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Abstract— This paper investigates the performance of task
assignment policies for server farms as the variability of job
sizes (service demands) approaches infinity. The Size-Interval-
Task-Assignment policy (SITA), which separates short jobs
from long jobs, has long been viewed as the panacea for
dealing with high-variability job-size distributions. A v ery
recent paper [16] showed that this common wisdom is flawed:
SITA can actually be inferior to the much simpler greedy
policy, Least-Work-Left (LWL), for certain common job-siz e
distributions, including many modal, hyperexponential, and
Pareto distributions.

The above finding leads one to question whether providing
isolation for short jobs from long ones is inherently bad, or
whether it is just SITA’s strict isolation of short jobs that
sometimes leads to poor performance. To answer this question,
we consider a much more flexible policy, which we call “Cycle-
Stealing” (CS). The CS policy is very similar to LWL, in that
short jobs can go to any queue, but it still provides short jobs
isolation from longs (one server is reserved for short jobs).
While CS has many of the same properties as LWL, including
high utilization of both servers, we prove, surprisingly, that, for
high variability job sizes, CS performs poorly whenever SITA
performs poorly. This result suggests that the notion of isolating
short jobs from long jobs, under high variability workloads , is
sometimes simply not the right thing to do.

I. I NTRODUCTION

A. Task assignment policies

One of the oldest and most fundamental questions arising
in server farms is the question of which dispatching policy
should be used for routing jobs to servers. This policy is
known as thetask assignment policy. A common goal of the
task assignment policy is to minimize mean response time,
where response time is measured from when a job arrives
until it completes.

We are particularly interested in situations with high job
size variability. It is well-known that empirical computer
workloads such as Web file sizes, CPU process lifetimes,
IP flow durations, and wireless call times have very high
job size variability, with job sizes fitting Pareto or other
high-variance distributions [2], [7], [13], [20], [21]. This
paper studies the mean response time of task assignment
policies in the limit as job size variability goes to infinity,
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while the mean job size stays fixed. To denote job-size
variability, we use the squared coefficient of variation,C2 =
var[X ]/E2 [X ], whereX is a random variable representing
the job size (service requirement). Job sizes are assumed
to be i.i.d. from some general distribution. We assume that
jobs arrive to the server farm according to a Poisson process
with rateλ. For a server farm withn servers, system load
ρ is defined as:ρ = λE [X ]. Note thatρ = n corresponds
to a fully loaded system. In our analysis, we will generally
assumen = 2 because that suffices to make our points.
Importantly, we will assume that jobs arenot preemptible.
That is, a long job cannot be preempted when a short job
arrives, and then resumed later. This model is common
for supercomputing farms [11], [20], manufacturing systems
[17], [4], data centers, IO systems, etc., where it is expensive
to preempt jobs and thus even long jobs are typically run to
completion.

For our server farm model, there are many common
choices of task assignment policies. TheRound-Robinpolicy
assigns the first job to host 1, the second to host 2, the third
to host 3, theith to hosti modn plus 1, and so forth. The
Join-the-Shortest-Queue (JSQ)policy assigns each incoming
job to the host with the fewestnumberof jobs queued there.
The Least-Work-Left (LWL)policy assigns each incoming
job to the host with the least total work remaining. Here
“work” is the sum of the remaining size of the job in service
plus the sizes of all the jobs in the queue at the host. The
SITA (Size-Interval Task Assignment)assigns a size-interval
to each host, so that “short” jobs are sent to the first host,
“medium-length” jobs are sent to the second host, and “long”
jobs to the third, etc., where the cutoffs for differentiating
size classes are chosenoptimally, so as to minimize mean
response time. SITA withn = 2 is illustrated in Figure 1. The
above task assignment policies are all dispatching policies,
whereby each incoming job is immediately dispatched to a
host.
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Fig. 1. Illustration of SITA task assignment with 2 server hosts.

Importantly, the LWL policy isequivalentto the classical
central FIFO queue, (denoted by M/GI/n for the case of



Poisson arrivals andn servers), where there are no queues
at the hosts; instead jobs queue up in a central queue. A
free host simply takes the next job from the central queue.
The LWL and M/GI/2 policies are illustrated in Figure 2.
Specifically, under M/GI/n, jobs go to the same host as they
would have under LWL and are served there at the same
time as under LWL (see [11] for an inductive proof). The
response times under M/GI/n and LWL are thus identical.
What’s nice about this equivalence is that, while the LWL
policy requires knowing the sizes of jobs, the M/GI/n policy
does not.
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Fig. 2. LWL task assignment is equivalent to M/GI/2.

