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Abstra
t

For most 
omputer systems, even short periods of overload degrade performan
e signi�-


antly. The number of jobs in the system qui
kly grows, often ex
eeding the 
apa
ity of

the system within just se
onds, and response times explode.

In this paper we investigate system behavior under transient overload. We �nd that the

poor behavior of systems under transient overload 
an at least partly be attributed to

the s
heduling poli
y traditionally used in systems. The traditionally-used s
heduling

poli
y is Pro
essor-Sharing, or time-sharing, (PS). We derive analyti
al approximations

as well as simulation results for the performan
e of a single PS queue under transient

overload. Simulation and analysis agree. The number of jobs in the system and the

system response times grows quite rapidly during overload, and even when the overload

period ends, re
uperation is very slow.

We propose a new solution for 
oping with transient overload: SRPT s
heduling of jobs

(Shortest Remaining Pro
essing Time). We derive analyti
al approximations for the per-

forman
e of a single SRPT queue under transient overload, and validate those approxi-

mations with simulation.

We evaluate our PS and SRPT approximations under a realisti
 job size distribution, a

Bounded Pareto with a heavy-tailed property. We �nd that SRPT performs an order of

magnitude better with respe
t to mean response time and mean queue length.

While SRPTmight not seem like the best 
hoi
e for large jobs, parti
ularly under overload,

it turns out that under our realisti
 workload big jobs do not perform worse under SRPT

as 
ompared with PS in expe
tation. We give intuition for this. Finally we pose some

interesting open questions on the topi
 of starvation of large jobs.

Keywords: Overload, HIGH/LOW, s
heduling, pro
essor sharing, shortest pro
ess-

ing remaining time, time-sharing, shortest job �rst, SRPT, priority, unfairness, starvation,

heavy-tailed behavior, high varian
e



1 Introdu
tion

Overload is a situation where the rate of work arriving at a system is greater than the

system 
an handle. In this paper we investigate systems under transient overload, where

load alternates between a �nite period of overload (
alled HIGH period) followed by a

�nite period of low load or zero load (LOW period). The mean system load is always

below 1. This HIGH/LOW model is des
ribed in Se
tion 2.

For most servers (e.g. web servers), even short periods of overload 
ause the number of

jobs in the system to qui
kly ex
eed the system 
apa
ity, often within a matter of se
onds.

A large number of jobs implies large allo
ations of system resour
es (bu�ers), as well as

many 
ontext swit
hes. These e�e
ts in turn 
ause the server to either stop a

epting new

jobs or 
rash. Either way, 
lient response times explode.

Re
ently there has been mu
h attention paid to the problem of overload, parti
ularly

in web servers. This resear
h 
an be divided into 3 primary areas. One solution is to

in
rease the server resour
es, for example, adding more hardware, bandwidth, or CPU.

This is often done by repla
ing the server by a server farm (e.g. [8, 6, 16℄). Another solution

is to enhan
e the OS to better support server software: ([20, 9, 1, 15, 19℄). Finally, people

try to limit the load at a server, either via installing a proxy 
a
he (at the 
lient or server

end) (e.g. [10, 4℄) or by admission 
ontrol ([13℄).

Our approa
h to 
oping with transient overload is di�erent from the above approa
hes.

Our approa
h does not require buying more hardware or limiting the number of system

users. We simply propose s
heduling the jobs in a di�erent order from that traditionally

used.

In 
omputer systems today, when multiple jobs 
ontend for a single resour
e (e.g. CPU

or bandwidth), the poli
y used for s
heduling the jobs most 
losely resembles Pro
essor-

Sharing (PS). That is, the desired resour
e is time-shared among the 
ontending jobs,

with ea
h job in turn re
eiving a small quantum of servi
e.

Pro
essor-Sharing has many provably desirable properties when system load remains

below 1, su
h as low mean response times and fairness (all jobs experien
e same mean

slowdown) [17, 25℄. However, in real systems the load 
u
tuates, sometimes ex
eeding 1,

and it is not 
lear what the performan
e of PS is in this 
ase.

The �rst result in this paper is an approximate analysis of the performan
e of a PS

queue under transient overload. Our analysis is based on 
ombining ideas from Jean-Marie

and Robert [14℄ and Chen, Kella, and Weiss [5℄. We validate the assumptions made in

our analysis via simulation, whi
h agrees with our analysis. We evaluate our analyti


formulas in the 
ase where the job size distribution is a Bounded Pareto distribution,

with a heavy-tailed property. This distribution has been shown to be 
hara
teristi
 of


omputer workloads [18, 12, 7, 21℄. Our PS results indi
ate that performan
e of a PS

server under transient overload 
an be quite poor, even when mean system load is very

low. The performan
e is dominated by the load during the overload period. The number
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of jobs in system in
reases very rapidly during the overload period and then is slow to

re
over during the low load period, due to the time-sharing nature of PS s
heduling.

In an attempt to improve performan
e of servers under transient overload, we pro-

pose s
heduling requests under the well-known Shortest Remaining Pro
essing Time First

(SRPT) poli
y. The motivation is the fa
t that SRPT minimizes the number of jobs in

the system at any time.

Appli
ations have shied away from using SRPT for fear that SRPT \starves" big

jobs, parti
ularly under overload [3, 23, 24, 22℄, however the performan
e of SRPT under

transient overload has never been analyzed. In a re
ent paper [2℄ we 
onsider only the 
ase

with 
onstant load below 1 (no overload). In [2℄ we �nd that, provided the load is not too


lose to 1 (so as to allow large jobs a turn to run), for many workloads with a heavy-tailed

property, the fear of starvation is unsubstantiated. That is, all jobs, in
luding the very

largest job have lower queueing time under SRPT s
heduling than under FAIR s
heduling.

The se
ond result in this paper is an approximate analysis of SRPT s
heduling under

transient overload. We validate the assumptions made in our analysis via simulation,

whi
h agrees with our analysis. We evaluate the analyti
 formulas in the 
ase where the

job size distribution is a Bounded Pareto distribution, with a heavy-tailed property.

The 
omparison of the PS results with the SRPT results under the Bounded Pareto

workload is quite interesting. We �nd that:

� The improvement of SRPT over PS both in terms of the mean response time and

in terms of mean number of jobs in system is substantial (
lose to an order of

magnitude).

� The mean improvements of SRPT over PS are greatest when the overload is 
lose

to 1.

