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1 IntroductionHeavy-tailed distributions (also known as power-law distributions) have been observed in many naturalphenomena including both physical and sociological phenomena. A commonly cited example is thedistribution of hurricane damage: Most hurricanes cause very little damage; a small percentage ofhurricanes cause a whole lot of damage; and the density function which describes this statement hasthe form of a power-law, [5]. Not surprisingly, the distribution of �re damage and earthquake damageare also heavy-tailed, [5]. As another exmaple, the overall distribution of national wealth is also heavy-tailed.Recently heavy-tailed distributions have been discovered in computer systems. In particular the sizes(service demands) of computing jobs have been found to exhibit a heavy-tailed (power-law) distribution.For example, if we consider the CPU requirement of jobs, it turns out that most jobs have low CPUrequirements; a few jobs have very high CPU requirements; and the density function has the form of apower-law.Most previous analytic work in the area of computer system design has assumed that job sizes (servicedemands) are exponentially distributed. This assumption may have been made, in part, for analyticaltractability. Many of the policies, algorithms, and general rules-of-thumb which are currently used incomputer systems originated from analyses which assumed an exponentially-distributed workload.The point of this paper is that existing policies and intuitions with respect to computer systemdesign may be severely suboptimal when applied to heavy-tailed workloads. To correct this, �rst heavy-tailed distributions need to be understood at an intuitive level so that we can form new intuitions aboutwhich policies are e�ective and which aren't. Next, existing policies and new policies must be evaluatedusing new analysis which can incorporate heavy-tailed distributions.In Section 2 we describe measurements of computing systems in which heavy-tailed distributionswere observed, and we de�ne what we mean by a heavy-tailed distribution. We then characterize theimportant properties of heavy-tailed distributions with respect to computer system design.Sections 3, 4, and 5 are each a case study of a common system design problem. For each problemabove, we solve the problem �rst in the context of an exponentially-distributed job size distribution andthen in the context of a heavy-tailed job size distribution, obtaining very di�erent answers.This paper is based on a sequence of papers which the author co-wrote: [9, 6, 7, 8, 1]. This paperonly provides brief summaries of the insights learned in the original papers. Throughout the reader isreferred to the original papers for more detail.2 Measurements of Heavy-tailed job size distributions in computersystemsFigure 1 depicts graphically on a log-log plot the measured distribution of CPU requirements of over amillion UNIX processes, taken from paper [9]. Note, the �gure shows only jobs which require at least1 second of CPU. This distribution closely �ts the curvePrfProcess CPU requirement > xg = 1=x:In [9] it is shown that this distribution for CPU requirements is present in a variety of computingenvironments, including instructional, research, and administrative environments.Figure 1 says that most jobs are small (require little CPU) and a few jobs are large (require a lot ofCPU). This fact is also the case for an exponential distribution. However the curve shown in Figure 1 isfar from exponential. To demonstrate this point, Figure 2 shows the best possible �t of an exponentialdistribution to the measured data. 1
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1. Decreasing failure rate: In particular, the longer a task has run, the longer it is expected tocontinue running. In fact, in the 1=x distribution shown in Figure 1, a job of CPU age x (i.e. a jobwhich has thus far used x seconds of CPU) has probability half of using another x seconds of CPU.In other words, the median remaining lifetime of a job is its current age. Contrast this with theexponential distribution which is memoryless. The exponential distribution and the heavy-taileddistribution have a similar \ski-slope" shape when drawn on non-logarithmic scales, however theheavy-tailed distribution drops o� at a slower and slower rate as we move along the x-axis, whereasthe exponential distribution drops o� at a constant rate throughout.2. In�nite variance (and if � � 1, in�nite mean). In reality, of course, any �nite set of measure-ments or �nite trace has �nite variance. The point is that the variance is very high when theworkload is heavy-tailed.3. The property that a very small fraction (< 1%) of the very largest jobs make up a large fraction(half) of the workload. We will refer to this key property throughout the paper as the heavy-tailed property. Contrast this with the exponential distribution where the largest 1% of the verylargest jobs make up about 5% of the total workload. To understand the heavy-tailed property,consider the example of the distribution of our national wealth: most people have very littlemoney; a few people have a lot of money; and the 1% richest people together have more moneythan all the other people combined.The lower the parameter �, the more variable the distribution, and the more pronounced is the heavy-tailed property, i.e. the smaller the faction of large tasks that comprise half the load.In fact, heavy-tailed distributions appear to �t many recent measurements of computing systems.These include, for example:� Unix process CPU requirements measured at Bellcore: 1 � � � 1:25 [12].