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Abstract— This paper investigates the performance of task while the mean job size stays fixed. To denote job-size
assignment policies for server farms as the variability of b variability, we use the squared coefficient of variatiof, =
sizes (service demands) approaches infinity. The Size-Imil- Var[X]/E2 [X], whereX is a random variable representing

Task-Assignment policy (SITA), which separates short jobs the iob si ) ) 1. Job si d
from long jobs, has long been viewed as the panacea for e job size (service requirement). Job sizes are assume

dealing with high-variability job-size distributions. A very to be i.i.d. from some general distribution. We assume that
recent paper [16] showed that this common wisdom is flawed: jobs arrive to the server farm according to a Poisson process
SITA can actually be inferior to the much simpler greedy with rate \. For a server farm witm servers, system load
policy, Least-Work-Left (LWL), for certain common job-siz e p is defined asp = AE [X]. Note thatp = n corresponds

distributions, including many modal, hyperexponential, ad . .
Pareto distributions. to a fully loaded system. In our analysis, we will generally

The above finding leads one to question whether providing assumen = 2 because that suffices to make our points.
isolation for short jobs from long ones is inherently bad, or Importantly, we will assume that jobs armt preemptible
whether it is just SITA's strict isolation of short jobs that  That is, a long job cannot be preempted when a short job
sometimes leads to poor performance. To answer this questip arrives, and then resumed later. This model is common

we consider a much more flexible policy, which we call “Cycle- . .
Stealing” (CS). The CS policy is very similar to LWL, in that for supercomputing farms [11], [20], manufacturing syssem

short jobs can go to any queue, but it still provides short jols  [17], [4], dat.a centers, 10 systems, etc., where it i_S expens
isolation from longs (one server is reserved for short jobs) to preempt jobs and thus even long jobs are typically run to
While CS has many of the same properties as LWL, including completion.

high utilization of both servers, we prove, surprisingly, tat, for For our server farm model, there are many common

high variability job sizes, CS performs poorly whenever SITA . . . ) : .
performs poorly. This result suggests that the notion of isfating choices of task assignment policies. TReund-Robirpolicy

short jobs from long jobs, under high variability workloads, is ~ assigns the first job to host 1, the second to host 2, the third

sometimes simply not the right thing to do. to host 3, theith to hosti mod n plus 1, and so forth. The
Join-the-Shortest-Queue (JS@Ylicy assigns each incoming

|. INTRODUCTION job to the host with the fewestumberof jobs queued there.

A. Task assignment policies The Least-Work-Left (LWL)policy assigns each incoming

. . .ﬁob to the host with the least total work remaining. Here
One of the oldest and most fundamental questions arisi 19 ork” i . . S )
ork” is the sum of the remaining size of the job in service

in server farms is the question of which dispatching pohcgIUS the sizes of all the jobs in the queue at the host. The

iggwr? :set#ei;:kfg;sgozmgmjoﬁicto zix(renrz.nﬂc?;l gfolﬁg ! ITA (Size-Interval Task Assignmeassigns a size-interval
9 polic 9 to each host, so that “short” jobs are sent to the first host,

task assignment PO“CY IS to minimize mean response tImerhedlum—length"jobs are sent to the second host, and “long”
where response time is measured from when a job arrive ; ; o

o Jobs to the third, etc., where the cutoffs for differentigti
until it completes.

