researchzhangli@us.ibm.comAbstractWe consider the problem of how to design resource allocation policies that bothprovide good performance at predicted environmental conditions and are robustagainst changes or misprediction of the environmental conditions. We evaluatevarious common threshold-based allocation policies within a simple model, wherethere is a clear tradeo� between the (conicting) goals of good performance androbustness. We then propose and evaluate a new threshold-based policy, ADT(adaptive dual thresholds), that achieves both the desired goals.1 IntroductionA common problem in computer and communication systems is deciding how to allocateresources (e.g. CPU time and bandwidth) among jobs. A good (resource) allocationpolicy that maximizes system performance, e.g. with respect to mean response time andthroughput, often has parameters that need to be tuned to achieve the best performance.Since the optimal settings of the parameters typically depend on environmental condi-tions such as system loads, an allocation policy whose parameters are chosen to achievethe best performance in a certain environment can provide poor performance when theenvironment changes or when the prediction of the environment was wrong.The objective of this paper is to design and study characteristics of various allocationpolicies in a simple model, where there is a clear tradeo� between good performance androbustness against changes and misprediction in loads. The study in this simple modelprovides lessons that are useful in designing allocation policies in more complex systems.Our model consists of two servers and two queues, as shown in Figure 1. Jobs arriveat queue 1 and queue 2 according to Poisson processes with rates �1 and �2, respectively.Jobs have exponentially distributed service demands; however, the running time of ajob may also depend on the aÆnity between the particular server and the particularqueue. Hence, we assume that server 1 processes jobs in queue 1 (type 1 jobs) with rate�This work was supported by NSF Career Grant CCR-0133077, by NSF Grant CCR-0311383, NSFGrant-0313148, and by IBM via 2003 Pittsburgh Digital Greenhouse Grant.



�2 = �2�2
�1

�2�12�1

�2
�̂1 = �1�1+�12(1��2)

Figure 1: A two server model.�1 (jobs/sec), while server 2 can process type 1 jobs with rate �12 (jobs/sec) and canprocess jobs in queue 2 (type 2 jobs) with rate �2 (jobs/sec). We de�ne �1 = �1=�1,�2 = �2=�2, and �̂1 = �1=(�1 + �12(1� �2)). Note that �2 < 1 and �̂1 < 1 are necessaryfor the queues to be stable under any allocation policy, since the maximum rate at whichtype 1 jobs can be processed is �1, from server 1, plus �12(1� �2), from server 2.In this paper, we design and evaluate allocation policies in the model in Figure 1with respect to two objectives. First, we seek to minimize the weighted average meanresponse time, c1p1E[R1] + c2p2E[R2], where ci is the weight (importance) of type ijobs, pi = �i=(�1 + �2) is the fraction of type i jobs, and E[Ri] is the mean responsetime1 of type i jobs, for i = 1; 2. Second, we want our policy to be robust againstmisprediction and changes in loads, �1 and �2. In this paper, we focus on threshold-based allocation policies, since these are common and natural in our model. Note thatthe optimal allocation policy is not known in our model, despite the fact that it has beeninvestigated in numerous papers [1, 3, 4, 5, 7, 8] (see also references in [6]).We start, in Section 2, by considering two common allocation policies. The �rstpolicy (T1 policy) places a threshold, T1, on queue 1, whereby server 2 serves type 1jobs only when the length of queue 1 exceeds T1 (or serve 2 is idle). The second policy(T2 policy) places a threshold, T2, on queue 2, whereby server 2 serves type 1 jobs onlywhen the length of queue 2 is below T2. Only coarse approximations exist for analyzingresponse time under the T1 and T2 policies. Hence, we introduce a near-exact analysistechnique in [6], which is also applicable to all the allocation policies that we investigatein this paper. Our analysis demonstrates a tradeo� between good performance (lowresponse time) at predicted load and robustness across loads in the T1 and T2 policies.This tradeo� motivates us, in Section 3, to introduce two new allocation policies (theT1T2 policy and the ADT policy), both of which are based on the idea of using multiplethresholds. While these two new allocation policies appear similar in their de�nition, itturns out that their characteristics are very di�erent. In particular, we show that theADT policy is able to achieve both good performance at predicted load and robustness.2 Evaluating simple threshold-based policies2.1 T1 and T2 policiesThe T1 policy is motivated by some shortcomings of the c� rule [2]. Recall that the c�rule biases in favor of jobs with high c (high importance) and high � (small expected1Here response time refers to the total time from when a job is requested until the job is completed{ this includes queueing time and service time.