� Unix process CPU requirements, measured at UC Berkeley: � � 1 [9].� Sizes of �les stored at Web sites and sizes of �les accessed by Web requests: 1:1 � � � 1:3 [2, 4].� Sizes of �les stored in Unix �lesystems: [11].� I/O times: [14].� Sizes of FTP transfers in the Internet: :9 � � � 1:1 [13].In most of these cases where estimates of � were made, 1 � � � 2. In fact, typically � tends to be closeto 1, which represents very high variability in task service requirements.3 Case study 1: Choosing a migration policy in a network of work-stationsThe discussion in this section is taken entirely from the following paper: [9]. We present here a smallsubset of the material presented in that paper.Consider the following problem: We have a Network of Workstations (NOW) with processes currentlyrunning on some of the workstations. We are interested in running some automated CPU load balancingpolicy, whereby processes are migrated from heavily-loaded hosts, across the network, to more lightly-loaded hosts where they can receive a greater share of the CPU. There are two types of load balancing3



possible: remote execution and active process migration. In remote execution (a.k.a. placement), aprocess may only be migrated if it has not started running yet. Active process migration, on the otherhand, is the migration of active (already running) processes. Both types of migration have cost, butcost of remote execution is very small whereas the cost of active process migration can be quite largesince an active process has accumulated memory which must be moved along with the process. Activeprocess migration can in fact be very expensive because the cost of migrating the process is charged notonly to the migrant but also to the source and target hosts. We are interested in answering followingtwo policy questions:1. Is active process migration really necessary to achieve good load balancing, or is remote executionenough?2. If we do opt for active process migration, what is a good active migration policy? That is, whichactive processes does it pay to migrate?In answering the above questions we will assume a somewhat simpli�ed model in which processesconsist only of CPU and memory (i.e. no interactive jobs). All hosts are timesharing hosts.Our discussion in this section will center on how the distribution of process sizes e�ects the answerto this question. A process' size (or lifetime) is de�ned to be its total CPU requirement. Likewise aprocess' age is de�ned to be the amount of CPU it has used so far. We say a process is old if it hasused a lot of CPU so far. Note that process lifetimes are not known a priori.Returning to question (1) above, suppose the distribution of process lifetimes was exponential. Thenprocesses of all ages would have the same expected remaining lifetime, so there would not be bene�t tomigrating active processes which have much higher migration costs. However if the distribution of UNIXprocess lifetimes is heavy-tailed as our measurements show in Figure 1, older processes live longer, i.e.,the older a job is the more likely it is to use another second of CPU. Thus it may pay to migrate oldactive jobs because although their migration cost is very high, their remaining CPU requirement of thejob may be even higher.To answer the question of whether active process migration is in fact necessary, we performed a trace-driven simulation. We simulated a network of 6 hosts. Process start times, durations, etc. were takenfrom real machine traces of UNIX processes. We performed 8 independent 1-hour experiments. Eachexperiment involved 15,000{30,000 processes. The overall system utilization in the experiments rangedfrom .27 { .54. The complete details of the trace-driven simulation experiment setup are describedin [9].The purpose of the trace-driven simulation experiment was to compare two load-balancing strategies,remote execution versus active process migration, as described below:In choosing a remote execution strategy, it is important to observe that remote execution, whilecheap, is still not free. According to our measurements, [9], the size of most processes (i.e. theirtotal CPU requirement) is smaller than the cost of remote execution. This is well-known and thus thestandard remote execution strategy used is practical systems is based on name-lists. The name-list isa list of names of jobs which on average tend to have large size. Examples are cc, gcc. The name-listis created by looking at past history. A newborn process at a busy host is only chosen to be remotelyexecuted if its name appears on the name-list.In our trace-driven simulation experiment, we chose to use the standard name-list based remoteexecution strategy, except that in constructing the name-list, we allowed our remote execution policyto see all the traces ahead of time and make up the best possible name-list for that trace. The detailsare described in [9]. The purpose of doing this was to give the remote execution strategy every possibleadvantage.Deriving an active migration policy for the trace-driven simulation experiment was not so obvious.4