Wi ticularly int ted in situati ith high i bsize classes are choseptimally, so as to minimize mean
Ve are parlicuiarly Interested in situations wi 'gh Jo response time. SITA with = 2 is illustrated in Figure 1. The
size variability. It is well-known that empirical computer

workloads such as Web file sizes, CPU process Iifetimeabove task assignment policies are all dispatching pslicie

IP flow durations, and wireless call times have very higfi’::treby each incoming job is immediately dispatched to a

job size variability, with job sizes fitting Pareto or other
high-variance distributions [2], [7], [13], [20], [21]. T& FIFO

paper studies the mean response time of task assignment @—‘

policies in the limit as job size variability goes to infinity

SITA
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Poisson arrivals ana servers), where there are no queueare utilized; however, this behavior changes quickly(&s
at the hosts; instead jobs queue up in a central queue.if\increased).
free host simply takes the next job from the central queue. Despite these comparisons showing that SITA outperforms
The LWL and M/GI/2 policies are illustrated in Figure 2.LWL by orders of magnitude for high job size variability,
Specifically, under M/Gl/n, jobs go to the same host as they proof of this fact has never materialized. SITA itself is
would have under LWL and are served there at the sandfifficult to analyze, even for Poisson arrivals, because in
time as under LWL (see [11] for an inductive proof). Thegeneral there is no closed-form expression for the optimal
response times under M/Gl/n and LWL are thus identicabkize cutoff, and hence the resulting response time. Further
What's nice about this equivalence is that, while the LWLmore, LWL cannot be analyzed exactly, since the M/GI/n
policy requires knowing the sizes of jobs, the M/GI/n policyqueue (equivalent to LWL) is in general only approximable.
does not. Thus, many of the existing results have used simulation to
FFO assert their claims, or have looked at phase-type job-size

m@ distributions, approximations, or heavy-traffic regimes.
LWL

C. Why SITA is not always a win for high variability
—\|Send job to

— host with In a very recent paper [16], we show that the common
sastwort FIFO wisdom about task assignment for higl? is wrong: We
:DEJQH prove that SITA is not always superior to LWL &&* —
oo; in fact SITA can be unboundedly worse than LWL. We
show that both SITA and LWL can exhibit both convergent
and divergent asymptotic behavior, depending on the load
and job-size distribution. By convergent behavior, we mean
Take next that the mean response time approaches a constait as
FIFO Q—‘g“e”e oo (while holding E [X] fixed) and by divergent behavior,
— we mean that the mean response time approaches infinity as
C? — oo (while holding E [X] fixed).
Q_dlikﬁo”n‘ix' Specifically, for each box in Table I, [16] produces several
queue examples of classes of distributions that fall within that
box. This includes Box 3, which are distributions where
(b) M/GI/2 SITA diverges and LWL converges. The examples used to
illustrate these boxes are not esoteric in nature. They do no
Fig. 2. LWL task assignment is equivalent to M/GI/2. presume arcane distributions or assume very light or heavy
load or a very high number of servers. Job size distributions
considered include the Bimodal and Trimodal distributions
B. The advantages of SITA for high variability the hyperexponentiaF{z) and three-phase hyperexponential

While a great many papers have been written comparir{édS)' and the Bounded Pareto and Pareto job size distribu-
the response time of different task assignment policies, e. t1ONs.
(3], [6], [9], [11], [12], [19], [22], [23], all of these paps

(a) LWL

conclude (via numerical analysis, simulation, or appr@adm Convergent LWL | Divergent LWL
tion) that, for high job-size variability, the SITA policysi
superior to all the other common policies mentioned above. Convergent SITA BOX 1 BOX 2

The reason for the superiority of SITA task assignment lies
in the fact that SITA allows short jobs their own “express-

line,” thereby giving them isolation from long jobs. Since Divergent SITA BOX3 BOX 4
most jobs are short jobs, the resulting mean response time

is lowered. By contrast, all other policies described above TABLE |

mix short and long jobs, allowing short jobs to get “stuck” ALL FOUR BEHAVIORS ARE COMMON

behind long jobs, greatly increasing mean response time. Th

SITA policy (and its variants) has been part of the common

wisdom in some form or other for a long time, and has been But how can SITA be bad for high variability workloads,

the focus of many papers including [18], [12], [11], [23]].[8 When it is specifically designed for those workloads? There