N2

N1

T1

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

0 1
0

work on queue 2

work on queue 1(a) T1 policy
N2

N1

work on
queue 2

T2

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

0
0

queue 1
work on

(b) T2 policyFigure 2: Figures show whether server 2 works on jobs from queue 1 or queue 2 as afunction of N1 and N2, under (a) the T1 policy and (b) the T2 policy.size). Applying the c� rule to our setting translates to letting a server process jobs fromthe nonempty queue with the highest c� value. Under the c� rule, server 2 serves type1 jobs (rather than type 2 jobs) if c1�12 > c2�2, or queue 2 is empty. The c� rule isprovably optimal when server 1 does not exist [2]. However Squillante et. al. [7] as wellas Harrison [4] have shown that c� rule may lead to instability even if �̂1 < 1 and �2 < 1.For example, the c� rule may force server 2 to process type 1 jobs even when many jobsare built up at queue 2, leading to instability in queue 2 and under-utilization of server 1.Squillante et. al. [7] and Williams [8] have independently proposed a threshold-basedpolicy that, under the right choice of threshold value, improves upon the c� rule andguarantees stability whenever �̂1 < 1 and �2 < 1. We refer to this threshold-based policyas the T1 policy, since it places a threshold value, T1, on queue 1, so that server 2 onlyprocesses type 1 jobs when there are at least T1 jobs of type 1, or if queue 2 is empty.The rest of the time server 2 works on type 2 jobs. The motivation behind placing thethreshold on queue 1 is that it \reserves" a certain amount of work for server 1, preventingserver 1 from being under-utilized and server 2 from being overloaded. More formally,De�nition 1 Let N1 (respectively, N2) denote the number of jobs at queue 1 (respec-tively, queue 2). The T1 policy with parameter T1 is characterized by the following set ofrules, all of which are enforced preemptively (preemptive-resume):� Server 1 serves only its own jobs.� Server 2 serves jobs from queue 1 if either (i) N1 � T1 or (ii) N2 = 0 & N1 � 2.Otherwise, server 2 serves jobs from queue 2.2Figure 2(a) shows the jobs processed by server 2 as a function of N1 and N2 under the T1policy. Note that the T1 policy with T1 = 1 is the same as the c� rule when c1�12 > c2�2,and the T1 policy with T1 =1 is the same as the c� rule when c1�12 < c2�2. Bell andWilliams prove the optimality of the T1 policy for a model closely related to ours in theheavy traÆc limit, where �̂1 and �2 are close to 1 from below [1]. In the T1 policy, thehigher T1 values yield the larger stability region, and in the limit of T1 =1, the queuesunder the T1 policy are stable as long as �̂1 < 1 and �2 < 1. More formally, we provethe following theorem in [6]:2To achieve maximal eÆciency, we assume the following exceptions. When N1 = 1 and N2 = 0, thejob is processed by server 2 if and only if �1 < �12. Also, when T1 = 1 and N1 = 1, the job in queue 1is processed by server 2 if and only if �1 < �12 regardless of the number of type 2 jobs.



