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Abstract

While the MPP is still the most common architecture in supenguter centers today, a simpler and
cheaper machine configuration is growing increasingly comnThis alternative setup may be described
simply as ecollection of multiprocessorsr adistributed server systenThis collection of multiprocessors
is fed by a single common stream of jobs, where each job isitihpd to exactlpneof the multiprocessor
machines for processing.

The biggest question which arises in such distributed sepstems is what is a good rule for assigning
jobs to host machines: i.e. what is a gdadk assignment policyMany task assignment policies have
been proposed, but not systematically evaluated undercupputing workloads.

In this paper we start by comparing existing task assignrpelities using a trace-driven simulation
under supercomputing workloads. We validate our experisnby providing analytical proofs of the
performance of each of these policies. These proofs algognel/ide much intuition. We find that while
the performance of supercomputing servers varies widdlly thie task assignment policy, none of the
above task assignment policies perform as well as we woked li

We observe that all policies proposed thus far aim to baléma# among the hosts. We propose a
policy which purposelynbalancedoad among the hosts, yet, counter-to-intuition, is d&oin that it
achieves the same expected slowdown for all jobs — thus regob biased against. We evaluate this
policy again using both trace-driven simulation and arialy§Ve find that the performance of the load
unbalancing policy is significantly better than the besthafse policies which balance load.



1 Introduction

This paper considers an increasingly popular machine aanafiign in supercomputer centers today, and
addresses how best to schedule jobs within such a configarati

1.1 Architectural model

The setup may be described simply aso#ection of multiprocessomr adistributed server systenThis
collection of multiprocessors is fed by a single commonsstref batch jobs, where each job is dispatched
to exactlyoneof the multiprocessor machines for processing. Obsentembapecifically danotuse the
word “cluster” because the word “cluster” in supercompgtioday includes the situation where a single
job might span more than one of these multiprocessors.

Figure 1 shows a very typical example of a distributed sesystem consisting of a dispatcher unit
and 4 identical host machines. Each host machine consi§guaicessors and one shared memory. In
practice the “dispatcher unit” may not exist and the clightsmselves may decide which host machine
they want to run their job on. Jobs which have been dispattihadarticular host are run on the host in
FCFS (first-come-first-served) order. Typically, in theecagbatch jobsexactly ongob at a time occupies
each host machine (the job is designed to run on 8 processtitg)ugh it is sometimes possible to run
a very small number of jobs simultaneously on a single hoshine, if the total memory of the jobs fits
within the host machine’s memory space. The jobs are aeathio-completior(i.e., no preemption, no
time-sharing). We will assume the above model throughasigaper, see Section 2.2.

Run-to-completion is the common mode of operation in supeputing environments for several
reasons. First, the memory requirements of jobs tend to ge,hmaking it very expensive to swap out a
job’s memory [10]. Thus timesharing between jobs only madessse if all the jobs being timeshared fit
within the memory of the host, which is very unlikely. Alsoany operating systems that enable timesharing
for single-processor jobs, do not facilitate preemptiomagiseveral processors in a coordinated fashion.

While the distributed server configuration described ahsless flexible than an MPP, system admin-
istrators we spoke with at supercomputing centers favaribiiged servers for their ease of administration,
ease of scheduling, scalability, and price [5]. Also, thetegn administrators felt that distributed servers
achieve better utilization of resources and make usersitiapipce they are better able to predict when
their job will get to run.

Examples of distributed server systems that fit the aboverig¢i®n are the Xolas distributed server at
the MIT Lab for Computer Science (LCS), which consists ohéByprocessor Ultra HPC 5000 SMPs [15],
the Pleiades Alpha Cluster also at LCS, which consists arsdvprocessor Alpha 21164 machines [14],
the Cray J90 distributed server at NASA Ames Research Lalzhrdonsists of four 8-processor Cray J90
machines, the Cray J90 distributed server at the Pittsidsuglercomputing Center (PSC), which consists
of two 8-processor Cray J90 machines [1], and the Cray Cfllulised server at NASA Ames Research
Lab, which consists of two 16-processor Cray C90 machinks [2

1.2 The Task Assignment Problem

The main question in distributed servers such as thoseidedabove is “What is a good task assignment
policy.” A task assignment policg a rule for assigning jobs (tasks) to host machines. Deésiga
distributed server system often boils down to choosing thest” task assignment policy for the given
model and user requirements. The question of which taskjras&nt policy is “best” is an age-old
guestion which still remains open for many models.