B. The advantages of SITA for high variability

While a great many papers have been written comparing
the response time of different task assignment policies, e.g.,
[5], [6], [9], [11], [12], [19], [22], [23], all of these papers
conclude (via numerical analysis, simulation, or approxima-
tion) that, for high job-size variability, the SITA policy is
superior to all the other common policies mentioned above.
The reason for the superiority of SITA task assignment lies
in the fact that SITA allows short jobs their own “express-
line,” thereby giving them isolation from long jobs. Since
most jobs are short jobs, the resulting mean response time
is lowered. By contrast, all other policies described above
mix short and long jobs, allowing short jobs to get “stuck”
behind long jobs, greatly increasing mean response time. The
SITA policy (and its variants) has been part of the common
wisdom in some form or other for a long time, and has been
the focus of many papers including [18], [12], [11], [23], [8],
[19], [6], [22], [10], [3], [1], [9], [5], [20].

There are several papers which specifically compare the
performance of SITA to LWL [3], [6], [8], [10], [11], [12],
[19], [22], [23]. All of these find that as job size variability
is increased, SITA becomes far superior to LWL (for low
C2, SITA may be worse than LWL because not all servers

are utilized; however, this behavior changes quickly asC2

is increased).
Despite these comparisons showing that SITA outperforms

LWL by orders of magnitude for high job size variability,
a proof of this fact has never materialized. SITA itself is
difficult to analyze, even for Poisson arrivals, because in
general there is no closed-form expression for the optimal
size cutoff, and hence the resulting response time. Further-
more, LWL cannot be analyzed exactly, since the M/GI/n
queue (equivalent to LWL) is in general only approximable.
Thus, many of the existing results have used simulation to
assert their claims, or have looked at phase-type job-size
distributions, approximations, or heavy-traffic regimes.

C. Why SITA is not always a win for high variability

In a very recent paper [16], we show that the common
wisdom about task assignment for highC2 is wrong: We
prove that SITA is not always superior to LWL asC2 →
∞; in fact SITA can be unboundedly worse than LWL. We
show that both SITA and LWL can exhibit both convergent
and divergent asymptotic behavior, depending on the load
and job-size distribution. By convergent behavior, we mean
that the mean response time approaches a constant asC2 →
∞ (while holding E [X ] fixed) and by divergent behavior,
we mean that the mean response time approaches infinity as
C2 → ∞ (while holdingE [X ] fixed).

Specifically, for each box in Table I, [16] produces several
examples of classes of distributions that fall within that
box. This includes Box 3, which are distributions where
SITA diverges and LWL converges. The examples used to
illustrate these boxes are not esoteric in nature. They do not
presume arcane distributions or assume very light or heavy
load or a very high number of servers. Job size distributions
considered include the Bimodal and Trimodal distributions,
the hyperexponential (H2) and three-phase hyperexponential
(H3), and the Bounded Pareto and Pareto job size distribu-
tions.

Convergent LWL Divergent LWL

Convergent SITA BOX 1 BOX 2

Divergent SITA BOX 3 BOX 4

TABLE I

ALL FOUR BEHAVIORS ARE COMMON.

But how can SITA be bad for high variability workloads,
when it is specifically designed for those workloads? There
are two things that can go wrong under SITA (for simplicity
we assume just 2 servers and one cutoff differentiating short
and long jobs):

• Observation 1: The stringent segregation of shorts and
longs mandated by SITA can lead to underutilization of
the servers under any job size distribution. Specifically,



there are times when the short job queue has multiple
jobs and the long job server is idle. The reverse
situation also occurs, although less frequently since
short jobs arrive with higher frequency. By contrast
LWL (or equivalently the M/GI/n queue) does not
suffer from underutilized servers.

• Observation 2: Some job size distributions may inher-
ently prevent the creation of two sub-distributions both
with finite variance, meaning that one of the two SITA
queues has infinite variance.