� Unfairness to big jobs under SRPT as 
ompared with PS is virtually non-existent

under our Bounded Pareto workload.

� The higher the load during the low load period, the better SRPT looks with respe
t

to all of the above metri
s.

� For distributions with a lighter tail, e.g. the exponential distribution, the results

are not mu
h worse. In fa
t we 
an prove that for an exponential distribution, if

the load during the overload period ex
eeds 2, then every single job performs better

under SRPT than under PS, in expe
tation.

The last observation above leads us to spe
ulate on the 
lass of distributions for whi
h

SRPT improves upon PS under transient overload. This dis
ussion is 
overed in Se
tion 7,

where we provide analyses, observations, and open problems on this topi
.

The above results are en
ouraging with respe
t to the potential real-world appli
ability

of SRPT s
heduling.
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2 Model, Relevant Previous Work, and Simplifying Assump-

tions

2.1 Model

Throughout this paper we will assume an M/G/1 queue. The job sizes will be assumed to

be independent and identi
ally distributed with 
.d.f. F (x) and p.d.f. f(x). The arrival

pro
ess will 
onsist of alternating periods of high and low loads. During the high load

period (also 
alled the \HIGH" period), jobs arrive with mean arrival rate �

h

and 
reate

a load of �

h

> 1. The high load period has �xed duration t

h

. During the low load period

(also 
alled the \LOW" period) jobs arrive with mean arrival rate �

l

and 
reate a load of

�

l

< 1. The low load period has �xed duration t

l

.

Let � denote the average system load. Thus

� =

t

h

t

h

+ t

l

�

h

+

t

l

t

h

+ t

l

�

l

We will always assume that the average load � < 1.

Our system behavior is as follows: During the HIGH period, jobs build up in the

system as a fun
tion of time. We will derive an expression for this buildup. At the start

of the LOW period, there is an a

umulation of jobs whi
h we refer to as \the bag of

jobs." Sin
e the load during the LOW period is less than 1, the number in system will

start de
aying and will 
onverge to a low value, related to �

l

, before the end of the of the

LOW period. This is expe
ted sin
e the average load is less than 1.

Some additional notation: The number of jobs in the system t time after the onset of

the HIGH period will be denoted by N

h

(t). Likewise the number of jobs in the system t

time after the onset of the LOW period will be denoted by N

l

(t).

2.2 Relevant Previous Work

To the best of our knowledge, the HIGH/LOW workload model with general job size

distribution has not been studied under either PS or SRPT s
heduling.

For SRPT s
heduling, there are no relevant queueing results in the literature dealing

with overload.

For PS s
heduling, there are two relevant results: one by Chen et. al. [5℄ and the other

by Jean-Marie and Robert [14℄. While these results don't 
over the HIGH/LOW model,

they are still very relevant in its analysis.

Jean-Marie and Robert's work [14℄ 
an be viewed as analyzing only the HIGH period

of the HIGH/LOW model under PS s
heduling. They prove that N

h

(t)=t 
onverges to
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a parti
ular 
onstant in the limit as t ! 1. They also derive the distribution on the

residual job sizes in the limit as t!1.

Chen et. al.'s work [5℄ 
an be viewed as analyzing only the LOW period of the

HIGH/LOW model under PS s
heduling. Spe
i�
ally, they assume a PS server running

under load �

l

< 1 whi
h begins with a set of initial jobs distributed a

ording to an arbi-

trary distribution. They obtain a 
uid approximation on N

l

, however it is not expressed

as a fun
tion of t, but rather as a fun
tion of v(t), where v(t) is the 
umulative amount

of pro
essing time per 
ustomer allo
ated by the server up to time t.

2.3 Simplifying Assumptions

It seems natural to try to 
ombine the results in [14℄ and [5℄ to analyze the HIGH/LOW

model under PS. Our goal is to understand the mean response time for a job of size x

under the HIGH/LOW model. Unfortunately, we 
ould not see how to dire
tly 
ombine

these results to derive mean response time. Part of the problem is that the Chen result

doesn't a
tually 
ompute N

l

(t). Another part of the problem is that the Jean-Marie and

Robert result requires t!1, whereas we want to 
onsider �nite t

h

and t

l

. In our analysis

it was therefore ne
essary for us to resort to two simplifying assumptions under PS and

under SRPT:

1.

N

h

(t)

t

= 
onstant 8t; for all sample paths, and

2. N

l

(t) is the same for all sample paths:

These simplifying assumptions will serve several purposes: First, they will allow us to

obtain an approximation for expe
ted response time for a job of size x for a HIGH/LOW

pro
ess under PS s
heduling (see Se
tion 3). Se
ond, they will allow us to obtain approx-

imations for all performan
e metri
s of interest for a HIGH/LOW pro
ess under SRPT

s
heduling ( expe
ted response time for a job of size x, N

h

(t), N

l

(t)) (See Se
tion 4). Third,

they will allow us to 
ompare SRPT and PS performan
e in a HIGH/LOW workload (see

Se
tion 5).

Our simplifying assumptions may seem quite strong. However, in Se
tion 6 we will


ompare the performan
e numbers derived using the simplifying assumptions with our

simulation results whi
h make no assumptions. We will �nd that provided t

h

and t

l

are

not too small (at least 100 times the mean job size), the simulation numbers agree with

the analyti
ally-derived numbers.

3 Analyti
al Results for PS under HIGH/LOW model

The goal of this se
tion is to derive the expe
ted response time for a job of size x under

the HIGH/LOW model with PS s
heduling. Throughout we will apply our simplifying
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assumptions from Se
tion 2.

Before we begin we will need to review the results of Jean-Marie and Roberts [14℄ and

Chen et. al. [5℄. In reviewing these results, we will also use our simplifying assumptions

to provide intuitive derivations of these results for the bene�t of the reader.

3.1 Analysis of the HIGH load period only

Lemma 0.1 (due to [14℄) Consider an M/G/1/PS queue with load � > 1 and average

arrival rate �

h

. Let N

h

(t) denote the number of jobs in the system at time t. Then for

almost all sample paths,

lim

t!1

N

h

(t)

t

= a (1)

where a is the solution to �

h

(1�

R

1

0

f(x)e

�ax

dx) = a.

