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Abstrat

For most omputer systems, even short periods of overload degrade performane signi�-

antly. The number of jobs in the system quikly grows, often exeeding the apaity of

the system within just seonds, and response times explode.

In this paper we investigate system behavior under transient overload. We �nd that the

poor behavior of systems under transient overload an at least partly be attributed to

the sheduling poliy traditionally used in systems. The traditionally-used sheduling

poliy is Proessor-Sharing, or time-sharing, (PS). We derive analytial approximations

as well as simulation results for the performane of a single PS queue under transient

overload. Simulation and analysis agree. The number of jobs in the system and the

system response times grows quite rapidly during overload, and even when the overload

period ends, reuperation is very slow.

We propose a new solution for oping with transient overload: SRPT sheduling of jobs

(Shortest Remaining Proessing Time). We derive analytial approximations for the per-

formane of a single SRPT queue under transient overload, and validate those approxi-

mations with simulation.

We evaluate our PS and SRPT approximations under a realisti job size distribution, a

Bounded Pareto with a heavy-tailed property. We �nd that SRPT performs an order of

magnitude better with respet to mean response time and mean queue length.

While SRPTmight not seem like the best hoie for large jobs, partiularly under overload,

it turns out that under our realisti workload big jobs do not perform worse under SRPT

as ompared with PS in expetation. We give intuition for this. Finally we pose some

interesting open questions on the topi of starvation of large jobs.

Keywords: Overload, HIGH/LOW, sheduling, proessor sharing, shortest proess-

ing remaining time, time-sharing, shortest job �rst, SRPT, priority, unfairness, starvation,

heavy-tailed behavior, high variane



1 Introdution

Overload is a situation where the rate of work arriving at a system is greater than the

system an handle. In this paper we investigate systems under transient overload, where

load alternates between a �nite period of overload (alled HIGH period) followed by a

�nite period of low load or zero load (LOW period). The mean system load is always

below 1. This HIGH/LOW model is desribed in Setion 2.

For most servers (e.g. web servers), even short periods of overload ause the number of

jobs in the system to quikly exeed the system apaity, often within a matter of seonds.

A large number of jobs implies large alloations of system resoures (bu�ers), as well as

many ontext swithes. These e�ets in turn ause the server to either stop aepting new

jobs or rash. Either way, lient response times explode.

Reently there has been muh attention paid to the problem of overload, partiularly

in web servers. This researh an be divided into 3 primary areas. One solution is to

inrease the server resoures, for example, adding more hardware, bandwidth, or CPU.

This is often done by replaing the server by a server farm (e.g. [8, 6, 16℄). Another solution

is to enhane the OS to better support server software: ([20, 9, 1, 15, 19℄). Finally, people

try to limit the load at a server, either via installing a proxy ahe (at the lient or server

end) (e.g. [10, 4℄) or by admission ontrol ([13℄).

Our approah to oping with transient overload is di�erent from the above approahes.

Our approah does not require buying more hardware or limiting the number of system

users. We simply propose sheduling the jobs in a di�erent order from that traditionally

used.

In omputer systems today, when multiple jobs ontend for a single resoure (e.g. CPU

or bandwidth), the poliy used for sheduling the jobs most losely resembles Proessor-

Sharing (PS). That is, the desired resoure is time-shared among the ontending jobs,

with eah job in turn reeiving a small quantum of servie.

Proessor-Sharing has many provably desirable properties when system load remains

below 1, suh as low mean response times and fairness (all jobs experiene same mean

slowdown) [17, 25℄. However, in real systems the load utuates, sometimes exeeding 1,

and it is not lear what the performane of PS is in this ase.

The �rst result in this paper is an approximate analysis of the performane of a PS

queue under transient overload. Our analysis is based on ombining ideas from Jean-Marie

and Robert [14℄ and Chen, Kella, and Weiss [5℄. We validate the assumptions made in

our analysis via simulation, whih agrees with our analysis. We evaluate our analyti

formulas in the ase where the job size distribution is a Bounded Pareto distribution,

with a heavy-tailed property. This distribution has been shown to be harateristi of

omputer workloads [18, 12, 7, 21℄. Our PS results indiate that performane of a PS

server under transient overload an be quite poor, even when mean system load is very

low. The performane is dominated by the load during the overload period. The number
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of jobs in system inreases very rapidly during the overload period and then is slow to

reover during the low load period, due to the time-sharing nature of PS sheduling.

In an attempt to improve performane of servers under transient overload, we pro-

pose sheduling requests under the well-known Shortest Remaining Proessing Time First

(SRPT) poliy. The motivation is the fat that SRPT minimizes the number of jobs in

the system at any time.

Appliations have shied away from using SRPT for fear that SRPT \starves" big

jobs, partiularly under overload [3, 23, 24, 22℄, however the performane of SRPT under

transient overload has never been analyzed. In a reent paper [2℄ we onsider only the ase

with onstant load below 1 (no overload). In [2℄ we �nd that, provided the load is not too

lose to 1 (so as to allow large jobs a turn to run), for many workloads with a heavy-tailed

property, the fear of starvation is unsubstantiated. That is, all jobs, inluding the very

largest job have lower queueing time under SRPT sheduling than under FAIR sheduling.

The seond result in this paper is an approximate analysis of SRPT sheduling under

transient overload. We validate the assumptions made in our analysis via simulation,

whih agrees with our analysis. We evaluate the analyti formulas in the ase where the

job size distribution is a Bounded Pareto distribution, with a heavy-tailed property.

The omparison of the PS results with the SRPT results under the Bounded Pareto

workload is quite interesting. We �nd that:

� The improvement of SRPT over PS both in terms of the mean response time and

in terms of mean number of jobs in system is substantial (lose to an order of

magnitude).

� The mean improvements of SRPT over PS are greatest when the overload is lose

to 1.

� Unfairness to big jobs under SRPT as ompared with PS is virtually non-existent

under our Bounded Pareto workload.