Our main performance goal, in choosing a task assignmeidypi to minimizemean response time
and more importantlynean slowdown A job’s slowdown is its response time divided by its service
requirement. (Response time denotes the time from whenothairives at the system until the job
completes service. Service requirement is just the CPUirament — in our case this is the response
time minus the queueing time.) All means are per-job averafgean slowdown is important because it
is desirable that a job’s response time be proportionaktpribcessing requirement [8, 3, 13]. Users are
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Figure 1:lllustration of a distributed server with 4 host machineacle of which is a multiprocessor.
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likely to anticipate short delays for short jobs, and arelljko tolerate long delays for longer jobs. For
lack of space, we have chosen to only show mean slowdown igreghs in this paper, although we will
also comment on mean response time. A second performantesgaaiance in slowdownThe lower
the variance, the more predictable the slowdown. A thirdgeerance goal iairness We adopt the
following definition of fairness: All jobs, long or short, shld experience the same expected slowdown.
In particular, long jobs shouldn’t be penalized — slowed ddy a greater factor than are short jdbs.

Observe that for the architectural model we consider inghjger, memory usage is not an issue with
respect to scheduling. Recall that in the above descritstdlalited server system, hosts are identical and
each job has exclusive access to a host machine and its mefarg a job’s memory requirement is not
a factor in scheduling. However CPU usage is very much am igsscheduling.

Consider some task assignment policies commonly propasedidtributed server systems: In the
Randomtask assignment policy, an incoming job is sent to Hostth probability 1/h, whereh is the
number of hosts. This policy equalizes the expected numbgbg at each host. IRound-Robin
task assignment, jobs are assigned to hosts in a cyclichlofawith theith job being assigned to
Host: mod#h. This policy also equalizes the expected number of jobs el éast, and has slightly
less variability in interarrival times than do&andom In Shortest-Queue  task assignment, an
incoming job is immediately dispatched to the host with teedst number of jobs. This policy tries to
equalize the instantaneous number of jobs at each hosty thtin just the expected number of jobs. The
Least-Work-Left policy sends each job to the host with the currently leaseremg work. Observe
thatLeast-Work-Left comes closest to obtaining instantaneous load balanceCatigeal-Queue
policy holds all jobs at the dispatcher in a FCFS queue, ahdwinen a host is free does the host request
the next job. Lastly, th8ITA-E policy, suggested in [12], does duration-based assignméietre “short”
jobs are assigned to Host 1, “medium-length” jobs are assigmHost 2, “long” jobs to Host 3, etc., where
the duration cutoffs are chosen so as to equalize load (& Bands for Size Interval Task Assignment
with Equal Load). This policy requires knowing thpproximate duratiowf a job. All the above policies
aim to balance the load among the server hosts.

What task assignment policy is generally used in practida® i$ a difficult question to answer. Having
studied Web pages and spoken to several system administraoconclude that task assignment policies
vary widely, are not well understood, and often rely on adierameters. The Web pages are very vague on
this issue and are often contradicted by users of thesensg$6. The schedulers used are Load-Leveler,
LSF, PBS, or NQS. These schedulers typically only supportoicompletion (no preemption) [16].

In several distributed servers we looked at, the users dwtmmipper bound on the processing require-
ment of their job. In some systems task assignment is detediy the user. The jobs at each machine

'For example, Processor-Sharing (which requires infinitesny preemptions) is ultimately fair in that every job erigeces the
same expected slowdown.



are run-to-completion, one-at-a-time in FCFS order. Inimgkis decision, the user can estimate the
gueueing time on each of the host machines by totalling thmated run times of the jobs which have
been assigned to each machine. The user chooses to sertbitje machine with lowest queueing time.
This is theLeast-Work-Left policy. Other distributed servers use more GId@A-E policy, where
different host machines have different duration limitagoup to 2 hours, up to 4 hours, up to 8 hours, or
unlimited. In yet other distributed server systems, theedating policies are closer ®ound-Robin .