[19], [6], [22], [10], [3], [1], [9], [5], [20]. are two things that can go wrong under SITA (for simplicity
There are several papers which specifically compare th¢e assume just 2 servers and one cutoff differentiatingtshor

performance of SITA to LWL [3], [6], [8], [10], [11], [12], and long jobs):

[19], [22], [23]. All of these find that as job size variabyit « Observation 1. The stringent segregation of shorts and

is increased SITA becomes far superior to LWL (for low longs mandated by SITA can lead to underutilization of

C?, SITA may be worse than LWL because not all servers  the servers under any job size distribution. Specifically,



there are times when the short job queue has multiple 19900
jobs and the long job server is idle. The reverse
situation also occurs, although less frequently since 8000
short jobs arrive with higher frequency. By contrast __gno0
LWL (or equivalently the M/GI/n queue) does not &

suffer from underutilized servers. 4000
) , ) o , 2000 und
« Observation 2 Some job size distributions may inher-
ently prevent the creation of two sub-distributions both 0 :
with finite variance, meaning that one of the two SITA 1 100 10000 1e+06 1e+08 le+10

queues has infinite variance.

To see an illustration O_f how SITA fa!ls’ \,Ne ConSId_erFig. 3. Mean response time under SITA vs. LWL for Bounded Pareto(
an example from Box 3 in Table I, which is shown iny g) job size distribution [16]. SITA's mean response time tijes while
Figure 3. Here the job size distribution is the Bounded Rarethat of LWL converges.

distribution with parameter otvx = 1.6 and p = 0.95.

More information about the Bounded Pareto and how we _ )

make C2 — oo while holding E [X] fixed is provided in Providing isolation for short jobs from long ones. Ideally,
Section IV-B. The important point to note is that@ — oo, ©Ne would like to still provide isolation for short jobs, but
the upper limit on the Bounded Pareto also increases & it in @ way that achieves the good utilization of LWL.
infinity, meaning that the Bounded Pareto becomes a Paretolowards this end, we introduce the Cycle-Stealing (CS)
distribution. The Pareto and Bounded Pareto distributaves Policy, depicted in Figure 4. To keep things simple, we
known to well-model empirical job size distributions for a@ssume that there are only two servers. We define a size

wide variety of computing applications [2], [7], [21], [13] cutoff ¢». Jobs of size< 1) are referred to as “short” jobs,

[20]. with subscriptS, and jobs of size> ¢ are referred to as
Figure 3 compares the mean response time under SITRNG” jobs, with subscriptl.
to an upper bound on LWL a€? — oo while holding Under CS there is one central queue only. When server

E[X] fixed. For lower C? SITA improves upon LWL, 1 becomes free, it takes thehort job closest to the head

however, there is a cross-over point, at sufficiently high ~ Of the central queue; if there is no short job, it stays idle.
after which SITA diverges, while LWL convergésThis When server 2 becomes free, it takes the job at the head of
cross-over point was not observed in prior work (whicthe central queue, regardless of whether that is a shorhgr lo
mostly relies on simulation, numerical methods, heavffitra 10b- This is in contrast t&GITAwhere jobs are immediately
approximations or M/G1/2 approximations). This is posgibl dispatched upon arrival. _
because the prior literature didn't consider the very high ~ Importantly, for CS (and for SITA), the) cutoff is
regions, thus (incorrectly) concluding that SITA is alwaysSsumed to be chosen optimally, so as to minimize mean
superior to LWL. response time. The optimal for CS is not typically the
The results shown in Figure 3 are understandable in lig§gme as that for SITA. Also, for both policies, jobs of size
of the above two observations. Firstly, no matter whergXactly: are categorized probabilistically into short versus
the cutoff is placed in SITA, the long job server sees #Ng.
Bounded Pareto distribution witli'2 approaching infinity ~ Observe that the CS policy is designed to have (almost)
(Observation 2 above). Hence the mean delay at the secolfithe flexibility of LWL while still providing isolation fa
server goes to infinity, even when multiplied by the fractiorghorts. The CS policy is discussed in more detail in [14],
of long jobs. It may seem that LWL should diverge as well[15]-
since it too should suffer from the infinit€2. However by