� The higher the load during the low load period, the better SRPT looks with respet

to all of the above metris.

� For distributions with a lighter tail, e.g. the exponential distribution, the results

are not muh worse. In fat we an prove that for an exponential distribution, if

the load during the overload period exeeds 2, then every single job performs better

under SRPT than under PS, in expetation.

The last observation above leads us to speulate on the lass of distributions for whih

SRPT improves upon PS under transient overload. This disussion is overed in Setion 7,

where we provide analyses, observations, and open problems on this topi.

The above results are enouraging with respet to the potential real-world appliability

of SRPT sheduling.

2



2 Model, Relevant Previous Work, and Simplifying Assump-

tions

2.1 Model

Throughout this paper we will assume an M/G/1 queue. The job sizes will be assumed to

be independent and identially distributed with .d.f. F (x) and p.d.f. f(x). The arrival

proess will onsist of alternating periods of high and low loads. During the high load

period (also alled the \HIGH" period), jobs arrive with mean arrival rate �

h

and reate

a load of �

h

> 1. The high load period has �xed duration t

h

. During the low load period

(also alled the \LOW" period) jobs arrive with mean arrival rate �

l

and reate a load of

�

l

< 1. The low load period has �xed duration t

l

.

Let � denote the average system load. Thus

� =

t

h

t

h

+ t

l

�

h

+

t

l

t

h

+ t

l

�

l

We will always assume that the average load � < 1.

Our system behavior is as follows: During the HIGH period, jobs build up in the

system as a funtion of time. We will derive an expression for this buildup. At the start

of the LOW period, there is an aumulation of jobs whih we refer to as \the bag of

jobs." Sine the load during the LOW period is less than 1, the number in system will

start deaying and will onverge to a low value, related to �

l

, before the end of the of the

LOW period. This is expeted sine the average load is less than 1.

Some additional notation: The number of jobs in the system t time after the onset of

the HIGH period will be denoted by N

h

(t). Likewise the number of jobs in the system t

time after the onset of the LOW period will be denoted by N

l

(t).

2.2 Relevant Previous Work

To the best of our knowledge, the HIGH/LOW workload model with general job size

distribution has not been studied under either PS or SRPT sheduling.

For SRPT sheduling, there are no relevant queueing results in the literature dealing

with overload.

For PS sheduling, there are two relevant results: one by Chen et. al. [5℄ and the other

by Jean-Marie and Robert [14℄. While these results don't over the HIGH/LOW model,

they are still very relevant in its analysis.

Jean-Marie and Robert's work [14℄ an be viewed as analyzing only the HIGH period

of the HIGH/LOW model under PS sheduling. They prove that N

h

(t)=t onverges to
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a partiular onstant in the limit as t ! 1. They also derive the distribution on the

residual job sizes in the limit as t!1.

Chen et. al.'s work [5℄ an be viewed as analyzing only the LOW period of the

HIGH/LOW model under PS sheduling. Spei�ally, they assume a PS server running

under load �

l

< 1 whih begins with a set of initial jobs distributed aording to an arbi-

trary distribution. They obtain a uid approximation on N

l

, however it is not expressed

as a funtion of t, but rather as a funtion of v(t), where v(t) is the umulative amount

of proessing time per ustomer alloated by the server up to time t.

2.3 Simplifying Assumptions

It seems natural to try to ombine the results in [14℄ and [5℄ to analyze the HIGH/LOW

model under PS. Our goal is to understand the mean response time for a job of size x

under the HIGH/LOW model. Unfortunately, we ould not see how to diretly ombine

these results to derive mean response time. Part of the problem is that the Chen result

doesn't atually ompute N

l

(t). Another part of the problem is that the Jean-Marie and

Robert result requires t!1, whereas we want to onsider �nite t

h

and t

l

. In our analysis

it was therefore neessary for us to resort to two simplifying assumptions under PS and

under SRPT:

1.

N

h

(t)

t

= onstant 8t; for all sample paths, and

2. N

l

(t) is the same for all sample paths:

These simplifying assumptions will serve several purposes: First, they will allow us to

obtain an approximation for expeted response time for a job of size x for a HIGH/LOW

proess under PS sheduling (see Setion 3). Seond, they will allow us to obtain approx-

imations for all performane metris of interest for a HIGH/LOW proess under SRPT

sheduling ( expeted response time for a job of size x, N

h

(t), N

l

(t)) (See Setion 4). Third,

they will allow us to ompare SRPT and PS performane in a HIGH/LOW workload (see

Setion 5).

Our simplifying assumptions may seem quite strong. However, in Setion 6 we will

ompare the performane numbers derived using the simplifying assumptions with our

simulation results whih make no assumptions. We will �nd that provided t

h

and t

l

are

not too small (at least 100 times the mean job size), the simulation numbers agree with

the analytially-derived numbers.

3 Analytial Results for PS under HIGH/LOW model

The goal of this setion is to derive the expeted response time for a job of size x under

the HIGH/LOW model with PS sheduling. Throughout we will apply our simplifying
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assumptions from Setion 2.

Before we begin we will need to review the results of Jean-Marie and Roberts [14℄ and

Chen et. al. [5℄. In reviewing these results, we will also use our simplifying assumptions

to provide intuitive derivations of these results for the bene�t of the reader.

3.1 Analysis of the HIGH load period only

Lemma 0.1 (due to [14℄) Consider an M/G/1/PS queue with load � > 1 and average

arrival rate �

h

. Let N

h

(t) denote the number of jobs in the system at time t. Then for

almost all sample paths,

lim

t!1

N

h

(t)

t

= a (1)

where a is the solution to �

h

(1�

R

1

0

f(x)e

�ax

dx) = a.

Proof via Simplifying Assumptions: The following is a rough proof based on our

approximations made in Setion 2. Sine the work in the system by time t inreases as

(�

h

�1)t+o(t), it is not diÆult to see that for almost all sample paths, N

h

(t) = at+o(t),

for some a. To determine a, let us ignore the o(t) term and approximate N

h

(t) by at, and

assume that this holds for all t and for all sample paths.