1.3 Relevant Previous Work

The problem of task assignment in a model like ours has beelestextensively, but many basic questions
remain open. See [12] for a long history of this problem. Mo€kthe previous literature has only dealt
with Exponentially-distributed job service requirementdnder this model, it has been shown that the
Least-Work-Left policy is the best. A recent paper, [12], has analyzed theeapolicies assuming
the job service requirements dred. distributed according to a heavy-tailed Pareto distrdoutiUnder
that assumptio®ITA-E was shown to be the best of the above policies, by far. Sepapdrs make the
point that the distribution of the job service requiremeas b huge impact on the relative performance of
scheduling policies [12, 8, 10]. No paper we know of has caexgbéhe above task assignment policies on
supercomputing trace data (real job service requirements)

The idea of purposely unbalancing load has been suggesteidpsly in [7], [4], and [11] under very
different contexts from our paper. In [7] a distributed gystwith preemptibletasks is considered. It is
shown that in the preemptible model, mean response timenismzied bybalancingload, however mean
slowdown is minimized byinbalancing load. In [4]real-time schedulings considered where jobs have
firm deadlines In this context, the authors propose “load profiling,” whfdistributes load in such a way
that the probability of satisfying the utilization requinents of incoming jobs is maximized.” Our paper
also differs from [11] which concentrates on the problemasktassignment witinknownservice times.
[11] is limited to analysis only, and restricted to the Pamistribution only.

1.4 Paper contributions

In this paper we propose to do two things: First, we will conepal! of the task assignment policies listed
in Section 1.2 in a trace-driven simulation environmennggob traces from supercomputing servers
which fit the above model. In simulation we are able to studiynlmean and variance metrics. We also
use analysis to validate some of the simulation resultsi@pdovide a lot of intuition. We find that there
are big differences between the performance of the tasgrassint policies. In this paper, we concentrate
on the case of 2 host machines. We find fRahdomandLeast-Work-Left differ by a factor of 2 -

10 (depending on load) with respect to mean slowdown, andfagtar of 30 with respect to variance in
slowdown.RandomandSITA-E differ by a factor of 6 - 10 with respect to mean slowdown andéxeral
orders of magnitude with respect to variance in slowdownrdasing the number of host machines above
2 creates even more dramatic differences. Nevertheless,afdhese task assignment policies perform as
well as we would like.

This leads us to the question of whether we are looking initilg search space for task assignment
policies. We observe that all policies proposed thus fartaitralance load among the hosts. We propose
a new policy which purposelynbalancedoad among the hosts. Counter-to-intuition, we show thiat th
policy is alsofair in that it achieves the same expected slowdown for all joldsus ho jobs are biased
against. We show surprisingly that the optimal degree ofl leabalancing seems remarkably similar
across many different workloads. We derive a rule of thunititie appropriate degree of unbalancing.
We evaluate our load unbalancing policy again using bottetdriven simulation and analysis. The
performance of the load unbalancing policy improves upenbiist of those policies which balance load
by more than an order of magnitude with respect to mean slawa@dmd variance in slowdown.

We feel that the above results are dramatic enough that theyld affect the direction we take in
developing task assignment policies. We elaborate onrhtss conclusion.



2 Experimental Setup

This section describes the setup of our simulator and tice tata.

2.1 Collection of job traces

The first step in setting up our simulation was collectingéraata. In collecting job data, we sought
data from systems which most closely matched the architatuodel in our paper. We obtained traces
from the PSC for the J90 and the C90 machines. Recall fromidpedtl that these machines are
commonly configured into distributed server systems. Jolbthese machines are run-to-completion (no
stopping/preempting). The jobs on these machines wereitiebmnder the category of “batch” jobs.