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Figure 3: Trace-driven simulation results for 8 di�erent runs. Mean slowdown is shown under no loadbalancing, under remote execution only, and under only migration of active processes.The job size distribution of UNIX processes suggests that it may pay to migrate older jobs since theylive longer, but how old is enough? In particular, the particular 1=x job size distribution from Figure 1suggests that the remaining CPU requirement of every job is in�nity. In [9], we show how to use the1=x job size distribution to derive a migration policy for active processes, which we show has someinteresting properties. For now we simply state the policy: An active process is migrated if:age of process > migration cost of process#source�#target� 1 ;where #source (#target) represents the number of jobs at the source (respectively target) host. Intu-itively, this policy says that if a process' migration cost is high, the process needs to be old enough toa�ord the migration cost. However, if the di�erence between the loads at the source and target hosts isreally great, then the process doesn't need to be quite as old to make the migration still worthwhile.The trace-driven simulation experiment was performed �rst using no load balancing, then using onlythe remote execution policy, and �nally using only the active migration policy. The results for the 8 runsare shown in Figure 3. Figure 3 shows that the remote execution policy improved the mean slowdownimproved by about 20% over no load balancing, but the active migration policy created a much moredramatic e�ect {about 50% improvement over no load balancing. ( The slowdown of a process is itswall-time divided by its size. For example, a process whose CPU requirement was 3 seconds, but had awall-time (a.k.a. response time) of 12 seconds, experienced a slowdown factor of 4.) In [9] we see thatunder other metrics (like mean response time, variance in slowdown, and number of severely slowedprocesses) improvements were even more dramatic in favor of active process migration.In the experiment just described the average active migration cost of processes (memory/bandwidth)was 2.3 seconds (this cost was charged to both the migrant process and to the source host). The costof remote execution was .3 seconds. In this experiment active process migration was more e�ectivethan remote execution. This begs the question: Suppose the mean active migration cost is much higher(say bandwidth is very low), does active migration then become less e�ective than remote execution?Figure 4 answers this question. Here we scaled the mean cost of active migration while holding thecost of remote execution constant at .3 seconds. The �gure shows that even when the cost of activeprocess migration is as high as 20 seconds, active process migration is still more e�ective in reducingmean slowdown than remote execution. 5
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Figure 4: This �gure shows the e�ect of increasing the cost of active process migration while holdingconstant the cost of remote execution. The x-axis shows the cost of active process migration. The y-axisshows mean slowdown. The �gure shows that even when the cost of active process migration is as highas 20 seconds, active process migration is still more e�ective in reducing mean slowdown than remoteexecution.Why? Why is migration of active processes more e�ective in load balancing than remote execution,especially given our highly-optimized remote execution policy?The answer lies in understanding the job size distribution. First of all, because of the decreasingfailure rate property of the job size distribution, active process migration was better able to detect longjobs than was remote execution. In fact, the mean lifetime of a migrant under the remote executionpolicy was 1:5�2:1 seconds, whereas the mean lifetime of a migrant under active process migration was4:5� 5:7 seconds. This simply says that the best indicator of how long a process is going to live, is howlong it has lived already. But why does it matter if remote execution misses the opportunity to migratea few big jobs? To see this we need to go back to the heavy-tailed property of the 1=x distribution.The active migration policy only migrated 4% of all jobs, but that 4% accounted for 55% of the totalCPU. Thus by detecting the few very largest jobs and only migrating those, the active process migrationpolicy was able to a�ect a large percentage of the total load.To summarize, in this case study, the important properties of the process size distribution were thedecreasing failure rate property and the heavy-tailed property. The reader is encouraged to seek theoriginal paper [9] for a more complete understanding of these results.4 Case study 2: Choosing a Task Assignment Policy for a distributedserver systemThe material in this section is taken entirely from the following papers: [7] and [6].4.1 IntroductionTo build high-capacity server systems, developers are increasingly turning to distributed designs becauseof their scalability and cost-e�ectiveness. Examples of this trend include distributed Web servers,6