Proof via Simplifying Assumptions: The following is a rough proof based on our

approximations made in Se
tion 2. Sin
e the work in the system by time t in
reases as

(�

h

�1)t+o(t), it is not diÆ
ult to see that for almost all sample paths, N

h

(t) = at+o(t),

for some a. To determine a, let us ignore the o(t) term and approximate N

h

(t) by at, and

assume that this holds for all t and for all sample paths.

Now, 
onsider a job of size x, arriving at time t

a

. Then the servi
e re
eived by the job

by time t

0

is

S(t

a

; t

0

) =

Z

t

0

t

a

dt

N

h

(t)

(2)

Clearly the job departs at time t

d

su
h that S(t

a

; t

d

) = x. So, t

d

= t

a

e

ax

. Thus, at time

t, if a job of size x arriving at time t

a

is present in the system, then t

a

� te

�ax

.

Now the expe
ted number of jobs of size between x and x+dx whi
h arrive during time

[0; t℄ is �

h

tf(x)dx. Sin
e the arrival pro
ess is Poisson these jobs 
an be assumed to arrive

uniformly over [0; t℄. Thus, we expe
t that about �

h

t(1 � e

�ax

)f(x)dx of these jobs will

still be present in the system at time t. Averaging over the possible job sizes x, we get that

N

h

(t) =

R

1

0

�

h

(t�te

�ax

)f(x)dx. EquatingN

h

(t) to at gives us a =

R

1

0

�

h

(1�e

�ax

)f(x)dx.

2.

Sin
e we will be interested in evaluating various metri
s for PS, we will make the results

more 
ompa
t. Let L

g

(s) denote the Lapla
e transform of a fun
tion g, i.e. L

g

(s) =

R

1

0

g(x)e

�sx

dx. Thus we observe that a satis�es a = �

h

(1 � L

f

(a)). Moreover observing

that L

F

(s) = (1 � L

f

(s))=s, we 
an write a in the following form whi
h will be useful

later.

L

F

(a) =

1

�

h

(3)

5



We now obtain an approximation for the number of jobs with remaining size > y at

the end of the HIGH period, using our simplifying assumptions

1

.

Consider a job of (original) size z. Arguing as above, this job will have remaining size

> y at time t

h

i� it's arrival time, t

a

, is su
h that t

a

> t

h

e

�a(z�y)

Thus the total number of jobs of size (z; z+dz) whi
h have remaining size > y at time

t

h

will be

�

h

t

h

f(z)(1� e

�a(z�y)

)dz (4)

Integrating 4 over all possible job sizes greater than y gives us the total number of jobs

whi
h have remaining size > y at time t

h

, whi
h is

Z

1

y

�

h

t

h

f(z)(1 � e

�a(z�y)

)dz (5)

Let F

r

denote the 
.d.f of the remaining sizes of the jobs at the end of the HIGH period.

Sin
e the total number of jobs at time t

h

is at

h

, using 5 gives,

F

r

(y) =

R

1

y

�

h

f(z)(1� e

�a(z�y)

)dz

a

(6)

After some manipulation, we observe that the Lapla
e Transform of F

r


an be written

simply as

L

F

r

(s) =

1� �

h

L

F

(s)

s� a

(7)

3.2 Analysis of the LOW load period only

We now 
onsider just the low load period (�

l

< 1), starting with N

l

(0) jobs with remaining

sizes distributed a

ording to 
.d.f. F

r

. New jobs arrive into the system at rate �

l

where

the new job sizes have 
.d.f. F . We now use our simplifying assumptions to derive an

expression for the number of jobs in the system. Chen, Kella and Weiss [5℄ have analyzed

the low-load only system and obtained a 
uid limit expression for the number of jobs in

the system. The [5℄ result is similar to our result in Equation 11.

Denote the number of jobs in this system at time t by N

l

(t), and let us assume that

N

l

(t) is 
onstant for all sample paths. N

l

(t) will 
onsist of two types of jobs. Jobs whi
h

were present at time 0 and those whi
h arrived at time greater than 0. We will 
all these

jobs of Type 1 and Type 2 respe
tively.

To determine N

l

(t), 
onsider a job of size x whi
h arrives at time t

a

. This job will


omplete at time t

d

su
h that the servi
e re
eived by the job during time t

a

to t

d

is x.

Now, the servi
e re
eived by the job during time t

a

to t

d

under PS, will be

R

t

d

t

a

dt

N

l

(t)

.

1

[14℄ also study the problem of residual job sizes.
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Let us de�ne v(t) =

R

t

0

dy

N

l

(y)

, where v(t) is the 
umulative servi
e per 
ustomer allo
ated

by the server up to time t. Thus a job of size x arriving at time t

a

is present in the system

at time t i� v(t) � v(t

a

) < x. Thus the number of Type 1 jobs still present at time t will

be N

l

(0)F

r

(v(t)). To obtain the number of Type 2 jobs, 
onsider the jobs whi
h arrive

during time y and y + dy. There will be approximately �

l

dy su
h jobs. Out of these the

number still present at time t will be �

l

dyF (v(t) � v(y)). Integrating over y from 0 to t

will give us the total number of Type 2 jobs still present at time t. Adding the number of

Type 1 and Type 2 jobs we thus obtain,

N

l

(t) = N

l

(0)F

r

(v(t)) +

Z

t

0

�

l

F (v(t) � v(y))dy (8)

We do not know of a way to solve Equation 8 dire
tly to obtain the number in system as

a fun
tion of time. However, we 
an obtain this indire
tly by solving for the number in

system and solving for t as a fun
tion of v. We will denote these by N

v

l

and t

v

respe
tively.

Observing that v(0) = 0 and

d

dt

v(t) =

1

n(t)

, Equation 8 
an be written as

N

v

l

(v) = N

l

(0)F

r

(v) +

Z

v(t)

0

�

l

F (v � z)N

v

l

(z)dz (9)

We 
an now solve Equation 9. Using Lapla
e Transforms this gives us

L

N

v

l

(s) = N

l

(0)L

F

r

(s) + �L

F

(s)L

N

v

l

(s) (10)

whi
h yields

L

N

v

l

(s) =

N

l

(0)L

F

r

(s)

1� �

l

L

F

(s)

(11)

Using Equation 7 we get,

L

N

v

l

(s) =

N

l

(0)

s� a

�

(1� �

h

L

F

(s))

(1 � �

l

L

F

(s))

(12)

To obtain t

v

observe that

dt

v

dv

= N

v

l

, thus we get,

L

t

v

(s) =

1

s

�

N

l

(0)

s� a

�

(1� �

h

L

F

(s))

(1� �

l

L

F

(s))

(13)

3.3 Analysis of Response times for the HIGH/LOW model

Using the results above we 
an now obtain the expressions for the response times as a

fun
tion of job size under transient overload.