The figures throughout this paper will be based on the C90etidata. All the results for the J90
trace data are virtually identical and are provided in AgperB. For the purpose of comparison, we
also consider a trace of jobs which comes from a 512-node §8M-at Cornell Theory Center (CTC).
Although this trace dichotcome from the distributed server configuration, it is inséireg in the context of
this work since it reflects a common practice in superconmgutenters: unlike the J90 and C90 jobs, the
jobs in the CTC trace had an upper bound on the run-time, sisers are told jobs will be killed after 12
hours. We were surprised to find that although this upper tdeads to a considerably lower variance in
the service requirements, the comparative performandedésk assignment policies under the CTC trace
was very similar to those for the J90 and C90 traces. All th€ @&ce resultsare shown in Appendix C.
Characteristics of all the jobs used in this paper are gimehe following table.

System Duration Number | Mean Service| Min Max Squared
of Jobs | Requirement | (sec) (sec)| Coefficient

(sec) of Variation

PSC C90 Jan — Dec 1997 54962 | 4562.6 1| 2222749 43.16
PSC J90 Jan — Dec 1997 3582 | 9448.6 4 | 618532 10.02
CTC IBM-SP2 | July 1996 — May 1997 5729 | 2903.6 1 43138 5.42

The CTC trace was obtained from Feitelson’s Parallel WatitoArchive [9]. The data collected above
will be made public ahttp://www.cs.cmu.edu/ ~harchol/supercomputing.html

2.2 Simulation Setup

Our trace-driven simulation setup is very close to that @ti®a 1.1. We simulate a distributed server for
batch jobs withh host machinesThroughout most of this paper we assulne 2. Jobs are dispatched
immediately upon arrival to one of the host machines acoorth the task assignment policy. Jobs have
exclusive acces® host machines, and jobs are run-to-completion.

Although the jobservice requirementare taken from a trace, the job arrival times were not aviglab
to us, so we assume a Poissamival process. [12] makes the point that whereas the distribatidhe
job service requirement critically influences the relafmemparative) performance of the task assignment
policies, the arrival process does not have nearly as saorgifect on the relative performance, although
it does affect the absolute numbers.

3 Evaluation of Policies which Balance Load

This section describes the result of our simulation of taskgmment policies which aim to balance load.

2To make the workload more suitable for our model we used drdgeé CTC jobs that require 8 processors, although using all
jobs does lead to similar results.



3.1 The load balancing Task Assignment Policies

The task assignment policies we evaluate Remdom, Least-Work-Left , and SITA-E , as de-
scribed in Section 1.2. In [12] it was shown that theast-Work-Left policy is equivalent to the
Central-Queue  policy for any sequence of job requests. Thus it suffices tp evaluate the former.
We also evaluated the other policies mentioned Raund-Robin , but their performance is not notable
and we omitted it to avoid cluttering the graphs.

3.2 Results from Simulation

All the results in this section are trace-driven simulatiesults based on the C90 job data. The results for
the J90 job data and other workloads are very similar andrenersin the Appendix. The plots only show
system load up to.8 (because otherwise they become unreadable), howeversthession below spans
all system loads under 1.

Figure 2(left) compares the performance of the policiestvbalance loadfandom Least-Work-Left ,
andSITA-E ) in terms of their mean slowdown over a range of system logldsse results assume a 2-host
distributed server system. Figure 2(right) makes the saam#arison in terms of variance in slowdown.
Observe that the slowdown undeandomis higher than acceptable in any real system even for lowsload
and explodes for higher system loads. The slowdown uRdedomexceeds that dbITA-E by a factor
of 10. The slowdowns und&ITA-E andLeast-Work-Left are quite similar for low loads, but for
medium and high loadSITA-E outperformd_east-Work-Left by a factor of 3-4. The difference
with respect to variance in slowdown is even more dramdt&ast-Work-Left improves upon the
variance undeRandomby up to a factor of 10 an&ITA-E in turn improves upon the variance under
Least-Work-Left by up to a factor of 10.

The same comparisons with respect to mean response timsHoen here) are very similar. For
system loads greater tharb0SITA-E outperformd east-Work-Left by factors of 2-3, an&andom
is by far the worst policy. The difference with respect to@ace in response time is not quite as dramatic
as for variance in slowdown.
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Figure 2: Experimental comparison of task assignment policies wihahnce load for a system with 2 hosts
in terms of: (left) mean slowdown and (right) variance invettown.