Now, onsider a job of size x, arriving at time t

a

. Then the servie reeived by the job

by time t

0

is

S(t

a

; t

0

) =

Z

t

0

t

a

dt

N

h

(t)

(2)

Clearly the job departs at time t

d

suh that S(t

a

; t

d

) = x. So, t

d

= t

a

e

ax

. Thus, at time

t, if a job of size x arriving at time t

a

is present in the system, then t

a

� te

�ax

.

Now the expeted number of jobs of size between x and x+dx whih arrive during time

[0; t℄ is �

h

tf(x)dx. Sine the arrival proess is Poisson these jobs an be assumed to arrive

uniformly over [0; t℄. Thus, we expet that about �

h

t(1 � e

�ax

)f(x)dx of these jobs will

still be present in the system at time t. Averaging over the possible job sizes x, we get that

N

h

(t) =

R

1

0

�

h

(t�te

�ax

)f(x)dx. EquatingN

h

(t) to at gives us a =

R

1

0

�

h

(1�e

�ax

)f(x)dx.

2.

Sine we will be interested in evaluating various metris for PS, we will make the results

more ompat. Let L

g

(s) denote the Laplae transform of a funtion g, i.e. L

g

(s) =

R

1

0

g(x)e

�sx

dx. Thus we observe that a satis�es a = �

h

(1 � L

f

(a)). Moreover observing

that L

F

(s) = (1 � L

f

(s))=s, we an write a in the following form whih will be useful

later.

L

F

(a) =

1

�

h

(3)
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We now obtain an approximation for the number of jobs with remaining size > y at

the end of the HIGH period, using our simplifying assumptions

1

.

Consider a job of (original) size z. Arguing as above, this job will have remaining size

> y at time t

h

i� it's arrival time, t

a

, is suh that t

a

> t

h

e

�a(z�y)

Thus the total number of jobs of size (z; z+dz) whih have remaining size > y at time

t

h

will be

�

h

t

h

f(z)(1� e

�a(z�y)

)dz (4)

Integrating 4 over all possible job sizes greater than y gives us the total number of jobs

whih have remaining size > y at time t

h

, whih is

Z

1

y

�

h

t

h

f(z)(1 � e

�a(z�y)

)dz (5)

Let F

r

denote the .d.f of the remaining sizes of the jobs at the end of the HIGH period.

Sine the total number of jobs at time t

h

is at

h

, using 5 gives,

F

r

(y) =

R

1

y

�

h

f(z)(1� e

�a(z�y)

)dz

a

(6)

After some manipulation, we observe that the Laplae Transform of F

r

an be written

simply as

L

F

r

(s) =

1� �

h

L

F

(s)

s� a

(7)

3.2 Analysis of the LOW load period only

We now onsider just the low load period (�

l

< 1), starting with N

l

(0) jobs with remaining

sizes distributed aording to .d.f. F

r

. New jobs arrive into the system at rate �

l

where

the new job sizes have .d.f. F . We now use our simplifying assumptions to derive an

expression for the number of jobs in the system. Chen, Kella and Weiss [5℄ have analyzed

the low-load only system and obtained a uid limit expression for the number of jobs in

the system. The [5℄ result is similar to our result in Equation 11.

Denote the number of jobs in this system at time t by N

l

(t), and let us assume that

N

l

(t) is onstant for all sample paths. N

l

(t) will onsist of two types of jobs. Jobs whih

were present at time 0 and those whih arrived at time greater than 0. We will all these

jobs of Type 1 and Type 2 respetively.

To determine N

l

(t), onsider a job of size x whih arrives at time t

a

. This job will

omplete at time t

d

suh that the servie reeived by the job during time t

a

to t

d

is x.

Now, the servie reeived by the job during time t

a

to t

d

under PS, will be

R

t

d

t

a

dt

N

l

(t)

.

1

[14℄ also study the problem of residual job sizes.
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Let us de�ne v(t) =

R

t

0

dy

N

l

(y)

, where v(t) is the umulative servie per ustomer alloated

by the server up to time t. Thus a job of size x arriving at time t

a

is present in the system

at time t i� v(t) � v(t

a

) < x. Thus the number of Type 1 jobs still present at time t will

be N

l

(0)F

r

(v(t)). To obtain the number of Type 2 jobs, onsider the jobs whih arrive

during time y and y + dy. There will be approximately �

l

dy suh jobs. Out of these the

number still present at time t will be �

l

dyF (v(t) � v(y)). Integrating over y from 0 to t

will give us the total number of Type 2 jobs still present at time t. Adding the number of

Type 1 and Type 2 jobs we thus obtain,

N

l

(t) = N

l

(0)F

r

(v(t)) +

Z

t

0

�

l

F (v(t) � v(y))dy (8)

We do not know of a way to solve Equation 8 diretly to obtain the number in system as

a funtion of time. However, we an obtain this indiretly by solving for the number in

system and solving for t as a funtion of v. We will denote these by N

v

l

and t

v

respetively.

Observing that v(0) = 0 and

d

dt

v(t) =

1

n(t)

, Equation 8 an be written as

N

v

l

(v) = N

l

(0)F

r

(v) +

Z

v(t)

0

�

l

F (v � z)N

v

l

(z)dz (9)

We an now solve Equation 9. Using Laplae Transforms this gives us

L

N

v

l

(s) = N

l

(0)L

F

r

(s) + �L

F

(s)L

N

v

l

(s) (10)

whih yields

L

N

v

l

(s) =

N

l

(0)L

F

r

(s)

1� �

l

L

F

(s)

(11)

Using Equation 7 we get,

L

N

v

l

(s) =

N

l

(0)

s� a

�

(1� �

h

L

F

(s))

(1 � �

l

L

F

(s))

(12)

To obtain t

v

observe that

dt

v

dv

= N

v

l

, thus we get,

L

t

v

(s) =

1

s

�

N

l

(0)

s� a

�

(1� �

h

L

F

(s))

(1� �

l

L

F

(s))

(13)

3.3 Analysis of Response times for the HIGH/LOW model

Using the results above we an now obtain the expressions for the response times as a

funtion of job size under transient overload.