Observation labove, we see that LWL has a second server to @_,Zﬁ'gretﬁonbex-
help alleviate the situation where one job gets stuck behind
another, while SITA does not always have this flexibility, if —> Ulslslils

the two jobs are on the same side of the cutoff. Thus LWL's

i ; i 2 Takes nexi
delay can be finite (ip < 1) even if C* — oco. See [16] for : j iob (either

a formalization of the above argument. type)

D. Best of both worlds? The CS policy

While Figure 3 shows that SITA can sometimes perform
poorly, one may wonder whether the issue is the particular
definition of SITA, rather than the general heuristic ofE. Results and Impact

Definition 1: A policy, P, above is said tdivergeif, for
1This cross-over point is actually lower than it appearsabee the LWL P y, P 9

o 2
curve is an upper bound. Also, in [16], examples are giveh witich lower all ¥, _the mean delay undé?(w) goes to infinity as’” —
cross-over points. oo while E [X] is held fixed.

Fig. 4. Cycle stealing task assignment.



This paper proves that, surprisingly, the CS policy divergeor property 2, and thudg [D]CSW) goes to infinity for all
whenever the SITA policy diverges. Thus, for any box inp. [ ]
Table | where SITA diverges, CS does too, meaning that
LWL can outperform CS under high variability.

This reaffirms the message that providing isolation foA. Case 1
short jobs under high job-size variability may not always Lemma 1:For any giveny, if p,E[D]*74®) — o,

Ill. ANALYSIS OFCS

be the best strategy. thenE [D]7°™) — .
Proof:
II. HIGH-LEVEL PLAN
Since p E[D.]YTAY) o, it follows that

Our overall goal is to prove that: prE [DL]CSW’) — 00, since server 2 under CS sees the

“Whenever SITA diverges, CS also diverges” same long jobs as SITA, plus it additionally sees some short
We introduce a bit of notation: For any policf, let jops,

D” denote the delay under policy. The delay of a job  HenceE [D]Cs(w) 0. -
is its response time minus its service requirement. We will

sometimes writeP(¢)) to denote policyP with cutoff p. B. Case 2

We useps to denote the fraction of short jobs, relative Lemma 2:For any given v, if pg() > 1 and
to +, and p;, to denote the fraction of long jobs. We useg [D]SITAW) — oo for all ¢/, thenE [D]7*¥) — .
Xgs (respectively, X;) to denote job size of short jobs

(respectively long ones). Likewise, we uge to denote the Proof:
load made up of short jobs, whepg; = ApsE [Xs], and  Consider a tagged short arrival. Under CS, the tagged
likewise for long jobs. arrival looks at server 2 and, by PASTA, with probability
The remainder of the paper is devoted to the proof of thg, it sees a long job there. Suppose the age of that job is
following theorem, whereD denotes delay: z. This means that, looking backwards in time, server 2 has
Theorem 1:1f E[D]*""*") — oo forally, asC? — oo,  been busy for at leastunits of time. This implies that server
thenE [D]9°™) — o for all 1, asC? — co. 2 has not completed a small job for the past: time units.
Proof: Since server 2 has been busy for the pastme units, we
We will use the fact that can argue that, with — § probability, where0 < § < 1, a
E [D]SITA(d;) — ps(V)E [DS]SITA(qp) certain (large) amount of work has built up in the (central)