To see an illustration of how SITA fails, we consider
an example from Box 3 in Table I, which is shown in
Figure 3. Here the job size distribution is the Bounded Pareto
distribution with parameter ofα = 1.6 and ρ = 0.95.
More information about the Bounded Pareto and how we
makeC2 → ∞ while holding E [X ] fixed is provided in
Section IV-B. The important point to note is that asC2 → ∞,
the upper limit on the Bounded Pareto also increases to
infinity, meaning that the Bounded Pareto becomes a Pareto
distribution. The Pareto and Bounded Pareto distributionsare
known to well-model empirical job size distributions for a
wide variety of computing applications [2], [7], [21], [13],
[20].

Figure 3 compares the mean response time under SITA
to an upper bound on LWL asC2 → ∞ while holding
E [X ] fixed. For lower C2 SITA improves upon LWL,
however, there is a cross-over point, at sufficiently highC2,
after which SITA diverges, while LWL converges.1 This
cross-over point was not observed in prior work (which
mostly relies on simulation, numerical methods, heavy-traffic
approximations or M/GI/2 approximations). This is possibly
because the prior literature didn’t consider the very highC2

regions, thus (incorrectly) concluding that SITA is always
superior to LWL.

The results shown in Figure 3 are understandable in light
of the above two observations. Firstly, no matter where
the cutoff is placed in SITA, the long job server sees a
Bounded Pareto distribution withC2 approaching infinity
(Observation 2 above). Hence the mean delay at the second
server goes to infinity, even when multiplied by the fraction
of long jobs. It may seem that LWL should diverge as well,
since it too should suffer from the infiniteC2. However by
Observation 1above, we see that LWL has a second server to
help alleviate the situation where one job gets stuck behind
another, while SITA does not always have this flexibility, if
the two jobs are on the same side of the cutoff. Thus LWL’s
delay can be finite (ifρ < 1) even ifC2 → ∞. See [16] for
a formalization of the above argument.

D. Best of both worlds? The CS policy

While Figure 3 shows that SITA can sometimes perform
poorly, one may wonder whether the issue is the particular
definition of SITA, rather than the general heuristic of

1This cross-over point is actually lower than it appears, because the LWL
curve is an upper bound. Also, in [16], examples are given with much lower
cross-over points.
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Fig. 3. Mean response time under SITA vs. LWL for Bounded Pareto(α =
1.6) job size distribution [16]. SITA’s mean response time diverges while
that of LWL converges.

providing isolation for short jobs from long ones. Ideally,
one would like to still provide isolation for short jobs, but
do it in a way that achieves the good utilization of LWL.

Towards this end, we introduce the Cycle-Stealing (CS)
policy, depicted in Figure 4. To keep things simple, we
assume that there are only two servers. We define a size
cutoff ψ. Jobs of size< ψ are referred to as “short” jobs,
with subscriptS, and jobs of size> ψ are referred to as
“long” jobs, with subscriptL.

Under CS, there is one central queue only. When server
1 becomes free, it takes theshort job closest to the head
of the central queue; if there is no short job, it stays idle.
When server 2 becomes free, it takes the job at the head of
the central queue, regardless of whether that is a short or long
job. This is in contrast toSITAwhere jobs are immediately
dispatched upon arrival.

Importantly, for CS (and for SITA), theψ cutoff is
assumed to be chosen optimally, so as to minimize mean
response time. The optimalψ for CS is not typically the
same as that for SITA. Also, for both policies, jobs of size
exactlyψ are categorized probabilistically into short versus
long.

Observe that the CS policy is designed to have (almost)
all the flexibility of LWL while still providing isolation for
shorts. The CS policy is discussed in more detail in [14],
[15].

Takes next
short job

Takes next
job (either
type)

L

s

ssL s

L

Fig. 4. Cycle stealing task assignment.

E. Results and Impact

Definition 1: A policy, P , above is said todivergeif, for
all ψ, the mean delay underP(ψ) goes to infinity asC2 →
∞ while E [X ] is held fixed.



This paper proves that, surprisingly, the CS policy diverges
whenever the SITA policy diverges. Thus, for any box in
Table I where SITA diverges, CS does too, meaning that
LWL can outperform CS under high variability.

This reaffirms the message that providing isolation for
short jobs under high job-size variability may not always
be the best strategy.