We lassify the jobs into 3 types. Jobs whih arrive during the HIGH period and �nish

during the HIGH period itself are type 1 jobs. Jobs whih arrive during the HIGH period

but �nish in the LOW period are type 2 jobs. Jobs whih arrive during the LOW period

and �nish during the same LOW period are type 3 jobs.
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Note, that sine the average load is less than 1, very few jobs whih arrive during the

LOW period will ontinue during the next HIGH period. Thus we onsider only the three

types of jobs mentioned above.

Suppose J is a job of size x. If it is a type 1 job, then we know that it must have

arrived during time 0 to t

h

e

�ax

. Assuming it arrives uniformly during this interval, we

obtain

E[T (x)jJob is of type 1℄

=

1

t

h

e

�ax

Z

t

h

e

�ax

0

y(e

ax

� 1)dy

=

1

2

t

h

(1� e

�ax

) (14)

Suppose J is of type 2, then it must have arrived during time t

h

e

�ax

to t

h

. If it arrives

at time y, then it spends t

h

� y time during the HIGH period and its remaining size at

the beginning of the LOW period is r(y) = x�

1

a

log

t

h

y

. Observe that by Equation 13 this

job �nishes at time t

v

(r(y)). Thus we obtain,

E[T (x)jJob is of type 2℄

=

1

k(x)

Z

t

h

t

h

e

�ax

[(t

h

� y) + t

v

(x�

1

a

log

t

h

y

)℄dy

=

1

2

k(x) +

1

k(x)

Z

t

h

t

h

e

�ax

t

v

(x�

1

a

log

t

h

y

)dy

=

1

2

k(x) +

1

1� e

�ax

Z

x

0

at

v

(x� z)e

�az

dz (15)

where k(x) = t

h

(1� e

�ax

).

Finally we onsider the ase when J is a job of type 3. To do this, we need to �rst

digress and de�ne quantity t

w

.

Consider the amount of work aumulated during the HIGH period. This is approxi-

mately (�

h

� 1)t

h

. Thus the time until this work is removed from the system during the

LOW period will be around t

w

= (�

h

� 1)t

h

=(1� �

l

).

Returning to the ase of a job of type 3, we an separate jobs of type 3 into 2 ases:

those whih arrive before time t

w

and those whih arrive after time t

w

.

Let us �rst onsider the jobs whih arrive during time t

w

from the start of the LOW

period.

Suppose a job arrives at time t

a

from the start of the LOW period, then it will �nish at

time t

v

(x+v(t

a

)). Given that a job arrives during the time 0 to t

w

, it will arrive uniformly

during this interval (sine the arrival proess is Poisson). Thus,

E[T (x)jJob is of type 3, and arrives in (0; t

w

)℄
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=

1

t

w

Z

t

w

0

(t

v

(x+ v(y))� y)dy

=

1

t

w

Z

1

0

(t

v

(z + x)� t

v

(z))N

v

l

(z)dz (16)

Observe that for eah of the Type 1,2 and 3 jobs onsidered above, the response time

of a job is proportional to t

h

.

For type 3 jobs whih arrive after time t

w

, their response time will be independent

of t

h

. Thus if t

h

is quite large (ompared to the mean job size) we an assume that the

response time for these jobs is negligible ompared to jobs of type 1, type 2 and jobs of

type 3 whih arrive during time 0 to t

w

. Hene we will approximate the response time of

type 3 jobs arriving during t

w

to t

l

by 0.

So, �nally we obtain

E[T (x)jJob is of type 3℄

=

1

t

l

Z

1

0

(t

v

(z + x)� t

v

(z))N

v

l

(z)dz (17)

Finally to obtain the approximate expeted response time for a job of size x, we �nd

the unonditional response time. Thus we obtain that

E[T (x)℄

PS

= p

1

E(T

1

(x)) + p

2

E(T

2

(x)) + p

3

E(T

3

(x)) (18)

where E[T

i

(x)℄ is the expeted response time for a job of type i, i = 1; 2; 3, as ob-

tained in Equations 14,15 and 17. The probability p

1

that a job of size x is of type

1 is �

h

t

h

e

�ax

=(�

h

t

h

+ �

l

t

l

). The probability p

2

that a job of size x is of type 2 is

(�

h

t

h

(1� e

�ax

))=(�

h

t

h

+ �

l

t

l

). Finally the probability p

3

that a job of size x is of type 3

is �

l

t

l

=(�

h

t

h

+ �

l

t

l

).

Substituting the values in Equation 18 and doing some manipulation gives

E[T (x)℄

PS

=

�

h

t

h

�

h

t

h

+ �

l

t

l

"

(1� e

�ax

)t

h

2

+

Z

x

0

at

v

(x� z)e

�az

dz

#

+

�

l

�

h

t

h

+ �

l

t

l

�

Z

1

0

(t

v

(z + x)� t

v

(z))N

v

l

(z)dz

�

(19)

Observe that if �

l

= 0,

E[T (x)℄

PS

=

(1� e

�ax

)t

h

2

+

Z

x

0

at

v

(x� z)e

�az

dz (20)
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4 Analytial Results for SRPT under HIGH/LOW model

In the previous setion we derived an approximation for the response time for a job of

size x under PS sheduling. The goal of this setion is to derive an approximation for the

response time for a job of size x under the HIGH/LOW model with SRPT sheduling.

4.1 Number of jobs during HIGH period

Let x

o

be de�ned suh that �

h

(x

o

) = 1.

Consider a job of size x > x

o

. This job will never run as long as there are jobs of size

less than x in the system. Sine �

h

(x) > 1, it follows that for almost all sample paths !

there will be a time t(!) suh that the work made up by jobs of size less than x will be

non-zero for all t > t(!). Hene, if the job x arrives after time t(!) it will remain in the

system at least until the end of the HIGH period. Assuming that t

h

is large ompared

to t(!), we will use the approximation that all jobs of size > x

o

are held bak during the

HIGH period.