Theorem 1 Under the T1 policy with parameter T1 <1, queue 1 is stable if and onlyif �1 < �1 + �12; and queue 2 is stable if and only if�2 < 1� �T111� �T11 + (1��1)�T1�111�1+�12�1 �1 ;when T1 > 1 and �1 6= 1. (See [6] for the case of T1 = 1 or �1 = 1.)An alternative threshold-based policy that guarantees stability whenever �̂1 < 1 and�2 < 1 is the T2 policy. The T2 policy places a threshold value, T2, on queue 2, suchthat server 2 processes type 1 jobs only when there are less than T2 jobs of type 2, thuspreventing server 2 from being overloaded. More formally,De�nition 2 The T2 policy with parameter T2 is characterized by the following set ofrules, all of which are enforced preemptively (preemptive-resume):� Server 1 serves only its own jobs.� Server 2 serves jobs from queue 1 if N2 < T2. Otherwise server 2 serves jobs fromqueue 2.3Figure 2(b) shows the jobs processed by server 2 as a function of N1 and N2 under theT2 policy. Recall that the T1 policy guarantees stability whenever �̂1 < 1 and �2 < 1provided that T1 is chosen appropriately. By contrast, the T2 policy guarantees stabilitywhenever �̂1 < 1 and �2 < 1 for any �nite T2. More formally, the following theoremholds, which we state without proof:Theorem 2 Under the T2 policy with T2 < 1, queue 1 is stable if and only if �̂1 < 1,and queue 2 is stable if and only if �2 < 1.2.2 Comparison of T1 and T2 policiesIn this section, we study characteristics of the T1 policy and the T2 policy by evaluatingthe weighted mean response time under various settings. In [6], we introduce a compu-tationally eÆcient and near-exact analysis of the mean response time under the T1 andT2 policies, and this analysis enables us to study the T1 and T2 policies extensively. Inthis paper, we limit our focus on the case where type 1 jobs and type 2 jobs have thesame weight, i.e. c1 = c2 = 1; for a general case of c1 6= c2, see [6].When c1 = c2 and �12 � �2, we prove in [6] that T1 = 1 is the optimal choice forthe T1 policy and T2 = 1 is the optimal choice for the T2 policy with respect to bothperformance at the estimated load and robustness. Thus, the T1 and T2 policies withthe optimal threshold values become the same under this setting (i.e. they both followthe c�-rule: server 2 works on jobs from queue 1 only when queue 2 is empty). Hence,below, we limit our attention to the case of �12 > �2. Note that condition �12 > �2 isachieved when type 1 jobs are small and type 2 jobs are large (in the general case ofc1 6= c2, condition c1�12 > c2�2 is also achieved when type 1 jobs are more importantthan type 2 jobs) and/or in the pathological case when type 1 jobs have good aÆnitywith server 2.Figure 3 shows the weighted mean response time (overall mean response time) underthe T1 policy (top row) and the T2 policy (bottom row). Di�erent columns correspondto di�erent �1's. Here, c1�12 = 1 and c2�2 = 14 are �xed. The overall mean response time3When N1 = 1 and N2 = 0, we allow the same exception as in the T1 policy.