Figure 3 again compares the performance of policies whi¢anoe load, except this time for a
distributed server system with 4 hosts. Figure 3(right) esathe same comparison in terms of vari-
ance in slowdown. This figure shows that the slowdown and Hy&arce in slowdown under both
Least-Work-Left andSITA-E improves significantly when switching from 2 hosts to 4 hodise
results forRandom are the same as in the 2 host system. For low ldadst-Work-Left leads to
lower slowdowns thaSITA-E , but for system load 0.5ITA-E improves uporiLeast-Work-Left
by a factor of 2, and for high loadS)TA-E improves upor.east-Work-Left by a factor of 4. More
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Figure 3:Experimental comparison of task assignment policies wihétance load for a system with 4 hosts.

dramatic are the results for the variance in slowdo®IT.A-E 's variance in slowdown is 25 times lower
than that ofLeast-Work-Left

3.3 Results from Analysis

We also evaluated all of the above policies via analysisedasm the supercomputing workloads. Via
analysis we were only able to evaluate theanperformance metrics. The results are shown in Appendix A,
Figure 7. These are in very close agreement with the sinomagisults.

The analysis is beneficial because it explaimy SITA-E is the best task assignment policy. For lack
of space, we omit most of the analysis, providing the readsrwith the resulting intuition.

The analysis of each task assignment policy makes use oh#tesés of a single M/G/1/FCFS queue,
which is given in Theorem 1 [Pollaczek-Kinchin] below:

Theorem 1 Given an M/G/1 FCFS queue, where the arrival process has Xat& denotes the service
time distribution, ang denotes the utilizatiorp(= AE {X}). Let¥ be a job’s waiting time in queus,
be its slowdown, an@ be the queue length on its arrival. Then,

AE { X2} N
E{W} = m [The Pollaczek-Kinchin formula]
E{s} = E{W/X}=E{W} E{x}}
E{Q} = AE{W}

The above formula applies to just a single FCFS queata distributed server. The formula says that
all performance metrics for the FCFS queue are dependent oatila@ceof the distribution of job service
demands (this variance term is captured byEﬂ{eXz} term above). Intuitively, reducing the variance in
the distribution of job processing requirements is impatrtar improving performance because it reduces
the chance of a short job getting stuck behind a long job. Eofjab service demand distribution, the
variance is very high((? = 43). Thus it will turn out that a key element in the performand task
assignment policies is how well they are able to reduce tnigmce.

We now discuss the effect of high variability in job servioeds on a distributed server system under
the various task assignment policies.

Random Assignment The Random policy simply performs Bernoulli splitting on the input sém.
The result is that each host becomes an independéiit/1 queue, with the same (very high) variance in
job service demands as was present in the original streaabsf jThus performance is very bad.



Round Robin The Round Robin policy splits the incoming stream so each host see&gfz/1
gueue, where is the number of hosts. This system has performance close Reindompolicy since it
still sees high variability in service times, which domiesperformance.

Least-Work-Left ThelLeast-Work-Left policy is equivalent to an M/G/h queue, for which there
exist known approximations, [17],[19]:

E{Qum/a/m} ~ E{Qumn} - ——=

whereX denotes the service time distribution, agdlenotes queue length. What’s important to observe
here is that the mean queue length, and therefore the medimgvaime and slowdown, are all still
proportional to the second moment of the service time distion, as was the case f&andom and
Round-Robin . ThelLeast-Work-Left policy does however improve performance for another reason
This policy is optimal with respect to sending jobs to idlestimachines when they exist.

SITA-E TheSITA-E policy is theonly policy which reduces the variance of job service times at the
individual hosts. The reason is that Host 1 only sees smiadl gmd Host 2 only sees large jobs. For our
dataE { X2} =45 10" andE { X2 .} = 6.5 10%andE { X?} = 9.2 10%. Thus we've reduced
the variance of the job service time distribution at Host bta&nd increased that at Host 2. The point
thoughis that 98.7 % of jobs go to Host 1 under SITA-E and or8y24 of jobs go to Host 2 under SITA-E.
Thus SITA-E is a great improvement over the other policigh véaspect to mean slowdown, mean response
time, and variance of slowdown and response time.