Seondly, for jobs of size x < x

o

the expeted response time for a job of size x is o(t

h

),

as shown in [2℄. The reason for this is that if we onsider the busy periods during whih

jobs of size � x are exeuted, then at most one job of size > x an a�et a partiular busy

period. Hene, the response time for a job of size x is not a�eted signi�antly by jobs of

size > x, and hene is o(t

h

), if �(x) < 1.

Using the observations above we approximate the number of jobs at time t as

N

h

(t) = �

h

tF (x

o

) (21)

and the distribution of the job sizes of the aumulated jobs as

f

r

(x) =

(

f(x)

F (x

o

)

; x > x

o

0 otherwise

(22)

4.2 Number of jobs during LOW period

During the LOW period, �

l

< 1, and thus the jobs aumulated during the HIGH period

will start reeiving some share of the proessor. Let us onsider what the aumulated

jobs look like during the LOW period. At time t = 0, the jobs in the bag are of size x

o

and greater. As time progresses, jobs will be leared from the bag starting from the jobs

of size x

o

. Let x(t) be the size of the smallest job remaining in the bag at time t. We will

�rst approximate x(t) as a funtion of t.

Clearly x(0) = x

o

. Consider the senario at time t. Consider how muh time it takes

to advane x(t) by dx amount. This will simply be the amount of work of size between

10



x(t) and x(t) + dx present in the system at time t. Suppose it takes dt time to do this.

Let us estimate dt in terms of dx. The expeted amount of work that needs to be done

during the dt time an be divided into 3 parts:

1. The expeted work made up of jobs in the original bag with sizes between x(t) and

x(t) + dx. This work totals to �

h

t

h

x(t)f(x(t))dx.

2. Pending work due to the new arrivals (during the LOW period) with sizes between

x(t) and x(t)+dx. Note that these jobs were not worked upon, until now. This new

work will be �

l

tx(t)f(x(t))dx.

3. The fresh work whih arrives during this dt amount of time. We need only onsider

work made up by jobs of size less than x(t), sine x(t) will be a�eted by other jobs.

This work will be �

l

(x(t))dt.

Using these observations we an write,

dt = �

h

t

h

x(t)f(x(t))dx + �

l

tx(t)f(x(t))dx+ �

l

(x(t))dt

Hene,

dt

�

h

t

h

+ �

l

t

=

x(t)f(x(t))dx

1� �

l

(x(t))

(23)

Integrating the l.h.s. of Equation 23 from 0 to t and the r.h.s. from x

o

to x(t) and

observing that

d�

l

(x)

dx

= �

l

xf(x) and �

h

(x

o

) = 1, we get,

1

�

l

log

�

h

t

h

+ �

l

t

�

h

t

h

=

1

�

l

log

1� �

l

(x

o

)

1� �

l

(x(t))

Thus we obtain

2

�

l

(x(t)) =

�

l

(t+ t

h

)

�

h

t

h

+ �

l

t

(24)

Having obtained x(t), N

l

(t) an be readily determined, sine by the above arguments the

number of jobs at time t will be approximately (�

h

t

h

+ �

l

t)F (x(t)). Thus,

N

l

(t) = (�

h

t

h

+ �

l

t)F (x(t)) (25)

Finally, we obtain the inverse of x(t) whih we denote by

~

t(x). Thus

~

t(x(t)) = t. This

will be useful in obtaining the approximation for the expeted response time. Clearly

~

t(x)

is only de�ned for x > x

o

. Then Equation 24 gives

3

~

t(x) = t

h

�

h

(x)� 1

1� �

l

(x)

(26)

2

For the ase when �

l

= 0, we get �

h

(x(t)) = 1 +

t

t

h

3

For the ase when �

l

= 0, we get

~

t(x) = t

h

(�

h

(x)� 1)

11



4.3 Response times as a funtion of job size

To derive the expeted response time under SRPT, we �rst onsider a job of size less than

x

o

. For suh a job we know that the expeted response time is a onstant, hene o(t

h

).

This holds whether the job arrives during the HIGH period or during the LOW period.

Consider a job of size x, x > x

o

. Suppose the job arrives during the HIGH period.

Then it will wait throughout the HIGH period, and approximately

~

t(x) time during the

LOW period. Given that the job arrives during the HIGH period, it will arrive uniformly

in the interval sine the arrival proess is Poisson. Thus

E[T (x)jjob arrives during HIGH period℄

SRPT

=

1

2

t

h

+

~

t(x) (27)

Now onsider the ase when the job of size x, x > x

o

arrives during the LOW period.

Again, if the job arrives after time

~

t(x), then its will response time will be o(t

h

).

Finally, given that the job arrives during the low period between time 0 to

~

t(x), its

response time will be approximately

1

2

~

t(x).

The probability that a job arrives during the HIGH period is �

h

t

h

=(�

h

t

h

+ �

l

t

l

).

The probability that a job arrives during the interval [0;

~

t(x)℄ of the LOW period is

�

l

~

t(x)=(�

h

t

h

+ �

l

t

l

).

Thus the expeted response time for a job of size x � x

o

under SRPT will be

E[T (x)℄

SRPT

=

�

h

t

h

�

h

t

h

+ �

l

t

l

 

1

2

t

h

+

~

t(x) +

�

l

�

h

~

t

2

(x)

2t

h

!

(28)

Observe that when �

h

and �

l

are �xed E[T (x)℄ varies linearly with t

h

. However if the job

size is less than x

o

, we know that E[T (x)℄ is o(t

h

). Hene, for large t

h

the ratio of response

times for a job of size < x

o

to that of size > x

o

will tend to 0. Thus we will approximate

E[T (x)℄ by 0 for x < x

o

. We will show later in Setion 6 that this approximation is quite

good.