T1 policy
0 10 20 30 40

0

20

40

60

80

T1

ρ̂
^

^

1
=0.95

ρ
1
=0.9

ρ
1
=0.8

0 10 20 30 40
0

10

20

30

40

T1

ρ̂
^

^

1
=0.95

ρ
1
=0.9

ρ
1
=0.8

0 10 20 30 40
0

2

4

6

8

10

T1

ρ̂
^

^

1
=0.95

ρ
1
=0.9

ρ
1
=0.8(a) c1�1 = 14 (b) c1�1 = 1 (c) c1�1 = 4T2 policy

0 10 20 30 40
0

20

40

60

80

T2

ρ̂
^

^

1
=0.95

ρ
1
=0.9

ρ
1
=0.8

0 10 20 30 40
0

10

20

30

40

T2

ρ̂
^

^

1
=0.95

ρ
1
=0.9

ρ
1
=0.8

0 10 20 30 40
0

2

4

6

8

10

T2

ρ̂
^

^

1
=0.95

ρ
1
=0.9

ρ
1
=0.8(d) c1�1 = 14 (e) c1�1 = 1 (f) c1�1 = 4Figure 3: The overall mean response time under the T1 and T2 policies as a functionof T1 and T2. Here, c1 = c2 = 1, c1�12 = 1, c2�2 = 14 , and �2 = 0:6 are �xed. Whenc1�1 = 14 (in the left column) and �̂1 = 0:95, the overall mean response time under theT2 policy is over 100 for all T2, and does not appear in the �gure.is evaluated at three loads, �̂1 = 0:8; 0:9; 0:95 (only �1 is changed)4, and �2 is �xed at 0.6throughout. See [6] for discussion on the other values of �2.The top row of Figure 3 shows that the overall mean response time under the T1policy is minimized at some �nite T1, and that the optimal T1 depends on environmentalconditions such as load (�̂1) and job sizes (�1). By Theorem 1, a larger value of T1 leadsto a larger stability region, and hence there is a tradeo� between good performance atthe estimated load, (�̂1; �2), which is achieved at smaller T1, and stability at higher �̂1and/or �2, which is achieved at larger T1. Note also that the curves have sharper \Vshapes" in general at higher �̂1, which make it diÆcult to choose the right T1, since theoverall mean response time quickly diverges to in�nity, as T1 becomes smaller.The bottom row of Figure 3 shows that the overall mean response time under theT2 policy is minimized at T2 = 1 or small T2. Since choosing either T2 = 1 or small T2minimizes the overall mean response time at the estimated load and still provides themaximum stability region, there is no tradeo�. However, observe that the overall meanresponse time under the T2 policy with the optimal T2 can be much higher than thatunder the T1 policy with the optimal T1.4Note that �̂1 = 0:8; 0:9; 0:95 corresponds to �1 = 2:08; 2:34; 2:47 when �1 = 1=4 (column 1), �1 =1:12; 1:26; 1:33 when �1 = 1 (column 2), and �1 = 0:88; 0:99; 1:045 when �1 = 4 (column 3).



0.55 0.6 0.65 0.7 0.75 0.8 0.85

10
1

10
2

10
3

10
4

ρ
2

T1=6 (opt at ρ
2
=0.6)

T1=20

T1 policies

(a) T1 policy 0.55 0.6 0.65 0.7 0.75 0.8 0.85

10
1

10
2

10
3

10
4

ρ
2

T2 policy
T1 policies

(b) T2 policyFigure 4: Overall mean response time under the T1 policy and the T2 policy (T2 = 1) asa function of �2, where c1 = c2 = 1, c1�1 = c1�12 = 1, c2�2 = 116 , and �1 = 1:12 are �xed.Figure 4(a) highlights the tradeo� between the performance at the estimated loadand the robustness against changes and misprediction in load in the T1 policy, plottingthe overall mean response time as a function of �2 (only �2 is changed). When �2 = 0:6,T1 = 6 is the optimal choice, and overall mean response time is lower with T1 = 6 thanwith T1 = 20. If it turns out that �2 = 0:8 is the actual load, then the T1 policy withT1 = 6 leads to instability (in�nite overall mean response time), while the T1 policy withT1 = 20 still gives �nite and low overall mean response time. In the above sense, the T1policy is not robust against misprediction or changes in load. One can choose a higher T1(=20) to guarantee stability at higher loads, but this will result in worse performance atthe estimated load. Thus, the T1 policy exhibits a tradeo� between good performanceat the estimated load and robustness against changes and misprediction of load.Since the T2 policy is typically optimal with T2 = 1 and the maximum stabilityregion is guaranteed with T2 = 1, one might expect that the T2 policy has robustnessagainst misprediction or changes in load. Figure 4(b) shows the overall mean responsetime under the T2 policy with T2 = 1 as a function of �2. Although the T2 policy is morerobust than the T1 policy in the sense that it can guarantee �nite overall mean responsetime for a wider range of load, the �gure suggests that the �nite overall mean responsetime can be very high under the T2 policy.3 Designing new robust threshold-based policies3.1 T1T2 policyOne might argue that the stability issue of the T1 policy with small optimal T1 is resolvedsimply by placing an additional threshold, T2, on queue 2, so that if the length of queue2, N2, exceeds T2, server 2 works on type 2 jobs regardless of the length of queue 1, thuspreventing queue 2 from becoming unstable. We refer to this policy as the T1T2 policy,since it operates as the T1 policy only when N2 � T2. More formally,De�nition 3 The T1T2 policy with parameters T1 and T2 is characterized by the follow-ing set of rules, all of which are enforced preemptively (preemptive-resume):� Server 1 serves only its own jobs.