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Figure 5: Distributed Server Modeldistributed database servers, and high performance computing clusters. In such a system, requests forservice arrive and must be assigned to one of the host machines for processing. The rule for assigningtasks to host machines is known as the task assignment policy.We will limit our discussion to the particular model of a distributed server system in which eachincoming task is immediately assigned to a host machine, and each host machine processes its assignedtasks in �rst-come-�rst-served (FCFS) order, as shown in Figure 5. We also assume that the task's ser-vice demand is known in advance. Our motivation for considering this model is that it is an abstractionof some existing distributed servers, described in Section 4.2.We consider four task assignment policies commonly proposed for such distributed server systemsand ask which has the best mean response time and mean slowdown2. The four task assignment policiesare:Random : an incoming task is sent to host i with probability 1=h.Round-Robin : tasks are assigned to hosts in cyclical fashion with the ith task being assigned to hosti mod h.Size-Based : Each host serves tasks whose service demand falls in a designated range.Dynamic : Each incoming task is assigned to the host with the smallest amount of outstanding work,which is the sum of the sizes of the tasks in the host's queue plus the work remaining on that taskcurrently being served.Our goal is to understand the in
uence of the job size distribution on the question of which taskassignment policy is best. In particular we are interested in heavy-tailed job size distributions and inexponential job size distributions.4.2 Model and Problem FormulationWe are concerned with the following speci�c model of a distributed server. The server is composed ofh hosts, each with equal processing power. Tasks arrive to the system according to a Poisson processwith rate �. When a task arrives to the system, it is inspected by a dispatcher facility which assigns2All means are per-task averages. 7
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alphaFigure 6: Parameters of the Bounded Pareto Distribution (left); Second Moment of B(k; 1010; �) as afunction of �, when E fXg = 3000 (right).it to one of the hosts for service. We assume the dispatcher facility knows the size of the task. Thetasks assigned to each host are served in FCFS order, and tasks are not preemptible. We assume thatprocessing power is the only resource used by tasks.The above model for a distributed server was initially inspired by the xolas batch distributed com-puting facility at MIT's Laboratory for Computer Science. Xolas consists of 4 identical multiprocessorhosts. Users specify an upper bound on their job's processing demand. If the job exceeds that demand,it is killed. The xolas facility has a dispatcher front end which assigns each job to one of the hostsfor service. The user is then given an upper bound on the time her job will have to wait in the queue,based on the sum of the sizes of the jobs in that queue. The jobs queued at each host are each run tocompletion in FCFS order.We assume that task sizes show some maximum (but large) value. As a result, we model task sizesusing a distribution that follows a power law, but has an upper bound. We refer to this distribution asa Bounded Pareto. It is characterized by three parameters: �, the exponent of the power law; k, thesmallest possible observation; and p, the largest possible observation. The probability mass function forthe Bounded Pareto B(k; p; �) is de�ned as:f(x) = �k�1� (k=p)� x���1 k � x � p: (1)Throughout this section we model task sizes using a B(k; p; �) distribution, and vary � over therange 0 to 2 in order to observe the e�ect of changing variability of the distribution. To focus on thee�ect of changing variance, we keep the distributional mean �xed (at 3000) and the maximum value �xed(at p = 1010). In order to keep the mean constant, we adjust k slightly as � changes (0 < k � 1500).The above parameters are summarized in Table 1.Note that the Bounded Pareto distribution has all its moments �nite. Thus, it is not a heavy-taileddistribution in the sense we have de�ned above. However, this distribution will still show very highvariability if k � p. For example, Figure 6 (right) shows the second moment E �X2	 of this distributionas a function of � for p = 1010, where k is chosen to keep E fXg constant at 3000, (0 < k � 1500). The�gure shows that the second moment explodes exponentially as � declines. Furthermore, the BoundedPareto distribution also still exhibits the heavy-tailed property and (to some extent) the decreasingfailure rate property of the unbounded Pareto distribution.
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Number of hosts h = 8.System load � = :8.Mean service time E fXg = 3000 time unitsTask arrival process Poisson with rate � = � � 1=E fXg �h = :0021tasks/unit timeMaximum task service time p = 1010 time units� parameter 0 < � � 2Minimum task service time chosen so that mean task service time staysconstant as � varies (0 < k � 1500)Table 1: Parameters used in evaluating task assignment policies4.3 A New Size-Based Task Assignment Policy: SITA-EBefore delving into simulation and analytic results, we need to specify a few more parameters of thesize-based policy.In size-based task assignment, a size range is associated with each host and a task is sent to theappropriate host based on its size. In practice the size ranges associated with the hosts are often chosensomewhat arbitrarily. There might be a 15-minute queue for tasks of size between 0 and 15 minutes, a3-hour queue for tasks of size between 15 minutes and 3 hours, a 6-hour queue, a 12-hour queue and an18-hour queue, for example. (This example is used in practice at the Cornell Theory Center IBM SP2job scheduler [10].)We choose a more formal algorithm