5 Comparison of PS and SRPT based on analytial results

In Setions 3 and 4 we derived the approximation for the expeted response time of a job

of size x under SRPT and PS for the HIGH/LOW model. These results are summarized in

Equations 28 and 19 respetively. It is diÆult to ompare these two equations analytially

for generally-distributed workloads, therefore in this setion we ompare Equations 28 and

19 evaluated on a partiular real-world workload. Although we only show results for this

partiular workload, we will make observations whih apply to more general workloads as

well, and we will disuss intuitions for why these results hold more generally. In Setion 7

we return to the disussion of other workloads.
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Our workload assumes job sizes have a Bounded Pareto distribution. This distribution

is de�ned as follows:

Reall a Pareto distribution with parameter �, is de�ned suh that

Pr[X > x℄ � x

��

; where 0 < � < 2

The Bounded-Pareto distribution [11℄ is haraterized by three parameters: �; the expo-

nent of the power law; k, the smallest possible job; and p, the largest possible job, The

probability density funtion for the Bounded Pareto B(k; p; �) is de�ned as:

f(x) =

�k

�

1� (k=p)

�

x

���1

k � x � p:

In this paper, we onsider the distribution B(k; p; �) obtained by keeping the mean �xed

(at 3000) and the maximum value �xed (at p = 10

10

and � = 1:5). These parameters

orrespond to typial values for Web workloads taken from [7℄. Throughout we normalize

the distribution by saling down the job sizes by a fator of 3000, leaving the mean as 1.

We refer to this normalized distribution as B(� = 1:5).

Pareto and Bounded-Pareto distributions have been shown to be harateristi of the

job size distributions in many omputer workloads [18, 12, 7, 21℄. These distributions have

3 important properties:

1. Dereasing failure rate (Pareto) or mostly-dereasing (Bounded Pareto).

2. In�nite variane (Pareto) or very high variane (Bounded Pareto).

3. The heavy-tailed property, whih we de�ne as: \A very small fration of the largest

jobs (e.g., 1%) omprise more than half the total load."

We now ompare Equations 28 and 19 evaluated on our B(� = 1:5) distribution with

respet to two metris:

1. Number of jobs in system as a funtion of time (Setion 5.1).

2. Response time for a jobs of size x (Setion 5.2).

5.1 Number of jobs in system

We now onsider the number of jobs in the system as a funtion of time under PS and

SRPT. The number in system is an interesting pratial metri. Consider as an example

a Web server whih servies its requests in SRPT order, as opposed to the traditional

PS servie order. The number of requests in the system orresponds to the number of

simultaneously open onnetions in the Web server. The greater this number the more

13
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Figure 1: Analyti results: Number of jobs in system as a funtion of time under (a)

�

h

= 1:3 and (b) �

h

= 2 for the B(� = 1:5) distribution. Time 0-1000 orresponds to the

HIGH period. For eah of the plots �

l

= 0 and the average load is 0.7.

overhead is required by the Web server. Furthermore, if this number gets too high, the

Web server may rash or simply stop aepting requests.

Figure 1 shows the number of jobs as a funtion of time for various values of �

h

with

�

l

= 0, under SRPT and PS sheduling for the B(1:5) distribution. Here t

h

= 1000

and t

l

is hosen suh that the average load is 0.7. Observe that a value of 1000 on the

x-axis indiates the end of an HIGH period. Observe that the area under the urves is

proportional to the mean number of jobs in the system (hene to the mean response time).

We now state a few general observations based on Figure 1. For eah observation, we

provide intuition, and disuss why it should hold for more general workloads as well.

Observation 1 The mean number of jobs in the system under SRPT is signi�antly less

than that under PS.

This is due to the fat that SRPT is known to always minimize the number of jobs in the

system (under all onditions) sine it always works on that job whih an be ompleted

most quikly.

Observation 2 Though still signi�ant, the relative advantage of SRPT over PS (with

respet to number of jobs in the system) dereases at higher values of �

h

. (See Figures 1a

and 1b).

This ours sine as �

h

grows very high, both PS and SRPT retain almost all jobs during

14



the HIGH period and thus the di�erene in their performane depends only on their

behavior during the low period.

Observation 3 SRPT reuperates from overload faster than PS. Spei�ally, the urve

for the number of jobs under SRPT during the LOW period appears onvex, while this

may not be true for PS.

This follows sine SRPT works on jobs with the smallest remaining size �rst, thus the rate

of learane of jobs is maximum in the beginning of the LOW period and then dereases.

Also, sine PS timeshares among all the jobs, it somewhat delays getting jobs out at the

beginning of the LOW period. This an be observed in Figure 1b (right). Thus SRPT

not only aumulates fewer jobs, but it also gets them out as quikly as possible.

Finally, a subtle, but important observation:

Observation 4 Given a �xed �

h

, the number in system in Figure 1 does not depend on

the average load (provided � < 1). In general, the average load � an be made arbitrarily

low or arbitrarily lose to 1 by hoosing t

l

aordingly. However, the the number of jobs

during the HIGH period or the LOW period will not hange.

This is an important departure from the usual M/G/1 queueing model in the sense that

the performane metri does not depend on the average load, but only on the load during

the overload period.

Finally, we �nd that the trends look similar for the ase when �

l

> 0.

4

Notie that

the number of jobs during the HIGH period is independent of �

l

. Hene N

h

(t) looks

idential for all values of �

l

. The only notieable di�erene is that that it takes a longer

time (strethed by 1=(1� �

l

)) during the LOW period for the number of jobs to go down

to zero.

5.2 Expeted Response Times as a funtion of job size

The point of this setion is to determine whether the large jobs \starve" under SRPT

sheduling as ompared with PS sheduling. We do this by observing the expeted response

time for large jobs.

