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Abstract

Approximating general distributions by phase-type (PH) distributions is a popular technique in stochastic anal-
ysis, since the Markovian property of PH distributions often allows analytical tractability. This paper proposes an
algorithm for mapping a general distribution, G, to a PH distribution, which matches the first three moments of G.
Efficiency of our algorithm hinges on narrowing the search space to a particular subset of the PH distributions, which
we refer to as Erlang–Coxian (EC) distributions. The class of EC distributions has a small number of parameters, and
we provide closed form solutions for these. Our solution applies to any distribution whose first three moments can
be matched by a PH distribution. Also, our resulting EC distribution requires a nearly minimal number of phases,
within one of the minimal number of phases required by any acyclic PH distribution.
© 2005 Elsevier B.V. All rights reserved.
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1. Motivation

There is a large body of literature on the topic of approximating general distributions by phase-type
(PH) distributions, whose Markovian properties make them far more analytically tractable. Much of this
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research has focused on the specific problem of finding an algorithm which maps a general distribution,
G, to a PH distribution, P, where P and G agree on the first three moments. Throughout this paper we
say that G is well represented by P if P and G agree on their first three moments. We choose to limit
our discussion in this paper to three-moment matching, because matching the first three moments of an
input distribution has been shown to be effective in predicting mean performance for variety of computer
system models [5,17,23,29]. However, three moments might not always suffice for every problem, and
we leave the problem of matching more moments to future work.

Moment matching algorithms can be evaluated along four different measures: (i) The number of mo-
ments matched: In general matching more moments is more desirable. (ii) The computational efficiency of
the algorithm: It is desirable that the algorithm have short running time. Ideally, one would like a closed
form solution for the parameters of the matching PH distribution. (iii) The generality of the solution:
Ideally the algorithm should work for as broad a class of distributions as possible. (iv) The minimality of
the number of phases: It is desirable that the matching PH distribution, P, have a small number of phases.
Recall that the goal is to find a P which can replace the input distribution G in some stochastic process
to model it as a Markov chain. Since it is desirable that the state space of this resulting Markov chain be
kept small, we want to keep the number of phases in P low.

This paper proposes moment matching algorithms which perform very well along all four of these
measures. This constitutes the primary contribution of the paper. Our solution matches three moments,
provides a closed form representation of the parameters of the matching PH distribution, applies to all
distributions which can be well represented by a PH distribution, and is nearly minimal in the number of
phases required.

The general approach in designing moment matching algorithms in the literature is to start by defining
a subset S of the PH distributions, and then match each input distribution G to a distribution in S.
The reason for limiting the solution to a distribution in S is that this narrows the search space and thus
improves the computational efficiency of the algorithm. Observe that n-phase PH distributions have Θ(n2)
free parameters (see Fig. 1), while S can be defined to have far fewer free parameters. One has to be
careful in defining the subset S, however. If S is too small, it may limit the space of distributions that
can be well represented. Also, if S is too small, it may exclude solutions with a minimal number of
phases.

In this paper we define a subset of PH distributions, which we call Erlang–Coxian (EC) distributions.
EC distributions have only six free parameters, which allows us to derive a closed form solution for these
parameters in terms of the input distribution. The set of EC distributions is general enough, however, that
for any distribution, G, that can be well represented by an n-phase acyclic PH distribution, there exists
an EC distribution, with at most n + 1 phases, that well represents G.

Fig. 1. The continuous time Markov chain whose absorption time defines a three-phase PH distribution.
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It is not clear whether restricting our search space to the set of acyclic PH distributions (as is used
throughout the literature) is limiting. While it is theoretically possible that the minimum phase solution
is cyclic, in practice we have not been able to find a situation where the minimal solution requires cycles,
and this question is left as an open problem. However, an acyclic PH distribution has a computational
advantage over a cyclic one, since the generator matrix of the underlying Markov chain of an acyclic
PH distribution is upper triangular. Therefore, in some applications, one might prefer an acyclic PH
distribution with more phases to a cyclic PH distribution with less phases. Thus, in this paper, we limit
our focus to the set of acyclic PH distributions.

To prove that our moment matching algorithm results in a nearly minimal number of phases, we need
to know the minimal number of phases needed to well represent an input distribution by a PH distribution.
As a secondary contribution, this paper provides a formal characterization of the set of distributions that
are well represented by an n-phase acyclic PH distribution, for each n = 1, 2, 3, . . .. This characterization
is used to prove the minimality of the number of phases used in our moment matching algorithms.