N2

N1

T1

T2

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

0 1
0

work on queue 2

work on queue 1(a) T1T2 policy
N2

N1

T2

T1
(1)

T1
(2)

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

0 1
0

work on queue 2

work on queue 1(b) ADT policyFigure 5: Figures show whether server 2 works on jobs from queue 1 or queue 2 as afunction of N1 and N2 under (a) the T1T2 policy and (b) the ADT policy.� Server 2 serves jobs from queue 1 if either (i) N1 � T1 & N2 < T2 or (ii) N2 = 0& N1 � 2. Otherwise, server 2 serves jobs from queue 2.5Figure 5(a) shows the jobs processed by server 2 a function of N1 and N2 under the T1T2policy. The stability region of the T1T2 policy is the same as that of the T2 policy. Westate the following theorem without proof:Theorem 3 Under the T1T2 policy with parameters T1 and T2 < 1, queue 1 is stableif and only if �̂1 < 1, and queue 2 is stable if and only if �2 < 1.Figure 6(a) shows the overall mean response time under the T1T2 policy as a functionof �2, where T1 = 6 and T2 = 10, 20, or 40. Recall that the T1 policy achieves its lowestoverall mean response time given �2 = 0:6 when T1 = 6. The T1T2 policy with T1 = 6 isdesigned to provide a wider stability region with the near-optimal overall mean responsetime at �2 = 0:6. In fact, when �2 = 0:6, the overall mean response time under the T1T2policy with T1 = 6 is comparable to that under the T1 policy with T1 = 6 for a range ofT2. For higher �2 (speci�cally, �2 > 0:76), the T1T2 policy (with T1 = 6) provides loweroverall mean response time than the T1 policy with T1 = 6, hence being more robust.However, the range of load for which the T1T2 policy improves upon the T1 policy islimited. For example, when �2 = 0:8, the overall mean response time under the T1T2policy with any value of T2 is signi�cantly higher than the T1 policy with T1 = 20.The inadequacy of the T1T2 policy is primarily due to the fact that the T1T2 policyoperates like the T2 policy at higher load, but the performance of the T2 policy istypically poor at any load as compared to the optimal T1 policy. This motivates us tointroduce a new policy, the ADT policy, which always operates as a T1 policy.3.2 ADT policyThe key idea in the design of the adaptive dual threshold (ADT) policy is the use of twothresholds, T (1)1 and T (2)1 , both on queue 1 together with a threshold, T2, on queue 2. TheADT policy behaves like the T1 policy with threshold T (1)1 if the length of queue 2 is lessthan T2 and otherwise like the T1 policy with a higher threshold, T (2)1 . Thus, in contrastto the T1T2 policy, the ADT policy is always operating as a T1 policy, but unlike thestandard T1 policy, the value of T1 adapts, depending on the length of queue 2.5When N1 = 1 and N2 = 0, we allow the same exception as in the T1 policy.



0.55 0.6 0.65 0.7 0.75 0.8 0.85
0

20

40

60

80

100

ρ
2

T1T2 policy (T2=10)
T1T2 policy (T2=20)
T1T2 policy (T2=40)
T1 policies (T1=6,20)

(a) T1T2 policy 0.55 0.6 0.65 0.7 0.75 0.8 0.85
0

20

40

60

80

100

ρ
2

ADT policy (T2=10)
T1 policies (T1=6,20)