Figure 2 shows the expeted response time as a funtion of job size under SRPT versus

PS for the B(� = 1:5) distribution, when �

l

= 0. The job size is expressed as a perentile of

the job size distribution (where 100 perentile indiates the very largest job). Note that due

to the hoie of the x-axis, the area under the PS (respetively, SRPT) urve orresponds

to the mean response time under PS (respetively, SRPT). In Figure 3 we onsider the

ase when �

l

= 0:5. However we use a 3 stage hyper-exponential approximation to B(1:5),

4

The plots for this ase are not inluded for lak of spae.
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Figure 2: Analyti results: Response times as a funtion of job size for (a) �

h

= 1:3,�

l

= 0

and (b) �

h

= 2, �

l

= 0. Both �gures assume the B(1:5) distribution. t

h

is assumed to be

1000, �

l

= 0 and t

l

is hosen suh that the average load is 0.7.
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Figure 3: Analyti results: Response times as a funtion of job size under (a) �

h

= 1:3; �

l

=

0:5 and (b) �

h

= 2; �

l

= 0:5. Both �gures assume the 3 phase approximation to the B(1:5)

distribution. t

h

is 1000, and t

l

is hosen suh that the average load is 0.7.
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in order to evaluate the response times (Reall that for �

l

> 0, evaluating E[T (x)℄ for PS

requires the use of the Laplae Transform of the job size distribution).

5.2.1 Case when �

l

= 0

We �rst onsider the ase when �

l

= 0. The following observations hold for all plots in

Figure 2 and are easily explained:

Observation 5 Under SRPT jobs of size less than x

o

have an approximate response time

of 0 when ompared with t

h

.

Observation 6 Large jobs do not neessarily su�er under SRPT as ompared with PS

(as is ommonly believed). (See Figure 2.)

To see why this is the ase, observe that although large jobs do badly under SRPT,

they do almost equally badly under PS. The point is that the average amount of servie

reeived by a large job under PS during a HIGH period is negligible ompared to its

size. Thus this job stays in the system throughout the HIGH period (sine its arrival).

Moreover it is among the last of the jobs to omplete during the LOW period, sine its

remaining size at the beginning of the LOW period is large ompared to other remaining

jobs.

The observations above make a very strong ase for SRPT. Not only is there a signi�-

ant improvement in the mean response time under SRPT, but this improvement does not

ome at the ost of starving large jobs.

Finally, we note (as in Observation 4) that the results above only depend on �

h

. In

partiular, they are not a onsequene of �xing the average load to a value of 0.7.

5.2.2 Case when �

l

> 0

Observation 7 The extent of starvation when �

l

> 0 is muh less than that when �

l

= 0.

To see why this is the ase, �rst observe that the growth rate of jobs during the HIGH

period is the same for both �

l

= 0 and �

l

= 0:5. Thus the di�erene in the response

times arises due to the behavior of the system during the LOW period. Observe that the

number of jobs is non-zero for a longer time (by a fator of 1=(1 � �

l

)) during the LOW

period as ompared to the ase when �

l

= 0. Thus the poor behavior of PS with respet

to learing jobs out of the system as noted in Observation 3 is aentuated for the ase

when �

l

> 0.
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6 Simulation Comparison

The disussion in Setion 5 was based on analytial results obtained in Setions 3 and 4.

In this setion we ompare how well our approximations agree with the atual numbers

obtained by simulation.

We simulate PS and SRPT under the HIGH/LOW model for various distributions.

The goal of the simulation is two-fold.

1. To �gure out how large t

h

needs to be so that the analytial results math simulation.

2. To �gure out the number of the HIGH/LOW yles required (denoted by n), so that

the metris of interest averaged over these yles onverge to their mean.

Figure 4 shows the response times as a funtion of the perentile of job size under PS

and SRPT, both under theory and simulation. The job size distribution is the 3 stage

hyper-exponential approximation to B(1.5), with mean job size saled down to 1, whih

we denote by B

h

(1:5). The parameters t

h

and n are set to 1000 and 100 respetively.

Observe that for PS the approximation mathes simulation almost exatly. For SRPT the

approximation is lose exept for the point at x

o

. We �nd that, as t

h

is made higher, the

simulation and analysis results grow loser for SRPT.
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Figure 4: Simulation results as ompared with analytial approximation results, �

h

=

2; �

l

= 0:5.

In general for all workload distributions we tested

5

, we found that our analytial

approximation results math almost exatly with simulation when t

h

is large. We found

that simulation mathed analysis even for t

h

only about 100-1000 times the mean job size,

provided �

h

was not too lose too 1. For low variability distributions t

h

and n may be

lower. The omparison of simulation and analysis is an even loser math when onsidering

the metri number in system as a funtion of time.

5

More plots not shown here for lak of spae.

18



7 SRPT vs. PS under more general workloads { Open prob-

lems

In Setion 5 we ompared the performane of SRPT vs. PS on a B(� = 1:5) distribution

under transient overload. We found that SRPT had two desirable properties: (1) It im-

proved signi�antly upon PS with respet to mean response time, and (2) SRPT did not

treat large jobs worse than they would be treated under PS.

The point of this setion is to explore whether these desirable properties of SRPT also

translate to other distributions.

We �rst show that the desirable properties for low variability distributions as well. We

prove that for the exponential distribution (C

2

= 1), SRPT improves upon PS for every

job.

Observation 8 For an exponential with �

h

> 2 and �

l

= 0 every job has lower expeted

response time under SRPT as ompared with PS.

Proof:

Without loss of generality assume that the mean job size is 1. Then �

h

= �

h

, and

a = �

h

� 1. Reall the expression for response time under PS,

E[T (x)℄

PS

= (1� e

�ax

)

t

h

2

+

Z

x

0

at

v

(x� z)e

�az

dz

Now using the expression for t

v

we note that the

L

t

v

(s) =

1

s

�

at

h

s� a

(1� �

h

L

F

r

(s))

Note that F

r

(x) = e

�x

, hene L

F

r

(x) =

1

s+1

.