for size-based task assignment, which we refer to as SITA-E |Size Interval Task Assignment with Equal Load. The idea is simple: de�ne the size range associatedwith each host such that the total work (load) directed to each host is the same. The motivation fordoing this is that balancing the load minimizes mean waiting time.The mechanism for achieving balanced expected load at the hosts is to use the task size distributionto de�ne the cuto� points (de�ning the ranges) so that the expected work directed to each host is thesame. The task size distribution is easy to obtain by maintaining a histogram (in the dispatcher unit)of all task sizes witnessed over a period of time.More precisely, let F (x) = PrfX � xg denote the cumulative distribution function of task sizeswith �nite mean M . Let k denote the smallest task size, p (possibly equal to in�nity) denote thelargest task size, and h be the number of hosts. Then we determine \cuto� points" xi, i = 0 : : : h wherek = x0 < x1 < x2 < : : : < xh�1 < xh = p, such thatZ x1x0=k x � dF (x) = Z x2x1 x � dF (x) = � � � = Z xh=pxh�1 x � dF (x) = Mh = R pk x � dF (x)hand assign to the ith host all tasks ranging in size from xi�1 to xi.SITA-E as de�ned can be applied to any task size distribution with �nite mean. In the remainderof this case study we will always assume the task size distribution is the Bounded Pareto distribution,B(k; p; �).4.4 Simulation ResultsIn this section we compare the Random, Round-Robin, SITA-E, and Dynamic policies via simulation.Simulation parameters are as shown in Table 1.Simulating a server system with heavy-tailed, highly variable service times is di�cult because thesystem approaches steady state very slowly and usually from below [3]. This occurs because the runningaverage of task sizes is typically at the outset well below the true mean; the true mean isn't achieveduntil enough large tasks arrive. The consequence for a system like our own is that simulation outputs9



appear more optimistic than they would in steady-state. To make our simulation measurements lesssensitive to the startup transient, we run our simulation for 4� 105 arrivals and then capture data fromthe next single arrival to the system only. Each data point shown in our plots is the average of 400independent runs, each of which started from an empty system.We consider � values in the range 1.1 (high variability) to 1.9 (lower variability). As described inSection 2, � values in the range 1.0 to 1.3 tend to be common in empirical measurements of computingsystems.
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(a) (b)Figure 7: Mean Waiting Time (a) and Mean Slowdown (b) under Simulation of Four Task AssignmentPolicies as a Function of �.
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(a) (b)Figure 8: Standard Deviation of Waiting Time (a) and Standard Deviation of Slowdown (b) underSimulation of Four Task Assignment Policies as a Function of �.Figure 7 and 8 show the performance of the system for all four policies, as a function of � (note thelogarithmic scale on the y axis). Figure 7(a) shows mean waiting time and 7(b) shows mean slowdown.Below we simply summarize these results; in the next section, we will use analysis to explain theseresults.First of all, observe that the performance of the system under the Random and Round Robin policiesis similar, and that both cases perform much more poorly than the other two (SITA-E and Dynamic).As � declines, both of the performance metrics under the Random and Round-Robin policies explode10



approximately exponentially. This gives an indication of the severe impacts that heavy-tailed workloadscan have in systems with naive task assignment policies.The Dynamic policy shows the bene�ts of instantaneous load balancing. Dynamic is on the orderof 100 times better for both metrics when compared to Random and Round Robin. For large �, thismeans that Dynamic performs quite well|with mean slowdown less than 1. However as the variabilityin task size increases (as �! 1), Dynamic is unable to maintain good performance. It too su�ers fromroughly exponential explosion in performance metrics as � declines.In contrast, the behavior of SITA-E is quite di�erent from that of the other three. Over the entirerange of � values studied, the performance of the system under SITA-E is relatively unchanged, withmean slowdown always between 2 and 3. This is the most striking aspect of our data: in a range of � inwhich performance metrics for Random, Round Robin, and Dynamic all explode, SITA-E's performanceremains remarkably insensitive to increase in task size variability.As a result we �nd that when task size is less variable, Dynamic task assignment exhibits betterperformance (an order of magnitude better than the SITA-E); but when task sizes show the variabilitythat is more characteristic of empirical measurements (� � 1:1), SITA-E's performance can be twoorders of magnitude (100 times) better than that of Dynamic.In [7] we simulate a range of loads (�) and show that as load increases, SITA-E becomes preferableto Dynamic over a larger range of �.The remarkable consistency of system performance under the SITA-E policy across the range of �from 1.1 to 1.9 is di�cult to understand using the tools of simulation alone. For that reason the nextsection develops analysis of SITA-E and the other policies, and uses that analysis to explain SITA-E'sperformance.4.5 Analysis of Task Assignment PoliciesTo understand the