II. H IGH-LEVEL PLAN

Our overall goal is to prove that:
“Whenever SITA diverges, CS also diverges”

We introduce a bit of notation: For any policy,P , let
DP denote the delay under policyP . The delay of a job
is its response time minus its service requirement. We will
sometimes writeP(ψ) to denote policyP with cutoff ψ.
We usepS to denote the fraction of short jobs, relative
to ψ, and pL to denote the fraction of long jobs. We use
XS (respectively,XL) to denote job size of short jobs
(respectively long ones). Likewise, we useρS to denote the
load made up of short jobs, whereρS = λpSE [XS ], and
likewise for long jobs.

The remainder of the paper is devoted to the proof of the
following theorem, whereD denotes delay:

Theorem 1:If E [D]
SITA(ψ)

→ ∞ for all ψ, asC2 → ∞,
thenE [D]

CS(ψ)
→ ∞ for all ψ, asC2 → ∞.

Proof:
We will use the fact that

E [D]
SITA(ψ)

= pS(ψ)E [DS ]
SITA(ψ)

+pL(ψ)E [DL]
SITA(ψ) (1)

Observe that wheneverC2 → ∞, it must be the case that
E
[

X2
L

]

→ ∞ (assuming thatψ is finite), which implies
thatE [DL]

SITA(ψ)
→ ∞. But that by itself does not imply

E [D]
SITA(ψ)

→ ∞ because there’s still thepL(ψ) term in
(1).

The entire first term in (1) is bounded for every finiteψ,
∀C2, provided thatρS(ψ) < 1. ThusE [D]

SITA(ψ) is finite
if and only if pL(ψ)E [DL]

SITA(ψ) is finite andρS(ψ) < 1.
Thus, for any givenψ, there are two possible reasons why
E [D]

SITA(ψ)
→ ∞:

1) pLE [DL]
SITA(ψ)

→ ∞
2) ρS(ψ) > 12

For a givenψ, if either of the above properties holds, then
SITA’s delay will be infinite for that cutoffψ. If neither of
these is true, then SITA is convergent (since it converges on
at least thatψ and maybe others).

We are given thatE [D]
SITA(ψ′) goes to infinity for all

ψ′. We now consider a givenψ. By definition, our given
ψ either satisfies property 1 above or property 2 above (or
both). Lemma 1 shows that if our givenψ satisfies property 1
above, thenE [D]CS(ψ) goes to infinity. Likewise, Lemma 2
shows that if our givenψ satisfies property 2 above and
E [D]

SITA(ψ′)
→ ∞ ∀ψ′, thenE [D]

CS(ψ) goes to infinity.
Since SITA diverges, everyψ must satisfy either property 1

2We are excluding the caseρS(ψ) = 1.

or property 2, and thus,E [D]
CS(ψ) goes to infinity for all

ψ.

III. A NALYSIS OF CS

A. Case 1

Lemma 1:For any givenψ, if pLE [DL]
SITA(ψ)

→ ∞,
thenE [D]

CS(ψ)
→ ∞.

Proof:
Since pLE [DL]

SITA(ψ)
→ ∞, it follows that

pLE [DL]
CS(ψ)

→ ∞, since server 2 under CS sees the
same long jobs as SITA, plus it additionally sees some short
jobs.

HenceE [D]
CS(ψ)

→ ∞.

B. Case 2

Lemma 2:For any given ψ, if ρS(ψ) > 1 and
E [D]

SITA(ψ′)
→ ∞ for all ψ′, then E [D]

CS(ψ)
→ ∞.

Proof:
Consider a tagged short arrival. Under CS, the tagged

arrival looks at server 2 and, by PASTA, with probability
ρL, it sees a long job there. Suppose the age of that job is
x. This means that, looking backwards in time, server 2 has
been busy for at leastx units of time. This implies that server
2 has not completed a small job for the past≥ x time units.
Since server 2 has been busy for the pastx time units, we
can argue that, with1 − δ probability, where0 < δ < 1, a
certain (large) amount of work has built up in the (central)
queue, and correspondingly, that this translates to at least a
certain (large) expected delay,D, for the short tagged arrival.