We 
lassify the jobs into 3 types. Jobs whi
h arrive during the HIGH period and �nish

during the HIGH period itself are type 1 jobs. Jobs whi
h arrive during the HIGH period

but �nish in the LOW period are type 2 jobs. Jobs whi
h arrive during the LOW period

and �nish during the same LOW period are type 3 jobs.

7



Note, that sin
e the average load is less than 1, very few jobs whi
h arrive during the

LOW period will 
ontinue during the next HIGH period. Thus we 
onsider only the three

types of jobs mentioned above.

Suppose J is a job of size x. If it is a type 1 job, then we know that it must have

arrived during time 0 to t

h

e

�ax

. Assuming it arrives uniformly during this interval, we

obtain

E[T (x)jJob is of type 1℄

=

1

t

h

e

�ax

Z

t

h

e

�ax

0

y(e

ax

� 1)dy

=

1

2

t

h

(1� e

�ax

) (14)

Suppose J is of type 2, then it must have arrived during time t

h

e

�ax

to t

h

. If it arrives

at time y, then it spends t

h

� y time during the HIGH period and its remaining size at

the beginning of the LOW period is r(y) = x�

1

a

log

t

h

y

. Observe that by Equation 13 this

job �nishes at time t

v

(r(y)). Thus we obtain,

E[T (x)jJob is of type 2℄

=

1

k(x)

Z

t

h

t

h

e

�ax

[(t

h

� y) + t

v

(x�

1

a

log

t

h

y

)℄dy

=

1

2

k(x) +

1

k(x)

Z

t

h

t

h

e

�ax

t

v

(x�

1

a

log

t

h

y

)dy

=

1

2

k(x) +

1

1� e

�ax

Z

x

0

at

v

(x� z)e

�az

dz (15)

where k(x) = t

h

(1� e

�ax

).

Finally we 
onsider the 
ase when J is a job of type 3. To do this, we need to �rst

digress and de�ne quantity t

w

.

Consider the amount of work a

umulated during the HIGH period. This is approxi-

mately (�

h

� 1)t

h

. Thus the time until this work is removed from the system during the

LOW period will be around t

w

= (�

h

� 1)t

h

=(1� �

l

).

Returning to the 
ase of a job of type 3, we 
an separate jobs of type 3 into 2 
ases:

those whi
h arrive before time t

w

and those whi
h arrive after time t

w

.

Let us �rst 
onsider the jobs whi
h arrive during time t

w

from the start of the LOW

period.

Suppose a job arrives at time t

a

from the start of the LOW period, then it will �nish at

time t

v

(x+v(t

a

)). Given that a job arrives during the time 0 to t

w

, it will arrive uniformly

during this interval (sin
e the arrival pro
ess is Poisson). Thus,

E[T (x)jJob is of type 3, and arrives in (0; t

w

)℄

8



=

1

t

w

Z

t

w

0

(t

v

(x+ v(y))� y)dy

=

1

t

w

Z

1

0

(t

v

(z + x)� t

v

(z))N

v

l

(z)dz (16)

Observe that for ea
h of the Type 1,2 and 3 jobs 
onsidered above, the response time

of a job is proportional to t

h

.

For type 3 jobs whi
h arrive after time t

w

, their response time will be independent

of t

h

. Thus if t

h

is quite large (
ompared to the mean job size) we 
an assume that the

response time for these jobs is negligible 
ompared to jobs of type 1, type 2 and jobs of

type 3 whi
h arrive during time 0 to t

w

. Hen
e we will approximate the response time of

type 3 jobs arriving during t

w

to t

l

by 0.

So, �nally we obtain

E[T (x)jJob is of type 3℄

=

1

t

l

Z

1

0

(t

v

(z + x)� t

v

(z))N

v

l

(z)dz (17)

Finally to obtain the approximate expe
ted response time for a job of size x, we �nd

the un
onditional response time. Thus we obtain that

E[T (x)℄

PS

= p

1

E(T

1

(x)) + p

2

E(T

2

(x)) + p

3

E(T

3

(x)) (18)

where E[T

i

(x)℄ is the expe
ted response time for a job of type i, i = 1; 2; 3, as ob-

tained in Equations 14,15 and 17. The probability p

1

that a job of size x is of type

1 is �

h

t

h

e

�ax

=(�

h

t

h

+ �

l

t

l

). The probability p

2

that a job of size x is of type 2 is

(�

h

t

h

(1� e

�ax

))=(�

h

t

h

+ �

l

t

l

). Finally the probability p

3

that a job of size x is of type 3

is �

l

t

l

=(�

h

t

h

+ �

l

t

l

).

Substituting the values in Equation 18 and doing some manipulation gives

E[T (x)℄

PS

=

�

h

t

h

�

h

t

h

+ �

l

t

l

"

(1� e

�ax

)t

h

2

+

Z

x

0

at

v

(x� z)e

�az

dz

#

+

�

l

�

h

t

h

+ �

l

t

l

�

Z

1

0

(t

v

(z + x)� t

v

(z))N

v

l

(z)dz

�

(19)

Observe that if �

l

= 0,

E[T (x)℄

PS

=

(1� e

�ax

)t

h

2

+

Z

x

0

at

v

(x� z)e

�az

dz (20)
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4 Analyti
al Results for SRPT under HIGH/LOW model

In the previous se
tion we derived an approximation for the response time for a job of

size x under PS s
heduling. The goal of this se
tion is to derive an approximation for the

response time for a job of size x under the HIGH/LOW model with SRPT s
heduling.

4.1 Number of jobs during HIGH period

Let x

o

be de�ned su
h that �

h

(x

o

) = 1.

Consider a job of size x > x

o

. This job will never run as long as there are jobs of size

less than x in the system. Sin
e �

h

(x) > 1, it follows that for almost all sample paths !

there will be a time t(!) su
h that the work made up by jobs of size less than x will be

non-zero for all t > t(!). Hen
e, if the job x arrives after time t(!) it will remain in the

system at least until the end of the HIGH period. Assuming that t

h

is large 
ompared

to t(!), we will use the approximation that all jobs of size > x

o

are held ba
k during the

HIGH period.