di�erences between the performance of the four task assignment policies, we providea full analysis of the Round-Robin, Random, and SITA-E policies, and an approximation of the Dynamicpolicy.In the analysis below we will repeatedly make use of the Pollaczek-Kinchin formula below whichanalyzes the M/G/1 FCFS queue:E fWaiting Timeg = �EnX2o =2(1 � �) [Pollaczek-Kinchin formula]E fSlowdowng = E fW=Xg = E fWg �EnX�1owhere � denotes the rate of the arrival process, X denotes the service time distribution, and � denotes theutilization (� = �E fXg). The slowdown formulas follow from the fact that W and X are independentfor a FCFS queue.Observe that every metric for the simple FCFS queue is dependent on E�X2	, the second momentof the service time. Recall that if the workload is heavy-tailed, the second moment of the service timeexplodes, as shown in Figure 6.Random Task Assignment. The Random policy simply performs Bernoulli splitting on the input stream,with the result that each host becomes an independentM=B(k; p; �)=1 queue. The load at the ith host,is equal to the system load, that is, �i = �. So the Pollaczek-Kinchin formula applies directly, andall performance metrics are proportional to the second moment of B(k; p; �). Performance is generallypoor because the second moment of the B(k; p; �) is high.Round Robin. The Round Robin policy splits the incoming stream so each host sees an Eh=B(k; p; �)=1queue, with utilization �i = �. This system has performance close to the Random case since it still sees11



high variability in service times, which dominates performance.SITA-E. The SITA-E policy also performs Bernoulli splitting on the arrival stream (which follows fromour assumption that task sizes are independent). By the de�nition of SITA-E, �i = �. However the tasksizes at each queue are determined by the particular values of the interval cuto�s, fxig; i = 0; :::; h. Infact, host i sees aM=B(xi�1; xi; �)=1 queue. The reason for this is that partitioning the Bounded Paretodistribution into contiguous regions and renormalizing each of the resulting regions to unit probabilityyields a new set of Bounded Pareto distributions. In [7] we show how to calculate the set of xis for theB(k; p; �) distribution, and we present the resulting formulas that provide full analysis of the systemunder the SITA-E policy for all the performance metrics.Dynamic. The Dynamic policy is not analytically tractable, which is why we performed the simulationstudy. However, in [7] we prove that a distributed system of the type in this paper with h hosts whichperforms Dynamic task assignment is actually equivalent to an M/G/h queue. Fortunately, there existknown approximations for the performance metrics of the M/G/h queue [15]:EnQM=G=ho = EnQM=M=ho �EnX2o =E fXg2 ;where X denotes the service time distribution and Q denotes the number in queue. What's important toobserve here is that the mean queue length, and therefore the mean waiting time and mean slowdown,are all proportional to the second moment of the service time distribution, as was the case for theRandom and Round-Robin task assignment policies.Using the above analysis we can compute the performance of the above task assignment policies overa range of � values. Figure 9 shows the analytically-derived mean waiting time and mean slowdown ofthe system under each policy over the whole range of �. Figure 10 again shows these analytically-derivedmetrics, but only over the range of 1 � � � 2, which is the range of � corresponding to most empiricalmeasurements of process lifetimes and �le sizes (see Section 2). (Note that, because of slow simulationconvergence as described at the beginning of Section 4.4, simulation values are generally lower thananalytic predictions; however all simulation trends agree with analysis).First observe that the performance of the Random and Dynamic policies in both these �gures growsworse as � decreases, where the performance curves follow the same shape as the second moment of theBounded Pareto distribution, shown in Figure 6. This is expected since the performance of Random andDynamic is directly proportional to the second moment of the service time distribution. By contrast,looking at Figure 10 we see that in the range 1 < � < 2, the mean waiting time and especially meanslowdown under the SITA-E policy is remarkably constant, with mean slowdowns around 3, whereasRandom and Dynamic explode in this range. The insensitivity of SITA-E's performance to � in thisrange is the most striking property of our simulations and analysis.Why does SITA-E perform so well in a region of task size variability wherein a Dynamic policyexplodes? A careful analysis of the performance of SITA-E at each queue of the system (see [7]) leadsus to the following answers:1. By limiting the range of task sizes at each host, SITA-E greatly reduces the variance of the tasksize distribution witnessed by the lowered-numbered hosts, thereby improving performance atthese hosts. In fact the performance at most hosts is superior to that of an M/M/1 queue withutilization �.2. When load is balanced, the majority of tasks are assigned to the low-numbered hosts, which arethe hosts with the best performance. This is intensi�ed by the heavy-tailed property which impliesthat very few tasks are assigned to high numbered hosts.12
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Figure 9: Analysis of mean waiting time and mean slowdown over whole range of �, 0 < � � 2.