Thus,

L

t

v

(s) =

at

h

s(s+ 1)

whih gives t

v

(y) = at

h

(1� e

�y

). Thus,

E[T (x)℄

PS

= (1� e

�ax

)

t

h

2

+ a

2

Z

x

0

t

h

(1� e

z�x

)e

�az

dz

E[T (x)℄

PS

= (a+

1

2

)t

h

+

1

2

a+ 1

a� 1

e

�ax

t

h

�

a

2

a� 1

e

�x

t

h

(29)

By Equation 28 we get,

E[T (x)℄

SRPT

= (a+ 1)t

h

Z

x

0

ye

�y

dy �

t

h

2
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Figure 5: No starvation for big jobs under Exponential job size distribution with �

h

=

2; �

l

= 0

whih gives,

E[T (x)℄

SRPT

= (a+

1

2

)t

h

� (a+ 1)(e

�x

+ xe

�x

)t

h

(30)

We now show that for a > 1, 8x, E[T (x)℄

PS

> E[T (x)℄

SRPT

.

To show that E[T (x)℄

PS

> E[T (x)℄

SRPT

, it suÆes to show that

a

2

a� 1

e

�x

�

a+ 1

2(a � 1)

e

�ax

< (a+ 1)(e

�x

+ xe

�x

)

Or equivalently, we must show that:

1

a� 1

e

�x

<

a+ 1

2(a� 1)

e

�ax

+ (a+ 1)xe

�x

1 < (a

2

� 1)x+

a+ 1

2

e

(�a+1)x

De�ne

g(x) = 1� (a

2

� 1)x�

a+ 1

2

e

(�a+1)x

Clearly g(0) = (1 � a)=2 whih is less than 0. g

0

(x) = (1 � a

2

)(1 � e

(�a+1)x

=2), whih is

less than 0, for x � 0. Thus g(x) < 0 for all x > 0, and the proof follows.

Figure 5 shows response time as a funtion of job size when the job size distribution is

Exponential when �

h

= 2 and �

l

= 0. The �gure shows that every job prefers SRPT to

PS in expetation and furthermore that the improvement in mean response time of SRPT

over PS is signi�ant (a fator of about 3, judging by the area under the urves). Observe

that in the above proof, we required that �

h

> 2. We now show that if �

h

is lose to 1,

then big jobs fair worse under SRPT as ompared with PS.
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Figure 6: Big jobs su�er under SRPT for Exponential job size distribution with �

h

=

1:1; �

l

= 0

Observation 9 For an exponential job size distribution with �

h

� 1 and �

l

= 0, big jobs

perform worse under SRPT as ompared with PS.

The proof is evident from Figure 6. We now provide some intuition for why the ase of

�

h

� 1 is bad for SRPT as ompared with PS with respet to large jobs.

Consider a job of size a little bigger than x

0

. If �

h

� 1, then there is a big di�erene

under SRPT vs. PS with respet to the remaining size on this job at the end of the HIGH

period. SRPT has a large remaining size (the original size of the job). In ontrast under

PS sine �

h

is low, big jobs reeive quite a bit of servie during the high period, hene

their remaining size is small, and therefore response times in this ase are lower under PS

than SRPT (see Figure 6).

However even in the ase of �

h

� 1, we �nd that for the B(� = 1:5) distribution,

starvation is largely diminished.

Observation 10 When �

h

= 1:1, and the job size distribution is B(� = 1:5), only 0:06%

of jobs do worse under SRPT as ompared with PS, and only at most 20% worse.

To explain the above observation, we have to return to the heavy-tailed property, ex-

hibited by the B(� = 1:5) distribution. Reall that the heavy-tailed property says that

very few of the largest jobs arry all the weight. For distributions with a heavy-tailed

property, the work reeived by the very largest jobs under PS during the HIGH period

will be negligible ompared to their very large size. Thus these jobs perform omparably

under SRPT and PS. Hene no \starvation."

We leave it as an open problem to determine the exat onditions under whih SRPT

has desirable properties as ompared with PS. We onjeture that these onditions are
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related to �

h

, and the nature of the job size distribution, in partiular the weight of its

tail, its overall range, and its variane.

8 Conlusion

In this paper we propose a solution for oping with transient overload in systems. Our

proposal is that the traditional sheduling poliy used in systems (PS sheduling) be

replaed by SRPT sheduling of jobs. We onsider a HIGH-LOW workload model whih

alternates between a period of overload (HIGH) and a period of low load (LOW). We

obtain analytial approximations on the response time for a job of size x under the HIGH-

LOW model and other metris. Our analytial approximation results math losely to

simulation.

We �nd the behavior of both SRPT and PS under the HIGH-LOW model to be quite

di�erent from that under a tradition M/G/1, � < 1 queue. For example, the main property

of PS { fairness (in the sense of the same mean slowdown for all jobs) { no longer holds

under the HIGH-LOW model.

We evaluate our analytial results on a distribution harateristi of today's omputer

workloads, and �nd that, for the HIGH-LOW model, SRPT improves upon PS for every

job size (in expetation), and that the improvement in mean response time an be quite

signi�ant.

Our analysis sheds light on some general reasons for why SRPT performs well as om-

pared with PS under the HIGH-LOW model. Our analysis shows that PS is partiularly

ine�etive in dealing with periods of temporary overload. Due to its time-sharing nature,

it deteriorates the performane of all the jobs, whih is atually unfair to small jobs. More-

over, PS is partiularly slow at getting the system \bak to normal" one the overload has

disappeared. By ontrast, SRPT aumulates far fewer jobs during the overload period,

and is also muh more eÆient at getting them out one the overload period is over.

Our analysis sheds light on why SRPT performs well as ompared with PS even on large

jobs. The reason is that while it seems obvious that large jobs won't reeive servie under

SRPT during the overload period, it turns out that they also don't reeive muh servie

under PS during the overload period. This is partiularly true when the distribution has

a heavy-tailed property.

Our results have impliations for real world systems, where utuations in load are

ommon. Under PS sheduling, these utuations an results in large buildups of jobs

whih ontinue to e�et the system for a long time. In SRPT, as we've shown, the e�et

of load utuations is muh less severe.
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