To make this formal, we will need to make use of a few
lemmas, provided at the end of this section. Firstly, Lemma 3
deals with the average rate that work accumulates during
the time that server 2 is blocked. We expect this rate of
accumulation to beρS−1. Lemma 3 says that, for anyǫ > 0
andδ > 0, we can prove that the average work accumulation
rate is at leastρS − 1 − ǫ, with probability at least1 − δ,
provided that server 2 is blocked for a long enough time,x0,
wherex0 is some function ofδ andǫ.

Lemma 4 below relates the work buildup seen by a tagged
job to its expected delay.

We are now ready to consider the probability that the delay
of a short job exceedsu, given that a long job is in residence
at server 2. We will derive this assumingu > u0, whereu0

will be specified later.

P{delay of short> u | arrival sees long at server 2}

≥ P
{

accum. short work> 2u+ ψ |
arriv. sees long job at serv. 2

}

by Lemma 4

Let f(u) =
2u+ ψ

ρS − 1 − ǫ
≥ P{age of long ≥ f(u)}

·P{work accum. at rate> ρS − 1 − ǫ during f(u)}

Now, in order to make this second term exceed1 − δ,

we needf(u) > x0(δ, ǫ) from Lemma 3.



2u+ ψ

ρS − 1 − ǫ
> x0 ⇐⇒ u >

x0(ρS − 1 − ǫ) − ψ

2
≡ u0

≥ P{XLe ≥ f(u)} · (1 − δ), u > u0 by Lemma 3

= P{XLe ≥ (2u+ ψ)/(ρS − 1 − ǫ)} · (1 − δ)

= P
{

ρS − 1 − ǫ

2
XLe −

ψ

2
> u

}

· (1 − δ)

= P
{

cXLe −
ψ

2
> u

}

· (1 − δ) wherec =
ρS − 1 − ǫ

2

= P{Y > u} · (1 − δ) (assumingu > u0 )

where we defineY = cXLe −
ψ
2 .

At this point, we have seen that:

P{delay of short> u | arrival sees long at server 2}

≥

{

P{Y > u} (1 − δ) if u > u0

0 if u ≤ u0

Then, integrating both sides of the above with respect to
u, we have that:

E [Delay of short| long in service]

≥

∫ u0

0

0du+

∫ ∞

u0

P{Y > u} (1 − δ)du

= (1 − δ)E [Y ] − (1 − δ)

∫ u0

0

P{Y > u} du

≥ (1 − δ) (E [Y ] − u0)

= (1 − δ)

(

cE [XLe] −
ψ

2
− u0

)

Thus,

E [Delay of short] ≥ ρL(1 − δ)

(

cE [XLe] −
ψ

2
− u0

)

= linear in ρLE [XLe]

All that’s left is to show that

ρLE [XLe] → ∞ asC2 → ∞

This will imply that the expected delay of the short job arrival
is infinite under CS, and we are done.

The fact that

ρLE [XLe] → ∞ asC2 → ∞

is proven formally in Lemma 5 at the end of the section,
which states that the above equation must be true, otherwise
there would be a cutoff under which SITA converges.

Lemma 3:Given short jobs with mean sizeE [XS ] con-
tributing loadρS > 1 and0 < δ, ǫ < 1, there exists a finite
x0 (δ, ǫ), given by (4) such that the probability that work
accumulates at an average rate exceedingρS − 1− ǫ during
the timex server 2 is blocked exceeds1 − δ, ∀x > x0.

Proof: Clearly, the amount of workcompletingduring
time x is no more thanx. It thus suffices to prove that the
work arriving during timex is at least(ρS − ǫ)x.

LetN (x) be a random variable for the number of Poisson
arrivals duringx, and letXS(i) be a random variable for the
size of theith short job,1 ≤ i ≤ N(x).

P{Work arriving duringx ≥ (ρS − ǫ)x}

= P







N(x)
∑

i=1

XS (i) ≥ (ρS − ǫ)x







= P







1

x

N(x)
∑

i=1

XS (i) ≥ ρS − ǫ







= P







N (x)

x
·

1

N (x)

N(x)
∑

i=1

XS (i) ≥ ρS − ǫ







We now condition onN(x)
x

, which is the average arrival
rate during timex. We define

λ− ≡
ρS − ǫ

E [XS ] − ǫ
2λ

(2)

Observe thatλ− < λ, but thatλ− → λ as ǫ → 0. We will
condition onEλ− , defined as the event thatN(x)

x
> λ−.