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Figure 10: Analysis of mean waiting time and mean slowdown over empirically relevant range of �,1 � � � 2.3. Furthermore, mean slowdown is improved because small tasks observe proportionately lower wait-ing times.For the case of � � 1, shown in Figure 9, even under the SITA-E policy, system performanceeventually deteriorates badly. The reason is that as overall variability in task sizes increases, eventuallyeven host 1 will witness high variability. Further analysis [7] indicates that adding hosts can extendthe range over which SITA-E shows good performance. For example, when the number of hosts is 32,SITA-E's performance does not deteriorate until � � :8.4.6 ConclusionWe have studied how the task size distribution in
uences which task assignment policy is best in adistributed system. We considered four policies: Random, Round-Robin, SITA-E (a size-based policy),and Dynamic (sending the task to the host with the least remaining work).We have found that the best choice of task assignment policy depends critically on the variabilityof task size distribution. When the task sizes are not highly variable, for example in the case of anexponential distribution, the Dynamic policy is preferable { by as much as an order of magnitudein performance. However, when task sizes are heavy-tailed with � � 1 as is common in empiricalmeasurements (see Section 2), SITA-E is best { by as much as two orders of magnitude in performance.13



5 Case study 3: Scheduling in a Web serverThe discussion in this section is taken entirely from the papers: [8, 1]. We present here a brief overviewof the material presented in those papers.Consider a Web server servicing multiple connections (jobs). Traditionally, the Web server willtime-slice between the connections. Each resource (CPU and I/O) is \shared fairly" between the openconnections. However, it may be possible to achieve better mean response time (mean over all jobs) byusing a di�erent scheduling policy { one which favors small jobs.Heretofore, Web servers have not obtained or utilized information about the size of the job (it'sresource requirement). However the size of a job is in fact easy information to gauge for static requests(requests which simply GET a �le), since the \size" of a job is then proportional to the size of the �lebeing retrieved.Given that the size of a job is in fact obtainable, we propose changing the scheduling policy in Webservers to give preference to small jobs (connections) over big ones. More speci�cally, [8, 1] proposegiving preference to jobs whose remaining size (remaining service demands) are smallest.The motivation for this type of scheduling is the well-known scheduling theorem that states that forsingle resource scheduling, always running the job with the shortest remaining processing time (SRPT)will minimize mean response time. SRPT minimizes mean response time because it allows small jobs toget out fast. However, observe that this scheduling theorem applies to single resource scheduling. Bycontrast, a Web server has multiple resources and requires that multiple jobs be present in the systemat once in order to achieve good throughput. In the context of a Web server it is not even obvious whatSRPT scheduling means.In [1] we �rst de�ne what is meant by giving preference to jobs whose remaining size is smallestin the context of a Web server. We then build a Web server and show that this type of SRPT-likescheduling policy in fact leads to substantial performance improvements for Web servers with respectto mean response time.We will not attempt to regurgitate all the issues brought up in [8, 1] since these are long detailedpapers. Instead we will concentrate on just one particular issue: starvation. If the smaller jobs aregetting preference, does that not imply that the bigger jobs will be starved? In [8, 1] we show that thisdoes not in fact happen. In fact, long connections pay very little penalty. This surprising result can beunderstood by looking at the job size distribution, which is of interest to the current paper:Consider a job in the 99th percentile of the job size distribution (i.e. a very large job). It turns outthat such a job has lower expected slowdown when the scheduling policy is SRPT-like than under a fairscheduling (Processor-Sharing) type of policy. To see this, recall from Section 2 that the sizes of requestsarriving at a Web server have been shown to have a heavy-tailed distribution. Now consider a job j inthe 99th percentile of the job size distribution. By the heavy-tailed property (see Section 2), more thanhalf the total workload is contained in jobs of size greater than j. Thus job j is preempted by less thanhalf the total workload, which in turn implies (see [8]) that j's expected response time is actually betterunder SRPT-like scheduling than under a Processor-Sharing type of scheduling where job j would haveto share the resource with the total workload. By contrast, in the case of