SITA) gueue, and correspondingly, that this translates to at &eas
+pL(Y)E[Dy] (1) certain (large) expected dela, for the short tagged arrival.
Observe that whenever2 — oo, it must be the case that 10 make this formal, we will need to make use of a few
E [X?] — oo (assuming that) is finite), which implies lemmas, provided at the end of this section. Firstly, Lemma 3
thatE[DL]SITA(w) —» 0. But that by itself does not imply deals_ with the average_rate that work accumula’_[es during
SITA() ot . the time that server 2 is blocked. We expect this rate of
E D] — oo because there’s still they, (¢) term in :
(1). accumulation to bes — 1. Lemma 3 says that, for ary> 0 _
The entire first term in (1) is bounded for every finite ?z:tgé' s> aot’ I\g’ Zscan prlove that_tt:: € ?c\)/s;i%i W;)trlfeaa(;(ilumlglatlon
VC?, provided thaps(y) < 1. ThusE [D]SITAW) s finite rovilded that sbeb;v;r 2_is€ial\(l)\l(|:keg for a II(;r)l/ enou hti_ ,
if and only if py. (¢)E [Dr]°774®) is finite and ps () < 1. © g enough e,

Thus. f . th i iol h wherezx, is some function ob ande.
E [uDs],SIc:)FrA?wn)y glve.rw, ere are two possible reasons Wy ) amma 4 below relates the work buildup seen by a tagged
— OQ.

SITA(Y) job to its expected delay.
1) pLE[Dy] — 00 We are now ready to consider the probability that the delay
2) ps(i) > 17 of a short job exceeds, given that a long job is in residence
For a givery, if either of the above properties holds, thenat server 2. We will derive this assuming> ug, whereug
SITA's delay will be infinite for that cutoff). If neither of  will be specified later.
these is true, then SITA is convergent (since it converges on
at least that) and maybe others). )
We are given thakl [D]SITA(d;) goes to infinity for all P {delay of short> u | arrival sees long at server 2
¢’. We now consider a giveny. By definition, our given > p{ accum. short work> 2u + ¢ | } by Lemma 4
@ either satisfies property 1 above or property 2 above (or arriv. sees long job at serv. 2
both). Lemma 1 shows that if our givensatisfies property 1 Let f(u) = 2u+
above, therE [D]csw) goes to infinity. Likewise, Lemma 2 —1—¢
shows that if our given) satisfies property 2 above and > P{age of long > f(u)}

E[D]*T4) — 00wy, thenE[D]“*™) goes to infinity. -P {work accum. at rate> ps — 1 — e during f(u)}
Since SITA diverges, every must satisfy either property 1 Now. in order to make this second term excéed §

2We are excluding the cages (1) = 1. we needf(u) > xo(d, ¢) from Lemma 3.



2u + Y
ps—1—ce¢
P{XLe Zf(u)}(l_é)a

v

molps 1= _

2
u>ug by Lemma 3

> Ty < u>

= P{Xre>Qu+v)/(ps—1—¢€)} (1-9)

_ P{7p3_21_€XLe—%>u}-(l—6)

_p Y _ps—1l—e
= {CXLB_E >u}-(1—5) wherec_f

P{Y >u}-(1-9) (assumingu > g )

where we defing” = cXy, — 5.
At this point, we have seen that:

P {delay of short > w | arrival sees long at server; 2
{ P{Y >u}(1-4) Iif
= 0

U > Ug

if  u<ug

Let N (x) be a random variable for the number of Poisson
arrivals duringz, and letXs (i) be a random variable for the
size of theith short job,1 <i < N(x).

P {Work arriving duringz > (ps — €) 2}

e

> Xs(i)>(ps—e)w
Xs(i)ZPs—é}

N(z)

P{ N &

We now condition on—~ (

, Which is the average arrival

Then, integrating both sides of the above with respect Qe during timer. We deflne

u, we have that:

E [Delay of short| long in servicé

> /0 Odu—i—/uo P{Y > u} (1 —d)du
- (1—5)E[Y]—(1—5)/0P{Y>u}du
0
> (1-06)(E[Y]—uo)
— -9 (BlXLI- % )
Thus,