DefinePλ− = P{Eλ−}.

P{Work arriving duringx ≥ (ρS − ǫ)x}

≥ P







N (x)

x
·

1

N (x)

N(x)
∑

i=1

XS (i) ≥ ρS − ǫ | Eλ−







· Pλ−

P{Work arriving duringx ≥ (ρS − ǫ)x}

≥ P







λ− ·
1

N (x)

N(x)
∑

i=1

XS (i) ≥ ρS − ǫ







· Pλ−

= P







1

N (x)

N(x)
∑

i=1

XS (i) ≥ E [XS ] −
ǫ

2λ







· Pλ−

≥

(

1 −
(2λ)2

ǫ2
·

1

N (x)
· σ2

XS

)

· Pλ− by Eqn (7)

But we earlier conditioned onN (x) > xλ−, and hence
1

N(x) <
1

xλ−
. Thus,

P{Work arriving duringx ≥ (ρS − ǫ)x}

≥

(

1 −
(2λ)2

ǫ2
·
1

x
·

1

λ−
· σ2

XS

)

· Pλ−

The goal will be to provide anx0 such that for allx > x0,
the above probability exceeds the given1−δ. Before we can
do this, it is useful to boundPλ− , so that we can quantify
its dependence onx.



Pλ− = P
{

N(x)

x
> λ−

}

= P
{

N(x)

x
>

ρS − ǫ

E [XS ] − ǫ
2λ

}

= P
{

N(x)

x
> λ−

(

ǫλ

2ρS − ǫ

)}

Now observe thatN(x) ∼ Poisson with mean λx.
Assuming thatx is an integer, we can viewN(x) as a sum
of x Poisson random variables(N1 +N2 + · · · +Nx) each
with meanλ and varianceλ.

Then

Pλ− ≥ P

{

1

x

x
∑

i=1

Ni > λ−

(

ǫλ

2ρS − ǫ

)

}

≥ P

{

1

x

x
∑

i=1

Ni − λ > −

(

ǫλ

2ρS − ǫ

)

}

≥ 1 −

(

2ρS − ǫ

ǫλ

)2

·
λ

x
by Eqn (7)

Substituting in the above value ofPλ− , we have that:

P{Work arriving duringx ≥ (ρS − ǫ)x}

≥

(

1 −
(2λ)2

ǫ2
·
σ2
XS

xλ−

)

·

(

1 −

(

2ρS − ǫ

ǫλ

)2

·
λ

x

)

(3)

We now want to determinex0 such that for allx > x0, the
above probability in (3) exceeds1 − δ. Setting (3)≥ 1 − δ
and simplifying gives:

0 ≤ ǫ2δx2 −

[

2λ ·
2ρS − ǫ

ρS − ǫ
· σ2

XS
+

(2ρS − ǫ)2

λ

]

x

+

[

2

ǫ2
·
(2ρS − ǫ)3

ρS − ǫ
· σ2

XS

]

Since the rightmost term is strictly positive, we can ignore
it. This yields:

x0 =









[

2λ · 2ρS−ǫ
ρS−ǫ

· σ2
XS

+ (2ρS−ǫ)2

λ

]

ǫ2δ









(4)

Lemma 4:For a tagged short job, with probability 1, delay
> u, in a 2-server CS system with cutoffψ, if the short job
sees at least2u+ ψ buildup of accumulated short work.

Proof: We assume that the accumulated workW can go
to either server. The maximum amount of work that could be
present when a server frees isψ. Thus both servers would be
busy for at leastW−ψ

2 time. So the delay of a short job which
seesW work is at leastW−ψ

2 . Now substitute inW = 2u+ψ
and we’re done.

Lemma 5: If E [D]
SITA(ψ′)

= ∞, ∀ψ′, then, for anyψ,
ρL(ψ)E [XLe(ψ)] → ∞ asC2 → ∞

Proof: Suppose, by contradiction, thatρLE [XLe] →
α < ∞ under our cutoffψ. That implies thatpLE

[

X2
L

]

is also finite for cutoffψ. If ρS(ψ) < 1, then SITA(ψ)
will converge because both the short and long components of
SITA’s delay converge. Therefore we assume thatρS(ψ) ≥ 1.
Now let’s say that CS(ψ) sendspL(ψ) fraction of jobs (the
long ones) to server 2, as well asrS > 0 load of small jobs
to server 2 to relieve the overload at server 1.