an exponential distributiononly 5% of the total workload is contained in jobs of size greater than j. Thus under an exponentialworkload, job j would be held up by over 95% of the workload and would in fact have signi�cantly worseperformance under an SRPT-like scheduling policy than under a processor-sharing-like scheduling policy.Thus for an exponential workload, SRPT-like scheduling is not a good idea.The above argument holds as well for a job in the 99.5th percentile. The bottom line is that when thejob size distribution is heavy-tailed, starvation under SRPT-like scheduling is provably not a problemfor 99.5% of the jobs, and thus isn't observable in practice.In conclusion, on the question of choosing the best scheduling policy, understanding the job size14



distribution is critical to determining the best solution.6 ConclusionIn this paper we have discussed three case studies in the area of computer system design. In eachcase study we have shown that the job size distribution has a great e�ect on the problem solution. Inparticular a heavy-tailed job size distribution leads to very di�erent answers from an exponential jobsize distribution. Furthermore, the optimal solution under the assumption of an exponential job sizedistribution is far from optimal (sometime by orders of magnitude) when the workload is heavy-tailed.This is unfortunate for two reasons: First of all, solving these problems analytically is often fareasier under an exponential job size distribution. Second, in each of these case studies, our naturalintuition tends to lead us to the solution which is best under an exponential job size distribution, ratherthan to the solution which is best under a heavy-tailed job size distribution. With respect to the formerproblem, we have shown that (at least with respect to these three case studies) analysis is sometimes alsopossible under heavy-tailed job size distributions. To combat the latter problem, we have characterizedheavy-tailed distributions in terms of three properties which are especially important to think aboutwhen solving problems in system design: 1) decreasing failure rate, 2) greater variance than imaginable,and 3) the heavy-tailed property { a miniscule fraction of the biggest jobs account for more than halfthe total workload.It is our belief that increasingly computer workload measurements will show the presence of heavy-tails. This will force us to reevaluate age-old truisms in the area of system design and develop newones.References[1] M. E. Crovella, B. Frangioso, and M. Harchol-Balter. Connection scheduling in Web servers. TechnicalReport BUCS-TR-99-003, BU Computer Science Department, March 1999.[2] Mark E. Crovella and Azer Bestavros. Self-similarity in World Wide Web tra�c: Evidence and possiblecauses. IEEE/ACM Transactions on Networking, 5(6):835{846, December 1997.[3] Mark E. Crovella and Lester Lipsky. Long-lasting transient conditions in simulations with heavy-tailedworkloads. In Proceedings of the 1997 Winter Simulation Conference, pages 1005{1012, 1997.[4] Mark E. Crovella, Murad S. Taqqu, and Azer Bestavros. Heavy-tailed probability distributions in the WorldWide Web. In Robert J. Adler, Raisa E. Feldman, and Murad S. Taqqu, editors, A Practical Guide ToHeavy Tails, chapter 1, pages 3{26. Chapman & Hall, New York, 1998.[5] John Doyle. Highly optimized tolerance: A mechanism for power laws in designed systems. From talk slidespresented at MIT, March 1999.[6] M. Harchol-Balter, M. E. Crovella, and C. D. Murta. On choosing a task assignment policy for a distributedserver system. Proceedings of Performance Tools '98. Lecture Notes in Computer Science, 1469:231{242,1998.[7] M. Harchol-Balter, M. E. Crovella, and C. D. Murta. On choosing a task assignment policy for a distributedserver system. Technical Report MIT-LCS-TR-757, MIT Laboratory for Computer Science, 1998.[8] M. Harchol-Balter, M. E. Crovella, and S. Park. The case for SRPT scheduling in Web servers. TechnicalReport MIT-LCS-TR-767, MIT Lab for Computer Science, October 1998.[9] M. Harchol-Balter and A. Downey. Exploiting process lifetime distributions for dynamic load balancing.ACM Transactions on Computer Systems, 15(3), 1997.15



[10] Steven Hotovy, David Schneider, and Timothy O'Donnell. Analysis of the early workload on the cornelltheory center ibm sp2. Technical Report 96TR234, Cornell Theory Center, January 1996.[11] Gordon Irlam. Unix �le size survey - 1993. Available at http://www.base.com/gordoni/ufs93.html,September 1994.[12] W. E. Leland and T. J. Ott. Load-balancing heuristics and process behavior. In Proceedings of Performanceand ACM Sigmetrics, pages 54{69, 1986.[13] Vern Paxson and Sally Floyd. Wide-area tra�c: The failure of poisson modeling. IEEE/ACM Transactionson Networking, pages 226{244, June 1995.[14] David L. Peterson and David B. Adams. Fractal patterns in DASD I/O tra�c. In CMG Proceedings,December 1996.[15] Ronald W. Wol�. Stochastic Modeling and the Theory of Queues. Prentice Hall, 1989.

16