E [Delay of short >

pr(1—9) (CE (XL

linear inp,E [X L]

5 )

All that’s left is to show that
prE[X1,.] — 00 asC? — oo

This will imply that the expected delay of the short job aaitiv
is infinite under CS, and we are done.
The fact that

prE[XL,.] — 00 asC? — oo

is proven formally in Lemma 5 at the end of the section, But we earlier conditioned oWV (z) > zA~,
which states that the above equation must be true, otherwi

there would be a cutoff under which SITA converges.
[ |
Lemma 3:Given short jobs with mean siZE [Xg] con-
tributing loadps > 1 and0 < 4, ¢ < 1, there exists a finite

xo (0,€), given by (4) such that the probability that work

accumulates at an average rate exceegdig 1 — e during
the timex server 2 is blocked exceeds- ¢, Va > zg.

Proof: Clearly, the amount of workompletingduring
time x is no more thane. It thus suffices to prove that the
work arriving during timez is at least(ps — €)x.

ps — €

A=
E [Xs] — 5%

)

Observe that\~™ < A, but thatA\= — X\ ase — 0. We will
condition on £, -, defined as the event th:ﬂ% > A7,
Define P\- = P{E,-}.

P {Work arriving duringz > (ps —€) x}
N(x)
N (z 1 .
> P{ :E ) N @ 2 Xs (i) = ps — €| Ex} - Py -

P {Work arriving duringz > (ps — €) x}

N(z)
> ps — € . P)\*

N 2 Xs @

N(z)
{ ZXS Xs]—%} Py
222 1
> Q—ﬂ} ﬁ@-ﬁQ-Atwmnm

and hence
5§7)< ——. Thus,

P {Work arriving duringz > (ps — €) z}
> (1 2"

The goal will be to provide amq such that for allz > x,
the above probability exceeds the givier §. Before we can
do this, it is useful to bound, -, so that we can quantify
its dependence om.



- P{wa> g E[ﬁfss]_—eﬁ}

(7))

Now observe thatN(z) ~ Poisson with mean Az.
Assuming thatz is an integer, we can view (z) as a sum
of « Poisson random variabldsV; + No + - -+ + N,,) each
with mean\ and variance\.

Then
P > N; > \— A
A= Z > 2ps — €
> P —ZN—/\>— A
= T = ! 2ps —¢€
2
> 1—(2”_6) 2 by Egn (7)
€A T

Substituting in the above value éf,-, we have that:
P {Work arriving duringz > (ps — €) 2}

> (1 3 (2:;)2 %) ' (1 3 <2pi\—6>2 . %)(3)

We now want to determing, such that for ale > zg, the
above probability in (3) exceeds— §. Setting (3)>1— 6
and simplifying gives:

2pg — 205 — €)*
0 < 625302_[2)\. ps — €. §<s M]x
ps — € A
2 (2PS—€)3 2
=

Since the rightmost term is strictly positive, we can ignor

it. This yields:

2ps—€ . 2 (2ps—e¢)®
ps—e UXS+ A

€2)

[2/\ :

(4)

o =

Lemma 4:For a tagged short job, with probability 1, delay

> u, in a 2-server CS system with cutaff, if the short job
sees at leastu + v buildup of accumulated short work.
Proof: We assume that the accumulated wtrkcan go

to either server. The maximum amount of work that could be
present when a server freesjis Thus both servers would be

Proof: Suppose, by contradiction, that E [X .| —
o < oo under our cutoffy. That implies thatp, E [X7 ]
is also finite for cutoffy. If ps(¢) < 1, then SITA(y)
will converge because both the short and long components of
SITA's delay converge. Therefore we assume het)) > 1.
Now let’s say that CSf) sendsp,(¢) fraction of jobs (the
long ones) to server 2, as well ag > 0 load of small jobs
to server 2 to relieve the overload at server 1.