Se
ondly, for jobs of size x < x

o

the expe
ted response time for a job of size x is o(t

h

),

as shown in [2℄. The reason for this is that if we 
onsider the busy periods during whi
h

jobs of size � x are exe
uted, then at most one job of size > x 
an a�e
t a parti
ular busy

period. Hen
e, the response time for a job of size x is not a�e
ted signi�
antly by jobs of

size > x, and hen
e is o(t

h

), if �(x) < 1.

Using the observations above we approximate the number of jobs at time t as

N

h

(t) = �

h

tF (x

o

) (21)

and the distribution of the job sizes of the a

umulated jobs as

f

r

(x) =

(

f(x)

F (x

o

)

; x > x

o

0 otherwise

(22)

4.2 Number of jobs during LOW period

During the LOW period, �

l

< 1, and thus the jobs a

umulated during the HIGH period

will start re
eiving some share of the pro
essor. Let us 
onsider what the a

umulated

jobs look like during the LOW period. At time t = 0, the jobs in the bag are of size x

o

and greater. As time progresses, jobs will be 
leared from the bag starting from the jobs

of size x

o

. Let x(t) be the size of the smallest job remaining in the bag at time t. We will

�rst approximate x(t) as a fun
tion of t.

Clearly x(0) = x

o

. Consider the s
enario at time t. Consider how mu
h time it takes

to advan
e x(t) by dx amount. This will simply be the amount of work of size between

10



x(t) and x(t) + dx present in the system at time t. Suppose it takes dt time to do this.

Let us estimate dt in terms of dx. The expe
ted amount of work that needs to be done

during the dt time 
an be divided into 3 parts:

1. The expe
ted work made up of jobs in the original bag with sizes between x(t) and

x(t) + dx. This work totals to �

h

t

h

x(t)f(x(t))dx.

2. Pending work due to the new arrivals (during the LOW period) with sizes between

x(t) and x(t)+dx. Note that these jobs were not worked upon, until now. This new

work will be �

l

tx(t)f(x(t))dx.

3. The fresh work whi
h arrives during this dt amount of time. We need only 
onsider

work made up by jobs of size less than x(t), sin
e x(t) will be a�e
ted by other jobs.

This work will be �

l

(x(t))dt.

Using these observations we 
an write,

dt = �

h

t

h

x(t)f(x(t))dx + �

l

tx(t)f(x(t))dx+ �

l

(x(t))dt

Hen
e,

dt

�

h

t

h

+ �

l

t

=

x(t)f(x(t))dx

1� �

l

(x(t))

(23)

Integrating the l.h.s. of Equation 23 from 0 to t and the r.h.s. from x

o

to x(t) and

observing that

d�

l

(x)

dx

= �

l

xf(x) and �

h

(x

o

) = 1, we get,

1

�

l

log

�

h

t

h

+ �

l

t

�

h

t

h

=

1

�

l

log

1� �

l

(x

o

)

1� �

l

(x(t))

Thus we obtain

2

�

l

(x(t)) =

�

l

(t+ t

h

)

�

h

t

h

+ �

l

t

(24)

Having obtained x(t), N

l

(t) 
an be readily determined, sin
e by the above arguments the

number of jobs at time t will be approximately (�

h

t

h

+ �

l

t)F (x(t)). Thus,

N

l

(t) = (�

h

t

h

+ �

l

t)F (x(t)) (25)

Finally, we obtain the inverse of x(t) whi
h we denote by

~

t(x). Thus

~

t(x(t)) = t. This

will be useful in obtaining the approximation for the expe
ted response time. Clearly

~

t(x)

is only de�ned for x > x

o

. Then Equation 24 gives

3

~

t(x) = t

h

�

h

(x)� 1

1� �

l

(x)

(26)

2

For the 
ase when �

l

= 0, we get �

h

(x(t)) = 1 +

t

t

h

3

For the 
ase when �

l

= 0, we get

~

t(x) = t

h

(�

h

(x)� 1)

11



4.3 Response times as a fun
tion of job size

To derive the expe
ted response time under SRPT, we �rst 
onsider a job of size less than

x

o

. For su
h a job we know that the expe
ted response time is a 
onstant, hen
e o(t

h

).

This holds whether the job arrives during the HIGH period or during the LOW period.

Consider a job of size x, x > x

o

. Suppose the job arrives during the HIGH period.

Then it will wait throughout the HIGH period, and approximately

~

t(x) time during the

LOW period. Given that the job arrives during the HIGH period, it will arrive uniformly

in the interval sin
e the arrival pro
ess is Poisson. Thus

E[T (x)jjob arrives during HIGH period℄

SRPT

=

1

2

t

h

+

~

t(x) (27)

Now 
onsider the 
ase when the job of size x, x > x

o

arrives during the LOW period.

Again, if the job arrives after time

~

t(x), then its will response time will be o(t

h

).

Finally, given that the job arrives during the low period between time 0 to

~

t(x), its

response time will be approximately

1

2

~

t(x).

The probability that a job arrives during the HIGH period is �

h

t

h

=(�

h

t

h

+ �

l

t

l

).

The probability that a job arrives during the interval [0;

~

t(x)℄ of the LOW period is

�

l

~

t(x)=(�

h

t

h

+ �

l

t

l

).

Thus the expe
ted response time for a job of size x � x

o

under SRPT will be

E[T (x)℄

SRPT

=

�

h

t

h

�

h

t

h

+ �

l

t

l

 

1

2

t

h

+

~

t(x) +

�

l

�

h

~

t

2

(x)

2t

h

!

(28)

Observe that when �

h

and �

l

are �xed E[T (x)℄ varies linearly with t

h

. However if the job

size is less than x

o

, we know that E[T (x)℄ is o(t

h

). Hen
e, for large t

h

the ratio of response

times for a job of size < x

o

to that of size > x

o

will tend to 0. Thus we will approximate

E[T (x)℄ by 0 for x < x

o

. We will show later in Se
tion 6 that this approximation is quite

good.