Consider now a “new” cutoff for SITA, calledψ′ < ψ,
which also sendsrS load of short jobs (the longest short
jobs) to the long server (randomizing if necessary).3

Assume that thisrS load of small jobs corresponds tofS
fraction of small jobs. LetXf be a random variable drawn
from the job size distribution of those short jobs (those of
size betweenψ′ andψ) that end up serving at server 2 under
cutoff ψ′.

Then, the second moment of the job sizes at server 2 under
SITA(ψ′) is computed as follows:

E
[

X2
2

]

=
fS

fS + pL
E
[

X2
f

]

+
pL

fS + pL
E
[

X2
L

]

≤ 1 · ψ2 +
pL

fS + pL
· E
[

X2
L

]

= ψ2 +
1

λE [XL]
· λ · E [XL] ·

pL
fS + pL

·E
[

X2
L

]

= ψ2 +
1

λE [XL]
ρLE

[

X2
L

]

·
1

fS + pL

= ψ2 +
1

λ2E [XL]
ρLE

[

X2
L

]

·
2

fS + pL

= ψ2 +
1

λ
ρLE [XLe] ·

2

fS + pL

= ψ2 +
2α

λ(fS + pL)
by assumption (5)

< ∞

Underψ′ both servers would have load< 1 and the second
server would have finite mean delay, as the second moment
at server 2 is bounded by Eqn (5), and the mean delay at the
first server is obviously finite. But this is in contradictionto
the assumption that mean delay under SITA is infinite for all
cutoffs.

IV. A UXILIARY LEMMAS AND BACKGROUND

A. WLLN

This section recalls the proof of the Weak Law of Large
Numbers (WLLN) because we’ll need an equation from here:

Theorem 2 (WLLN):Let X1, X2, X3, . . . , be i.i.d. with
finite meanE [X ] and finite varianceσ2. Then

lim
n→∞

P
{

|
Sn
n

− E [X ] | ≥ ǫ

}

= 0

Proof:
Markov’s Inequality tells us that, ifX is non-negative

then:

3If conceivably ρS(ψ)CS = 1, then we would chooseψ′ to send
fS + ǫ short jobs to the long queue, ensuringρS(ψ′)SITA < 1 and
ρL(ψ′)SITA < 1.



P{X > t} ≤
E [X ]

t
, ∀t ≥ 0

This can be used to prove Chebyshev’s Inequality which
says that ifY is a random variable with finite meanE [Y ]
and finite varianceσ2

Y . Then,

P{|Y − E [Y ] | ≥ t} ≤
σ2
Y

t2

Using the above, let

Yn =
1

n

n
∑

i=1

Xi σ2
Yn

=
1

n
σ2
X1

Thus

P{|Yn − E [Y ] | ≥ t} ≤
1

t2
1

n
σ2
X1

(6)

Letting n → ∞ we obtain the Weak Law of Large
Numbers.

Note: (6) also implies the following useful fact:

P{Yn − E [Y ] ≥ −t} ≥ 1 −
1

t2
1

n
σ2
X1

∀t > 0 (7)

B. Background on Pareto and Bounded Pareto

The Bounded Pareto(k, p, α) distribution, where0 < α <
2 and0 < k < p, has the following density function:

f (x) =

{

αkα

1−( k
p )αx−α−1 k ≤ x ≤ p

0 otherwise

As p → ∞, the Bounded Pareto distribution converges to
the Pareto with density function:

f (x) = αkαx−1−α x ≥ k > 0

For 1 < α < 2, the Pareto distribution has finite mean, but
infinite variance.

The following two Lemmas from [16] describe what
happens to the Bounded Pareto when we increaseC2 while
holdingE [X ] fixed:

Lemma 6:For anyE [X ], C2, andα > 1, we can specify
a Bounded Pareto(k, p, α).

Lemma 7:KeepingE [X ] constant, asC2 → ∞, for the
Bounded Pareto distribution,p → ∞ and k → α−1

α
E [X ]

(from above forα > 1).
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