(b) ADT policyFigure 6: Overall mean response time under (a) the T1T2 policy and (b) the ADT policyas a function of �2, where c1 = c2 = 1, c1�1 = c1�12 = 1, c2�2 = 116 , and �1 = 1:12.We will see that the ADT policy is more robust than the T1 policy against changes andmisprediction in loads due to the dual thresholds on queue 1. First, the dual thresholdson queue 1 allow server 2 to help queue 1 less when there are more type 2 jobs, preventingserver 2 from becoming overloaded. This leads to the increased stability region. Second,the dual thresholds make the ADT policy adaptive to changes in load (�̂1 and �2), inthat it operates like the T1 policy with threshold T (1)1 at the estimated load and like theT1 policy with a higher threshold T (2)1 at a higher load.Formally, the ADT policy is characterized by the following rule.De�nition 4 The ADT policy with parameters T (1)1 , T (2)1 , and T2 operates as the T1policy with parameter T1 = T (1)1 if N2 � T2; otherwise, it operates as the T1 policy withparameter T1 = T (2)1 .Figure 5(b) shows the jobs processed by server 2 under the ADT policy as a function ofN1 and N2. At high enough �̂1 and �2, N2 usually exceeds T2, and the policy behavessimilarly to the T1 policy with T1 = T (2)1 . Thus, the stability condition for the ADTpolicy is the same as that for the T1 policy when T1 is replaced by T (2)1 . In [6], we provethe following theorem:Theorem 4 The stability condition (necessary and suÆcient) for the ADT policy withparameters T (1)1 , T (2)1 , and T2 is given by the stability condition for the T1 policy withparameter T1 = T (2)1 (Theorem 1).Figure 6(b) illustrates the robustness of the ADT policy, showing the overall meanresponse time under the ADT policy as a function of �2. It is observed that (i) perfor-mance at the estimated load (�2 = 0:6 in Figure 6(c)) is well characterized by T (1)1 , and(ii) stability is characterized by T (2)1 (recall Theorem 4). Also, the ADT policy achievesat least as good performance as the better of the T1 policies with two di�erent T1 valuesthroughout the range of �2. We show in [6] that the ADT policy is also robust againstchanges in �̂1.Since the ADT policy requires specifying three thresholds, T (1)1 , T (2)1 , and T2, onemight want to avoid searching the space of all possible triples for the optimal settings.In choosing the thresholds of the ADT policy in Figure 6, we have followed the followingsequential heuristic:



1. Set T (1)1 as the optimal T1 value for the T1 policy at the estimated load.2. Choose T (2)1 so that it achieves stability in a desired range of load.3. Find T2 such that the policy provides both good performance and stability.We �nd that the performance at the estimated load is relatively insensitive to T (2)1 , andhence we can choose a high T (2)1 to guarantee a large stability region (see [6] for details).Also, since the stability region is insensitive to T (1)1 and T2, we can choose these values sothat the performance at the estimated load is optimized. Determining the appropriateT2 is a nontrivial task. If T2 is set too low, the ADT policy behaves like the T1 policywith threshold T1 = T (2)1 , degrading the performance at the estimated load, since T (2)1is larger than the optimal T1 in the T1 policy. If T2 is set too high, the ADT policybehaves like the T1 policy with threshold T1 = T (1)1 . This worsens the performance atloads higher than the estimated load. Although a larger stability region is guaranteed bysetting T (2)1 higher than the optimal T1 in the T1 policy, the overall mean response timeat higher loads can be quite high, albeit �nite. In plotting Figure 6, we �nd \good" T2values manually by trying a few di�erent values, which takes only a few minutes.4 ConclusionIn this paper, we design and evaluate various threshold-based resource allocation policiesin a simple model of two servers and two queues. This provides us with lessons that areuseful in designing resource allocation policies in more complex systems. The study ofsimple allocation policies, the T1 policy and the T2 policy, reveals the tradeo� betweengood performance at the estimated environmental conditions versus robustness againstchanges and misprediction of the environmental conditions. For example, we have seenthat when the threshold value is chosen appropriately, the performance of the T1 policyis no worse than or very close to the best performance achieved by all the other allo-cation policies studied in this paper. However, the optimal threshold value for the T1policy depends on the environmental conditions, and a threshold value that works for thecurrent load may cause instability under higher loads. On the other hand, the T2 policyguarantees the maximum stability region and has more robustness, but its performance isusually poor. The superiority in performance of the T1 policy over the T2 policy bringsup another interesting point: it is better to determine when help is provided based onthe \bene�ciary" queue length rather than the \donor" queue length.An obvious \�x" for the lack of robustness in the T1 policy is to use an additionalthreshold to guarantee stability at higher load. This is the idea behind the design of theT1T2 policy. It turns out, however, that the improvement in robustness in the T1T2policy is marginal. This is primarily due to the fact that the T1T2 policy operates likethe T2 policy at higher load, and the performance of the T2 policy is typically poor at anyload. That is, letting the both queues have control (the T1T2 policy) is not much betterthan letting the bene�ciary queue alone have control (the T1 policy). The inadequacy ofthe T1T2 policy motivates us to propose a new allocation policy, the ADT policy.Unlike the T1T2 policy, the ADT policy always operates as a T1 policy, adapting itsthreshold value to changes in environmental conditions. A diÆculty in designing suchan adaptive allocation policy is detection of changes in the environmental conditions orprecise prediction of the environmental conditions. In our model, we are able to \detect"the changes or misprediction in the environmental conditions by observing the length of