5 Comparison of PS and SRPT based on analyti
al results

In Se
tions 3 and 4 we derived the approximation for the expe
ted response time of a job

of size x under SRPT and PS for the HIGH/LOW model. These results are summarized in

Equations 28 and 19 respe
tively. It is diÆ
ult to 
ompare these two equations analyti
ally

for generally-distributed workloads, therefore in this se
tion we 
ompare Equations 28 and

19 evaluated on a parti
ular real-world workload. Although we only show results for this

parti
ular workload, we will make observations whi
h apply to more general workloads as

well, and we will dis
uss intuitions for why these results hold more generally. In Se
tion 7

we return to the dis
ussion of other workloads.
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Our workload assumes job sizes have a Bounded Pareto distribution. This distribution

is de�ned as follows:

Re
all a Pareto distribution with parameter �, is de�ned su
h that

Pr[X > x℄ � x

��

; where 0 < � < 2

The Bounded-Pareto distribution [11℄ is 
hara
terized by three parameters: �; the expo-

nent of the power law; k, the smallest possible job; and p, the largest possible job, The

probability density fun
tion for the Bounded Pareto B(k; p; �) is de�ned as:

f(x) =

�k

�

1� (k=p)

�

x

���1

k � x � p:

In this paper, we 
onsider the distribution B(k; p; �) obtained by keeping the mean �xed

(at 3000) and the maximum value �xed (at p = 10

10

and � = 1:5). These parameters


orrespond to typi
al values for Web workloads taken from [7℄. Throughout we normalize

the distribution by s
aling down the job sizes by a fa
tor of 3000, leaving the mean as 1.

We refer to this normalized distribution as B(� = 1:5).

Pareto and Bounded-Pareto distributions have been shown to be 
hara
teristi
 of the

job size distributions in many 
omputer workloads [18, 12, 7, 21℄. These distributions have

3 important properties:

1. De
reasing failure rate (Pareto) or mostly-de
reasing (Bounded Pareto).

2. In�nite varian
e (Pareto) or very high varian
e (Bounded Pareto).

3. The heavy-tailed property, whi
h we de�ne as: \A very small fra
tion of the largest

jobs (e.g., 1%) 
omprise more than half the total load."

We now 
ompare Equations 28 and 19 evaluated on our B(� = 1:5) distribution with

respe
t to two metri
s:

1. Number of jobs in system as a fun
tion of time (Se
tion 5.1).

2. Response time for a jobs of size x (Se
tion 5.2).

5.1 Number of jobs in system

We now 
onsider the number of jobs in the system as a fun
tion of time under PS and

SRPT. The number in system is an interesting pra
ti
al metri
. Consider as an example

a Web server whi
h servi
es its requests in SRPT order, as opposed to the traditional

PS servi
e order. The number of requests in the system 
orresponds to the number of

simultaneously open 
onne
tions in the Web server. The greater this number the more

13
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Figure 1: Analyti
 results: Number of jobs in system as a fun
tion of time under (a)

�

h

= 1:3 and (b) �

h

= 2 for the B(� = 1:5) distribution. Time 0-1000 
orresponds to the

HIGH period. For ea
h of the plots �

l

= 0 and the average load is 0.7.

overhead is required by the Web server. Furthermore, if this number gets too high, the

Web server may 
rash or simply stop a

epting requests.

Figure 1 shows the number of jobs as a fun
tion of time for various values of �

h

with

�

l

= 0, under SRPT and PS s
heduling for the B(1:5) distribution. Here t

h

= 1000

and t

l

is 
hosen su
h that the average load is 0.7. Observe that a value of 1000 on the

x-axis indi
ates the end of an HIGH period. Observe that the area under the 
urves is

proportional to the mean number of jobs in the system (hen
e to the mean response time).

We now state a few general observations based on Figure 1. For ea
h observation, we

provide intuition, and dis
uss why it should hold for more general workloads as well.

Observation 1 The mean number of jobs in the system under SRPT is signi�
antly less

than that under PS.

This is due to the fa
t that SRPT is known to always minimize the number of jobs in the

system (under all 
onditions) sin
e it always works on that job whi
h 
an be 
ompleted

most qui
kly.

Observation 2 Though still signi�
ant, the relative advantage of SRPT over PS (with

respe
t to number of jobs in the system) de
reases at higher values of �

h

. (See Figures 1a

and 1b).

This o

urs sin
e as �

h

grows very high, both PS and SRPT retain almost all jobs during

14



the HIGH period and thus the di�eren
e in their performan
e depends only on their

behavior during the low period.

Observation 3 SRPT re
uperates from overload faster than PS. Spe
i�
ally, the 
urve

for the number of jobs under SRPT during the LOW period appears 
onvex, while this

may not be true for PS.

This follows sin
e SRPT works on jobs with the smallest remaining size �rst, thus the rate

of 
learan
e of jobs is maximum in the beginning of the LOW period and then de
reases.

Also, sin
e PS timeshares among all the jobs, it somewhat delays getting jobs out at the

beginning of the LOW period. This 
an be observed in Figure 1b (right). Thus SRPT

not only a

umulates fewer jobs, but it also gets them out as qui
kly as possible.

Finally, a subtle, but important observation:

Observation 4 Given a �xed �

h

, the number in system in Figure 1 does not depend on

the average load (provided � < 1). In general, the average load � 
an be made arbitrarily

low or arbitrarily 
lose to 1 by 
hoosing t

l

a

ordingly. However, the the number of jobs

during the HIGH period or the LOW period will not 
hange.

This is an important departure from the usual M/G/1 queueing model in the sense that

the performan
e metri
 does not depend on the average load, but only on the load during

the overload period.

Finally, we �nd that the trends look similar for the 
ase when �

l

> 0.

4

Noti
e that

the number of jobs during the HIGH period is independent of �

l

. Hen
e N

h

(t) looks

identi
al for all values of �

l

. The only noti
eable di�eren
e is that that it takes a longer

time (stret
hed by 1=(1� �

l

)) during the LOW period for the number of jobs to go down

to zero.

5.2 Expe
ted Response Times as a fun
tion of job size

The point of this se
tion is to determine whether the large jobs \starve" under SRPT

s
heduling as 
ompared with PS s
heduling. We do this by observing the expe
ted response

time for large jobs.