Consider now a “new” cutoff for SITA, called’ < 1,
which also sendss load of short jobs (the longest short
jobs) to the long server (randomizing if necessary).

Assume that thig's load of small jobs corresponds fa
fraction of small jobs. LetX; be a random variable drawn
from the job size distribution of those short jobs (those of
size between)’ and+) that end up serving at server 2 under
cutoff +'.

Then, the second moment of the job sizes at server 2 under
SITA(¢y') is computed as follows:

[s
fs+pL

1-9%+

E[x2] + DL
[ 7] fs+pL

B [xy
[1 A-E[XL]-

AE [X ]
1

AE [X[]

E[x7] = E[X7]

IN

bL

fs+pL
1

fs+pL

2
prE [X%] . fs+pL

— v+ B[x}

? + ———pE[X7] -

1
_ 2
= VT E (XL

= P+ %PLE (XL
2a
M fs+pr)

fs+pr
= 2+ by assumption

< o0

(%)

Undery’ both servers would have load 1 and the second
server would have finite mean delay, as the second moment
at server 2 is bounded by Eqgn (5), and the mean delay at the
first server is obviously finite. But this is in contradictitm

She assumption that mean delay under SITA is infinite for all

cutoffs. [ |

IV. AUXILIARY LEMMAS AND BACKGROUND
A. WLLN

This section recalls the proof of the Weak Law of Large
Numbers (WLLN) because we'll need an equation from here:

Theorem 2 (WLLN).Let X, X5, X3, ..., be i.i.d. with
finite meanE [X|] and finite variancer?. Then

lim P{|&—E[X]|Ze}—0
n

n—oo

Proof:

busy for at Ieas@ time. So the delay of a short job which  Markov’s Inequality tells us that, ifX is non-negative

seesV work is at least’~. Now substitute iV = 2u-+1)
and we're done. [ |

Lemma 5:1f E[D]%/74%) = «, vy, then, for anyy,
PrL(V)E X1 (¥)] — 00 asC? — oo

then:

3If conceivably ps ()¢S = 1, then we would choose)’ to send
fs + € short jobs to the long queue, ensuripg(¢’')°!T4 < 1 and

pL(w/)SITA < 1.



E[X]
! 2
This can be used to prove Chebyshev’s Inequality which

says that ifY" is a random variable with finite medhs [V

and finite variancer?.. Then,

(1]

P{X >t} < WVE>0

(3]

2

Oy

_ > < X
P{Y -E[Y]| >t} <2 "
Using the above, let 5]

_1 Z” | 2 _ 1o

Yo = N b oY, T 0% (6]
Thus [7]
P{lY, —E[Y L1 6 o

_ > i
{IYn Y]l =t} < tznaXl ©) [9]

Letting n — oo we obtain the Weak Law of Large
Numbers.

[10]
|
Note: (6) also implies the following useful fact: [11]
11
P{Y,-E[Y]>—-t} > 1- ?ﬁagﬁ Vi>0 (7) 12
B. Background on Pareto and Bounded Pareto 113
The Bounded Paretb, p, «) distribution, wherd) < o <
2 and0 < k < p, has the following density function:
ak® - —a—1 k< < [14]
fla)=1{ =(E" =r=b
0 otherwise

As p — oo, the Bounded Pareto distribution converges tl5]
the Pareto with density function:

f(z) =ak“z~ 1 x>k>0

[16]
For1l < a < 2, the Pareto distribution has finite mean, but
infinite variance.

The following two Lemmas from [16] describe what[17]
happens to the Bounded Pareto when we incré&sahile (18]
holding E [X] fixed:

Lemma 6:For anyE [X], C?, anda > 1, we can specify [19]
a Bounded Pareté, p, o).

Lemma 7:KeepingE [X] constant, ax’? — oo, for the [20]
Bounded Pareto distributiom, — oo andk — “1E[X]
(from above fora > 1).
[21]
[22]
[23]
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