2. Overview of key ideas and definitions

We start with some definitions that we use throughout the paper.

Definition 1. A PH distribution is the distribution of the absorption time in a continuous time Markov
chain. A PH distribution, F, is specified by a generator matrix, TF , and an initial probability vector, �τF .

Fig. 1 shows a three-phase PH distribution, F, with �τF = (τ1, τ2, τ3) and

TF =
⎛
⎜⎝

−(λ12 + λ13 + λ14) λ12 λ13

λ21 −(λ21 + λ23 + λ24) λ23

λ31 λ32 −(λ31 + λ32 + λ34)

⎞
⎟⎠ .

There are n = 3 internal states. With probability τi we start in the ith state. The absorption time is the
sum of the times spent in each internal state before reaching the absorption state. Note that the absorbing
state (state 4) and the associated initial probability and transition rates are not present in �τF and TF .

An important subset of PH distributions is the set of acyclic PH distributions and the set of Coxian PH
distributions, which are defined as follows.

Definition 2. An acyclic PH distribution is a PH distribution with λij = 0 for all i > j. An n-phase
Coxian PH distribution is an n-phase acyclic PH distribution with τi = 0 for 2 ≤ i ≤ n and λij = 0 for
i + 1 < j ≤ n. An n-phase Coxian+ PH distribution is an n-phase Coxian distribution with τ1 = 1.

Note that any acyclic PH distribution can be represented by a Coxian PH distribution, based on the result
of Cumani [3].

In providing a simple representation and analysis of our closed form solution, it will be very helpful to
start by defining an alternative to the standard moments, which we refer to as normalized moments.

Definition 3. Let µF
k be the kth moment of a distribution F for k = 1, 2, 3. The normalized kth moment

mF
k of F for k = 2, 3 is defined to be mF

2 = µF
2 /(µF

1 )2 and mF
3 = µF

3 /µF
1 µF

2 .
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Notice the relationship between the normalized moments and the coefficient of variation CF and the

skewness γF of F: mF
2 = C2

F + 1 and mF
3 = νF

√
mF

2 , where νF = µF
3 /(µF

2 )3/2. (νF and γF are closely

related, since γF = µ̄F
3 /(µ̄F

2 )3/2, where µ̄F
k is the centralized kth moment of F for k = 2, 3.)

Definition 4. A distribution G is well represented by a distribution F if F and G agree on their first three
moments.

Definition 5. PH3 refers to the set of distributions that are well represented by a PH distribution.

It is known that a distribution G is in PH3 iff its normalized moments satisfy mG
3 > mG

2 > 1 [10]. Since
any nonnegative distribution G satisfies mG

3 ≥ mG
2 ≥ 1 [13], PH3 contains almost all the nonnegative

distributions.

Proposition 1. The set of nonnegative distributions are dense in PH3.

Definition 6. OPT(G) is defined to be the minimum number of phases in an acyclic PH distribution,
allowing a mass probability at zero, that well represents a distribution G.

2.1. Moment matching algorithms

Previous work on moment matching algorithms. Prior work has contributed a large number of moment
matching algorithms. While all of these algorithms excel with respect to some of the four measures
mentioned earlier, they all are deficient in at least one of these measures as explained below.

In cases where matching only two moments suffices, it is possible to achieve solutions that perform
very well along all the other three measures. Sauer and Chandy [21] provide a closed form solution for
matching two moments of a general distribution with squared coefficient of variation C2 > 0 (i.e. any
distribution in PH3). They use a two-phase hyper-exponential distribution for matching distributions
with C2 > 1 and a generalized Erlang distribution for matching distributions with C2 < 1. Marie [15]
provides a closed form solution for matching two moments of a general distribution with C2 > 0. He uses
a two-phase Coxian+ PH distribution for distributions with C2 > 1 and a generalized Erlang distribution
for distributions with C2 < 1.

If one is willing to match only a subset of distributions, then again it is possible to achieve solutions
that perform very well along the remaining three measures. Whitt [28] and Altiok [2] focus on the set
of distributions with C2 > 1 and sufficiently high third moment. They obtain a closed form solution for
matching three moments of any distribution in this set. Whitt matches to a two-phase hyper-exponential
distribution, and Altiok matches to a two-phase Coxian+ PH distribution. Telek and Heindl [25] focus on
the set of distributions with C2 ≥ 1/2 and various constraints on the third moment. They obtain a closed
form solution for matching three moments of any distribution in this set, by using a two-phase acyclic
PH distribution with no mass probability at zero.