Figure 2 shows the expe
ted response time as a fun
tion of job size under SRPT versus

PS for the B(� = 1:5) distribution, when �

l

= 0. The job size is expressed as a per
entile of

the job size distribution (where 100 per
entile indi
ates the very largest job). Note that due

to the 
hoi
e of the x-axis, the area under the PS (respe
tively, SRPT) 
urve 
orresponds

to the mean response time under PS (respe
tively, SRPT). In Figure 3 we 
onsider the


ase when �

l

= 0:5. However we use a 3 stage hyper-exponential approximation to B(1:5),

4

The plots for this 
ase are not in
luded for la
k of spa
e.
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Figure 2: Analyti
 results: Response times as a fun
tion of job size for (a) �

h

= 1:3,�

l

= 0

and (b) �

h

= 2, �

l

= 0. Both �gures assume the B(1:5) distribution. t

h

is assumed to be

1000, �

l

= 0 and t

l

is 
hosen su
h that the average load is 0.7.
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Figure 3: Analyti
 results: Response times as a fun
tion of job size under (a) �

h

= 1:3; �

l

=

0:5 and (b) �

h

= 2; �

l

= 0:5. Both �gures assume the 3 phase approximation to the B(1:5)

distribution. t

h

is 1000, and t

l

is 
hosen su
h that the average load is 0.7.
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in order to evaluate the response times (Re
all that for �

l

> 0, evaluating E[T (x)℄ for PS

requires the use of the Lapla
e Transform of the job size distribution).

5.2.1 Case when �

l

= 0

We �rst 
onsider the 
ase when �

l

= 0. The following observations hold for all plots in

Figure 2 and are easily explained:

Observation 5 Under SRPT jobs of size less than x

o

have an approximate response time

of 0 when 
ompared with t

h

.

Observation 6 Large jobs do not ne
essarily su�er under SRPT as 
ompared with PS

(as is 
ommonly believed). (See Figure 2.)

To see why this is the 
ase, observe that although large jobs do badly under SRPT,

they do almost equally badly under PS. The point is that the average amount of servi
e

re
eived by a large job under PS during a HIGH period is negligible 
ompared to its

size. Thus this job stays in the system throughout the HIGH period (sin
e its arrival).

Moreover it is among the last of the jobs to 
omplete during the LOW period, sin
e its

remaining size at the beginning of the LOW period is large 
ompared to other remaining

jobs.

The observations above make a very strong 
ase for SRPT. Not only is there a signi�-


ant improvement in the mean response time under SRPT, but this improvement does not


ome at the 
ost of starving large jobs.

Finally, we note (as in Observation 4) that the results above only depend on �

h

. In

parti
ular, they are not a 
onsequen
e of �xing the average load to a value of 0.7.

5.2.2 Case when �

l

> 0

Observation 7 The extent of starvation when �

l

> 0 is mu
h less than that when �

l

= 0.

To see why this is the 
ase, �rst observe that the growth rate of jobs during the HIGH

period is the same for both �

l

= 0 and �

l

= 0:5. Thus the di�eren
e in the response

times arises due to the behavior of the system during the LOW period. Observe that the

number of jobs is non-zero for a longer time (by a fa
tor of 1=(1 � �

l

)) during the LOW

period as 
ompared to the 
ase when �

l

= 0. Thus the poor behavior of PS with respe
t

to 
learing jobs out of the system as noted in Observation 3 is a

entuated for the 
ase

when �

l

> 0.
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6 Simulation Comparison

The dis
ussion in Se
tion 5 was based on analyti
al results obtained in Se
tions 3 and 4.

In this se
tion we 
ompare how well our approximations agree with the a
tual numbers

obtained by simulation.

We simulate PS and SRPT under the HIGH/LOW model for various distributions.

The goal of the simulation is two-fold.

1. To �gure out how large t

h

needs to be so that the analyti
al results mat
h simulation.

2. To �gure out the number of the HIGH/LOW 
y
les required (denoted by n), so that

the metri
s of interest averaged over these 
y
les 
onverge to their mean.

Figure 4 shows the response times as a fun
tion of the per
entile of job size under PS

and SRPT, both under theory and simulation. The job size distribution is the 3 stage

hyper-exponential approximation to B(1.5), with mean job size s
aled down to 1, whi
h

we denote by B

h

(1:5). The parameters t

h

and n are set to 1000 and 100 respe
tively.

Observe that for PS the approximation mat
hes simulation almost exa
tly. For SRPT the

approximation is 
lose ex
ept for the point at x

o

. We �nd that, as t

h

is made higher, the

simulation and analysis results grow 
loser for SRPT.
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Figure 4: Simulation results as 
ompared with analyti
al approximation results, �

h

=

2; �

l

= 0:5.

In general for all workload distributions we tested

5

, we found that our analyti
al

approximation results mat
h almost exa
tly with simulation when t

h

is large. We found

that simulation mat
hed analysis even for t

h

only about 100-1000 times the mean job size,

provided �

h

was not too 
lose too 1. For low variability distributions t

h

and n may be

lower. The 
omparison of simulation and analysis is an even 
loser mat
h when 
onsidering

the metri
 number in system as a fun
tion of time.

5

More plots not shown here for la
k of spa
e.
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7 SRPT vs. PS under more general workloads { Open prob-

lems

In Se
tion 5 we 
ompared the performan
e of SRPT vs. PS on a B(� = 1:5) distribution

under transient overload. We found that SRPT had two desirable properties: (1) It im-

proved signi�
antly upon PS with respe
t to mean response time, and (2) SRPT did not

treat large jobs worse than they would be treated under PS.

The point of this se
tion is to explore whether these desirable properties of SRPT also

translate to other distributions.

We �rst show that the desirable properties for low variability distributions as well. We

prove that for the exponential distribution (C

2

= 1), SRPT improves upon PS for every

job.

Observation 8 For an exponential with �

h

> 2 and �

l

= 0 every job has lower expe
ted

response time under SRPT as 
ompared with PS.

Proof:

Without loss of generality assume that the mean job size is 1. Then �

h

= �

h

, and

a = �

h

� 1. Re
all the expression for response time under PS,

E[T (x)℄

PS

= (1� e

�ax

)

t

h

2

+

Z

x

0

at

v

(x� z)e

�az

dz

Now using the expression for t

v

we note that the

L

t

v

(s) =

1

s

�

at

h

s� a

(1� �

h

L

F

r

(s))

Note that F

r

(x) = e

�x

, hen
e L

F

r

(x) =

1

s+1

.