4 Unbalancing Load Fairly

The previous policies all aimed to balance load. Thast-Work-Left policy in fact aimed to balance
instantaneouoad. However it is not cleawhythis is the best thing to do. We have pmofthat load
balancing minimizes mean slowdown or mean response tim&actna close look at the analysis shows
that loadunbalancingis desirable. In this section we show that load unbalana@ngpt only preferable
with respect to all our performance metrics, but it is alssirdédle with respect to fairness. Recall, we
adopt the following definition of fairness: All jobs, long short, should experience the same expected
slowdown. In particular, long jobs shouldn't be penalizeslewed down by a greater factor than are short
jobs. Our goal in this section is to develop a fair task agsigmt policy with performance superior to that
of all the other policies.

4.1 Definition of SITA-U-opt and SITA-U-fair

In searching for policies which don’t balance load, we stath SITA-E, since in the previous section we
saw thatSITA-E was superior to all the other policies because of its vadaeduction properties. We
define two new policies:

e SITA-U-opt : Sizelnterval Task Assignmentwith Unbalanced Load, wiiezservice-requirement
cutoff is chosen so as to minimize mean slowdown.

e SITA-U-fair  : SizelInterval Task Assignmentwith Unbalanced Load, wiiezservice-requirement
cutoff is chosen so as to maximize fairness.

In SITA-U-fair , the mean slowdown afhortjobs is equal to the mean slowdownlohgjobs.

The cutoff defining “long” and “short” for these policies wdstermined both analytically and exper-
imentally using half of the trace data. Both methods yieldkedut the same result. Note that the search
space for the optimal cutoff is limited by the fact that neithost machine is allowed to exceed a load of 1.
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Figure 4: Experimental Comparison of Mean Slowdown and Variance oiv&wn onSITA-E versus
SITA-U-fair andSITA-U-opt as a Function of System Load.
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Figure 5:Fraction of the total load which goes to Host 1 under SITAfd-&and SITA-U-fair.

4.2 Simulation results for SITA-U-opt and SITA-U-fair

Figure 4 compareSITA-E , the best of the load balancing task assignment policigh, SV A-U-opt
andSITA-U-fair

What is most interesting about the above figures is Si&A-U-fair is only a slight bit worse
thanSITA-U-opt . BothSITA-U-fair andSITA-U-opt  improve greatly upon the performance of
SITA-E , both with respect to mean slowdown and especially witheetsip variance in slowdown. In the
range of load 0.5 - 0.8, the improvement3IiTA-U-fair ~ overSITA-E ranges from 4 - 10 with respect
to mean slowdown, and from 10 - 100 with respect to varianctonwdown.

4.3 Analysis of SITA-U-opt and SITA-U-fair

Figure 8 in Appendix A shows the analytic comparison of mdawdown for SITA-E , SITA-U-opt
andSITA-U-fair . These are in very close agreement with the simulationtesul

Figure 5 shows the fraction of the total load which goes totHosnderSITA-U-opt and under
SITA-U-fair . Observe that und&ITA-E this fraction would always be 0.5.

Observe that for botSITA-U-opt and forSITA-U-fair  we are underloading Host 1. Secondly
observe thaBITA-U-opt is not far fromSITA-U-fair . In this section we explain these phenomena.
The reason why it is desirable to operate at unbalanced Isadsstly due to th&eavy-tailechature
of our workload. In our job service time distribution, hdifettotal load is made up by only the biggest
1.3% of all the jobs. This says that iITA-E 98.7% of jobs go to Host 1 and only 1.3% of jobs go to

Host 2. If we can reduce the load on Host 1 a little bit, by segdéwer jobs to Host 1, it will still be the
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Figure 6: Fraction of the total load which goes to Host 1 under SITAfi-and SITA-U-fair and our rule of
thumb.

case that most of the jobs go to Host 1, yet they are all runmntigr areduced load.