queue 2, N2. In particular, the ADT policy uses a threshold value that is appropriate atlow load when N2 is low, and it uses a threshold value that is appropriate at high loadwhen N2 is high. It turns out that the performance of the ADT policy is better thanor very close to the two T1 policies with di�erent threshold values; that is, the ADTpolicy can provide good performance at estimated environmental conditions and is alsorobust. We conjecture that a policy that uses more thresholds on queue 1 and choosesan appropriate threshold depending on N2 would provide better performance across awider range of load, at the expense of additional complexity.Finally, we provide some guidelines for designing resource allocation policies with goodperformance and robustness for more complex computer and communication systems. A�rst step would be to design an allocation policy that can provide good performance atthe estimated environmental conditions (the T1 policy in our model). It may help toconsider a simpler approximate model. A second step would be to �nd some indicator,within the system, of the changes/misprediction of the environmental conditions (N2 inour model). If there is no such internal indicator, we would need to design one. A laststep would be to �nd an appropriate mapping from the internal state (e.g., N2) to theparameter (e.g., T1) of the good allocation policy (e.g., the T1 policy). Towards thisend, it would be helpful to have analysis technique (e.g., our analysis technique in [6]used throughout this paper) that allows us to evaluate the allocation policy swiftly andaccurately at various environmental conditions.References[1] S. Bell and R. Williams. Dynamic scheduling of a system with two parallel servers inheavy traÆc with complete resource pooling: Asymptotic optimality of a continuousreview threshold policy. Annals of Applied Probability, 11:608{649, 2001.[2] D. Cox and W. Smith. Queues. Kluwer Academic Publishers, 1971.[3] L. Green. A queueing system with general use and limited use servers. OperationsResearch, 33(1):168{182, 1985.[4] J. M. Harrison. Heavy traÆc analysis of a system with parallel servers: Asymptoticoptimality of discrete review policies. Annals of Applied Probability, 8(3):822{848,1998.[5] J. M. Harrison and M. Lopez. Heavy traÆc resource pooling in parallel server systems.Queueing Systems, 33(4):339{368, 1999.[6] T. Osogami, M. Harchol-Balter, A. Scheller-Wolf, and L. Zhang. An adaptivethreshold-based policy for sharing servers with aÆnities. Technical Report CMU-CS-04-112, School of Computer Science, Carnegie Mellon University, 2004.[7] M. Squillante, C. Xia, D. Yao, and L. Zhang. Threshold-based priority policies forparallel-server systems with aÆnity scheduling. In Proceedings of the IEEE AmericanControl Conference, pages 2992{2999, June 2001.[8] R. Williams. On dynamic scheduling of a parallel server system with complete re-source pooling. In D. McDonald and S. Turner, editors, Analysis of CommunicationNetworks: Call Centers, TraÆc and Performance. American Mathematical Society,2000.