Johnson and Taaffe [9,10] come closest to achieving all four measures. They provide a closed form
solution for matching the first three moments of any distribution G ∈ PH3. They use a mixed Erlang
distribution with common order. Unfortunately, this mixed Erlang distribution requires 2OPT(G) + 2
phases in the worst case.

In complementary work, Johnson and Taaffe [11,12] again look at the problem of matching the first
three moments of any distribution G ∈ PH3, this time using three types of PH distributions: a mixture of
Erlang distributions, a Coxian+ PH distribution, and a general PH distribution. Their solution is nearly
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minimal in that it requires at most OPT(G) + 2 phases. Unfortunately, their algorithm requires solving a
nonlinear programming problem and hence is computationally inefficient, requiring time exponential in
OPT(G).

Above we have described the prior work focusing on moment matching algorithms, which is the focus
of this paper. There is also a large body of work focusing on fitting the shape of an input distribution
using a PH distribution. Recent research has looked at fitting heavy-tailed distributions to PH distributions
[4,6,7,14,20,24]. There is also work which combines moment matching with the goal of fitting the shape
of the distribution [8,22]. The work above is clearly broader in its goals than simply matching three
moments. Unfortunately there is a tradeoff: obtaining a more precise fit requires more phases, and it can
sometimes be computationally inefficient [8,22].

The key idea behind our algorithm: The EC distribution. In all the prior work on computationally
efficient moment matching algorithms, the approach is to match a general input distribution G to some
subset, S, of the acyclic PH distributions. In this paper, our subset S is the EC distribution:

Definition 7. An n-phase Erlang–Coxian (EC) distribution is a convolution of an (n − 2)-phase Erlang
distribution, En−2, and a two-phase Coxian+ distribution possibly with mass probability at zero.

Fig. 2 shows the Markov chain whose absorption time defines an n-phase EC distribution. Below, an
N-phase Erlang distribution, EN , is also called an Erlang-N distribution.

We now provide some intuition behind the creation of the EC distribution. Recall that a Coxian+

PH distribution is very good for approximating a distribution with high variability. In particular, a two-
phase Coxian+ PH distribution is known to well represent any distribution that has high second and third
moments (any distribution G that satisfies mG

2 > 2 and mG
3 > (3/2)mG

2 ) [19]. However a Coxian+ PH
distribution requires more phases for approximating distributions with lower second and third moments.
For example, a Coxian+ PH distribution requires at least n phases to well represent a distribution G with
mG

2 ≤ (n + 1)/n for n ≥ 1 (see Section 3). The large number of phases needed implies that many free
parameters must be determined, which implies that any algorithm that tries to well represent an arbitrary
distribution using a minimal number of phases is likely to suffer from computational inefficiency.

By contrast, an n-phase Erlang distribution has only two free parameters and is also known to have
the least normalized second moment among all the n-phase PH distributions [1,16]. However the Erlang
distribution is obviously limited in the set of distributions which it can well represent.

By combining the Erlang distribution with the two-phase Coxian+ PH distribution, we can represent
distributions with all ranges of variability, while using only a small number of phases. Furthermore, the
fact that the EC distribution has a small number of parameters (n, p, λY , λX1, λX2, pX) allows us to obtain
closed from expressions for these parameters that well represent any given distribution in PH3.

Fig. 2. The Markov chain whose absorption time defines an n-phase EC distribution. The first box above depicts the Markov
chain whose absorption time defines an Erlang-N distribution, where N = n − 2, and the second box depicts the Markov chain
whose absorption time defines a two-phase Coxian+ PH distribution. Notice that the rates in the first box are the same for all
states.
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2.2. Characterizing PH distributions

We now turn to our second goal of the paper, namely characterizing the set of distributions that are
well represented by an n-phase acyclic PH distribution.

Definition 8. Let S(n) denote the set of distributions that are well represented by an n-phase acyclic PH
distribution for positive integer n.