So load unbalancing optimizes mean slowdown, however dgtigtall clear why load unbalancing also
optimizes fairness. Und&ITA-U-fair , the mean slowdown experienced by the short jolegjigalto
the mean slowdown experienced by the long jobs. Howeveeinsdn fact that we're treating the long
jobs unfairly because long jobs run on a host with extra loatiextra variability in job durations.

So how can it possibly be fair to help short jobs so much? Tisevanis simply that the short jobs are
short. Thus they need low response times to keep their slewdimy. Long jobs can afford a lot more
waiting time, because they are better able to amortize thespment over their long lifetimes. Note that
this hold for all distributions. It is because our job seeviequirement distribution is so heavy-tailed that
the long jobs are truly elephants (way longer than the shanig thus can afford more suffering.

4.4 A Rule of Thumb for Load Unbalancing

If load unbalancing is helpful, as seems to be the case, iis theule of thumb for how much we should
unbalance load?

Figure 6 gives a rough rule of thumb which says simply thatéf $ystem load ig, then the fraction
of the load which is assigned to Host 1 shoulddi@. For example, when the system load iS,®nly
1/4 of the total load should go to Host 1 an¢i43of the total load should go to Host 2. Contrast this with
SITA-E which says that we should always send half the total loaddb bast.

We redid the simulations using out our rule-of-thumb cigpfather than the optimal cutoffs, and the
results were within 10%. We also tested out the rule-of-thuvhen using the J90 data and when using
the CTC data, and results were similar as well. Appendix féigd0 and 12 show the rule-of-thumb fit for
the J90 data and the CTC data respectively.

5 Conclusions and Implications

The contributions of this paper are detailed in Section §¢odwe omit the usual summary and instead
discuss some further implications of this work. There arevaihteresting points raised by this work:

e Task assignment policies differ widely in their performar(by an order of magnitude or more)!
The implication is that we should take the policy determoraimore seriously, rather than using
whatever Load Leveler gives us as a default.

e The “best” task assignment policy depends on charactesisfi the distribution of job processing
requirements. Thus workload characterization is impartaithough our model is nothing like
an MPP, the intuitions we learned here with respect to wadidomay help simplify the complex
problem of scheduling in this more complicated architezag well.



o What appear to just be “parameters” of the task assignmditlyde.g., duration cutoffs) can have
a greater affect on performance than anything else. Cotivietuition, a slight imbalance of the
load can yield huge performance wins.

¢ Most task assignment policies don’t perform as well as weld/bke, within the limitations of our

architectural model. As Feitelson et. al. [10] point outgtd good performance what we really
need to do is favor short jobs in our scheduling (e.g. Shodeis-First). However, as Downey and
Subhlok et. al. point out, biasing may lead to starvationeofain jobs, and undesirable behavior by
users [8, 18]. What's nice about 0BITA-U-fair ~ policy is that it both gives extra benefit to short
jobs (by allowing them to run on an underloaded host), whith@same time guaranteeing that the
expected slowdown for short and long jobs is equal (faifnes® that starvation is not an issue and
users are not motivated to try to “beat the system.” We fesl tiese are desirable goals for future
task assignment policies.
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A Analytical Results for Distributed Server Running Under C90 Data
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Figure 7: Analytical comparison of mean slowdown on task assignm@itigs which balance load, as a

function of system load.
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Figure 8: Analytical comparison of mean slowdown ®ITA-E andSITA-U-opt and SITA-U-fair

as a function of system load.
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B Simulation results for the distributed server under J90 daa
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Figure 9: Experimental comparison of mean slowdown and varianceafdbwn on all task assignment

policies.
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Figure 10:Fraction of the total load which goes to Host 1 under SITAf-and SITA-U-fair and our rule of

thumb.

C Simulation results for distributed server under the CTC Data
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Figure 11: Experimental comparison of mean slowdown and variancecsfdbwn on all task assignment

policies.
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Figure 12:Fraction of the total load which goes to Host 1 under SITAfi-@and SITA-U-fair and our rule of

thumb.