Thus,

L

t

v

(s) =

at

h

s(s+ 1)

whi
h gives t

v

(y) = at

h

(1� e

�y

). Thus,

E[T (x)℄

PS

= (1� e

�ax

)

t

h

2

+ a

2

Z

x

0

t

h

(1� e

z�x

)e

�az

dz

E[T (x)℄

PS

= (a+

1

2

)t

h

+

1

2

a+ 1

a� 1

e

�ax

t

h

�

a

2

a� 1

e

�x

t

h

(29)

By Equation 28 we get,

E[T (x)℄

SRPT

= (a+ 1)t

h

Z

x

0

ye

�y

dy �

t

h

2
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Figure 5: No starvation for big jobs under Exponential job size distribution with �

h

=

2; �

l

= 0

whi
h gives,

E[T (x)℄

SRPT

= (a+

1

2

)t

h

� (a+ 1)(e

�x

+ xe

�x

)t

h

(30)

We now show that for a > 1, 8x, E[T (x)℄

PS

> E[T (x)℄

SRPT

.

To show that E[T (x)℄

PS

> E[T (x)℄

SRPT

, it suÆ
es to show that

a

2

a� 1

e

�x

�

a+ 1

2(a � 1)

e

�ax

< (a+ 1)(e

�x

+ xe

�x

)

Or equivalently, we must show that:

1

a� 1

e

�x

<

a+ 1

2(a� 1)

e

�ax

+ (a+ 1)xe

�x

1 < (a

2

� 1)x+

a+ 1

2

e

(�a+1)x

De�ne

g(x) = 1� (a

2

� 1)x�

a+ 1

2

e

(�a+1)x

Clearly g(0) = (1 � a)=2 whi
h is less than 0. g

0

(x) = (1 � a

2

)(1 � e

(�a+1)x

=2), whi
h is

less than 0, for x � 0. Thus g(x) < 0 for all x > 0, and the proof follows.

Figure 5 shows response time as a fun
tion of job size when the job size distribution is

Exponential when �

h

= 2 and �

l

= 0. The �gure shows that every job prefers SRPT to

PS in expe
tation and furthermore that the improvement in mean response time of SRPT

over PS is signi�
ant (a fa
tor of about 3, judging by the area under the 
urves). Observe

that in the above proof, we required that �

h

> 2. We now show that if �

h

is 
lose to 1,

then big jobs fair worse under SRPT as 
ompared with PS.
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Figure 6: Big jobs su�er under SRPT for Exponential job size distribution with �

h

=

1:1; �

l

= 0

Observation 9 For an exponential job size distribution with �

h

� 1 and �

l

= 0, big jobs

perform worse under SRPT as 
ompared with PS.

The proof is evident from Figure 6. We now provide some intuition for why the 
ase of

�

h

� 1 is bad for SRPT as 
ompared with PS with respe
t to large jobs.

Consider a job of size a little bigger than x

0

. If �

h

� 1, then there is a big di�eren
e

under SRPT vs. PS with respe
t to the remaining size on this job at the end of the HIGH

period. SRPT has a large remaining size (the original size of the job). In 
ontrast under

PS sin
e �

h

is low, big jobs re
eive quite a bit of servi
e during the high period, hen
e

their remaining size is small, and therefore response times in this 
ase are lower under PS

than SRPT (see Figure 6).

However even in the 
ase of �

h

� 1, we �nd that for the B(� = 1:5) distribution,

starvation is largely diminished.

Observation 10 When �

h

= 1:1, and the job size distribution is B(� = 1:5), only 0:06%

of jobs do worse under SRPT as 
ompared with PS, and only at most 20% worse.

To explain the above observation, we have to return to the heavy-tailed property, ex-

hibited by the B(� = 1:5) distribution. Re
all that the heavy-tailed property says that

very few of the largest jobs 
arry all the weight. For distributions with a heavy-tailed

property, the work re
eived by the very largest jobs under PS during the HIGH period

will be negligible 
ompared to their very large size. Thus these jobs perform 
omparably

under SRPT and PS. Hen
e no \starvation."

We leave it as an open problem to determine the exa
t 
onditions under whi
h SRPT

has desirable properties as 
ompared with PS. We 
onje
ture that these 
onditions are
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related to �

h

, and the nature of the job size distribution, in parti
ular the weight of its

tail, its overall range, and its varian
e.

8 Con
lusion

In this paper we propose a solution for 
oping with transient overload in systems. Our

proposal is that the traditional s
heduling poli
y used in systems (PS s
heduling) be

repla
ed by SRPT s
heduling of jobs. We 
onsider a HIGH-LOW workload model whi
h

alternates between a period of overload (HIGH) and a period of low load (LOW). We

obtain analyti
al approximations on the response time for a job of size x under the HIGH-

LOW model and other metri
s. Our analyti
al approximation results mat
h 
losely to

simulation.

We �nd the behavior of both SRPT and PS under the HIGH-LOW model to be quite

di�erent from that under a tradition M/G/1, � < 1 queue. For example, the main property

of PS { fairness (in the sense of the same mean slowdown for all jobs) { no longer holds

under the HIGH-LOW model.

We evaluate our analyti
al results on a distribution 
hara
teristi
 of today's 
omputer

workloads, and �nd that, for the HIGH-LOW model, SRPT improves upon PS for every

job size (in expe
tation), and that the improvement in mean response time 
an be quite

signi�
ant.

Our analysis sheds light on some general reasons for why SRPT performs well as 
om-

pared with PS under the HIGH-LOW model. Our analysis shows that PS is parti
ularly

ine�e
tive in dealing with periods of temporary overload. Due to its time-sharing nature,

it deteriorates the performan
e of all the jobs, whi
h is a
tually unfair to small jobs. More-

over, PS is parti
ularly slow at getting the system \ba
k to normal" on
e the overload has

disappeared. By 
ontrast, SRPT a

umulates far fewer jobs during the overload period,

and is also mu
h more eÆ
ient at getting them out on
e the overload period is over.

Our analysis sheds light on why SRPT performs well as 
ompared with PS even on large

jobs. The reason is that while it seems obvious that large jobs won't re
eive servi
e under

SRPT during the overload period, it turns out that they also don't re
eive mu
h servi
e

under PS during the overload period. This is parti
ularly true when the distribution has

a heavy-tailed property.

Our results have impli
ations for real world systems, where 
u
tuations in load are


ommon. Under PS s
heduling, these 
u
tuations 
an results in large buildups of jobs

whi
h 
ontinue to e�e
t the system for a long time. In SRPT, as we've shown, the e�e
t

of load 
u
tuations is mu
h less severe.
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