All prior work on characterizing S(n) has focused on characterizing S(2)∗ , where S(2)∗ is the set of
distributions which are well represented by a two-phase Coxian+ PH distribution. Observe S(2)∗ ⊂ S(2).
Altiok [2] showed a sufficient condition for a distribution to be in S(2)∗ . More recently, Telek and Heindl
[25] expanded Altiok’s condition and proved the necessary and sufficient condition for a distribution to
be in S(2)∗ . While neither Altiok nor Telek and Heindl expressed these conditions in terms of normalized
moments, the results can be expressed more simply with our normalized moments:

Theorem 1 (Telek and Heindl [25]). G ∈ S(2)∗ iff G satisfies exactly one of the following three conditions:
(i) (9mG

2 − 12 + 3
√

2(2 − mG
2 )3/2)/mG

2 ≤ mG
3 ≤ 6(mG

2 − 1)/mG
2 and 3/2 ≤ mG

2 < 2, (ii) mG
3 = 3 and

mG
2 = 2, or (iii) (3/2)mG

2 < mG
3 and 2 < mG

2 .

In this paper, we will characterize S(n), for all integers n ≥ 2.
Our Characterization of PH distributions. While our goal is to characterize the set S(n), this character-

ization turns out to be ugly. One of the key ideas is that there is a set T (n) ⊃ S(n) which is very close to
S(n) in size, such that T (n) has a simple specification via normalized moments. Thus, much of the proofs
in our characterization revolve around T (n).

Definition 9. For integers n ≥ 2, let T (n) denote the set of distributions, F, that satisfy exactly one of the
following two conditions: (i) mF

2 > (n + 1)/n and mF
3 ≥ ((n + 2)/(n + 1))mF

2 , or (ii) mF
2 = (n + 1)/n

and mF
3 = (n + 2)/n.

The main contribution of our characterization of acyclic PH distributions is a derivation of the nested
relationship between S(n) and T (n) for all n ≥ 2. This relationship is illustrated in Fig. 3. Observe that
S(n) is a proper subset of S(n+1), and likewise T (n) is a proper subset of T (n+1) for all integers n ≥ 2. More
importantly, the nested relationship between S(n) and T (n) is formally characterized in the next theorem.

Theorem 2. For all integers n ≥ 2, S(n) ⊂ T (n) ⊂ S(n+1).

The property S(n) ⊂ T (n) is important because it will allow us to prove that the EC distribution produced
by our moment matching algorithm uses a nearly minimal number of phases. The property T (n) ⊂ S(n+1)

is important in completing our characterization of S(n). This property will follow immediately from our
construction of a moment matching algorithm.

2.3. Outline of paper

The first part of the paper will describe the characterization of S(n), which is covered primarily in
Section 3. This characterization will be used in the second part, which involves the construction of
moment matching algorithms (Sections 4–7). Our moment matching algorithms depend on properties
of EC distributions, which will be discussed in depth in Section 4. In Sections 5–7, we present three
variants of closed form solutions, Simple, Complete, and Positive, each of which uses at most
OPT(G) + 1 phases but achieves slightly different goals. The Simple solution (see Section 5) has the
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Fig. 3. (a) The nested structure of S(n) and T (n): solid lines delineate S(n) (which is irregular) and dashed lines delineate T (n)

(which is regular—has a simple specification). (b) Set T (n) is depicted as a function of the normalized moments. T (n) sets are
delineated by solid lines, which include the border, and dashed lines, which do not include the border (n = 2, 3, 32). Observe
that all possible nonnegative distributions lie within the region delineated by the two dotted lines: m2 ≥ 1 and m3 ≥ m2.

advantage of simplicity and readability; however it does not work for all distributions in PH3 (although
it works for almost all). The Complete solution (see Section 6) is defined for all the input distributions
in PH3, and the number of phases used in the Complete solution is no more than those used in the
Simple and Positive solutions for any distribution. In the Simple and Complete solution, the
matching EC distribution can have mass probability at zero (p < 1). In some applications, however, it
is desirable that the matching PH distribution has no mass probability at zero. The Positive solution
(see Section 7) has no mass probability at zero (p = 1), and is defined for almost all distributions in PH3.

3. Characterizing phase type distributions

Set S(n) is characterized by Theorem 2: S(n) ⊂ T (n) ⊂ S(n+1) for all n ≥ 2. In this section we prove the
first part of the theorem.

Lemma 1. For all integers n ≥ 2, S(n) ⊂ T (n).

The second part, T (n) ⊂ S(n+1), follows immediately from the construction of the Complete solution
(see Corollary 3 in Section 6).

We begin by defining the ratio of the normalized moments.

Definition 10. The ratio of the normalized moments of a distribution F, rF , is defined as rF = mF
3 /mF

2
and is also referred to as the r-value of F.

A nice property of the r-value is that it is insensitive to the mass probability at zero.

Proposition 2. Let Z be a mixture of two distributions, X and O, where X is a nonnegative distribution
with µX

1 > 0 and O is the distribution of the degenerate random variable V ≡ 0. Then, rZ = rX.

Proof. Let Z(·), X(·), and O(·) be the (cumulative) distribution functions of Z, X, and O, respectively.
Then, there exists 0 < p < 1 such that Z(·) = pX(·) + (1 − p)O(·). Therefore, by definition,
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rZ = (pµX
3 )(pµX

1 )

(pµX
2 )2

= (µX
3 )(µX

1 )

(µX
2 )2

= rX. �

Below, unless otherwise stated, we denote the (cumulative) distribution function of a distribution, X, by
X(·). Below, we use the notation O repeatedly.

Definition 11. Let O denote the distribution of the degenerate random variable V ≡ 0.
Note that, using the normalized second moment and the r-value, T (n) can be redefined as the set of
distributions, F, that satisfy exactly one of the following two conditions:

(i) mF
2 >

n + 1

n
and rF ≥ n + 2

n + 1
, or

(ii) mF
2 = n + 1

n
and rF = n + 2

n + 1
.

To show S(n) ⊂ T (n), consider an arbitrary distribution, X ∈ S(n). By definition of S(n), there exists an n-
phase acyclic PH distribution, P, that well represents X. Thus, X ∈ T (n) iff P ∈ T (n). Hence, it suffices to
prove that all n-phase acyclic PH distributions are in T (n). This can be shown by proving the two properties
of the Erlang-n distribution: (i) the set of Erlang-n distributions has the least normalized second moment
among all the n-phase (acyclic) PH distributions and (ii) the Erlang-n distribution has the least r-value
among all the n-phase acyclic PH distributions. Note that the Erlang-n distribution, En, has

m
En

2 = n + 1

n
and rEn = n + 2

n + 1
.

Property (i) of the Erlang-n distribution immediately follows from the prior work by Aldous and Shepp
[1] and O’Cinneide [16], who prove that the set of Erlang-n distributions is the unique class of n-phase
PH distributions with the least second moment among all the n-phase PH distributions with a fixed first
moment. Thus, all that remains is to prove property (ii).

Our proof makes use of the recursive structure of PH distributions and shows that an n-phase Erlang
distribution has no greater r-value than any n-phase acyclic PH distribution. The key idea is that any
acyclic PH distribution, P, can be seen as a mixture of the convolutions of exponential distributions, and
one of the convolutions of exponential distributions has no greater r-value than P. This allows us to relate
the minimal convolution to an Erlang distribution when all the rates of the exponential distributions are
the same. The following lemma provides the key property of the r-value used in our proof.

Lemma 2. Let Z(·) = ∑n
i=1 piXi(·), where n ≥ 2 and Xi are nonnegative distributions with µ

Xi

1 > 0 for
1 ≤ i ≤ n. Then, there exists i ∈ {1, . . . , n} such that rZ ≥ rXi .

Proof. We prove the lemma by induction on n. Without loss of generality, we let rX1 ≥ · · · ≥ rXn .
Base case (n = 2): Let v = µ

X2
1 /µ

X1
1 and w = µ

X2
2 /µ

X1
2 . Then,

rZ − rX2 = p2
1r

X1 + p1p2r
X1v + p1p2r

X2w2/v + p2
2r

X2w2

(p1 + p2w)2
− rX2

≥ (p2
1 + p1p2v + p1p2w

2/v + p2
2w

2 − (p1 + p2w)2)rX2

(p1 + p2w)2
= p1p2(w − v)2rX2

v(p1 + p2w)2
≥ 0,

where the first inequality follows from rX1 ≥ rX2 .
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Inductive case: Suppose that the lemma holds for n ≤ k. When n = k + 1, Z can be seen as a mixture
of two distributions, Y (·) = (1/(1 − pk+1))

∑k
i=1 piXi(·) and Xk+1(·). When rXk+1 ≤ rZ, the lemma holds

for n = k + 1. When rXk+1 > rZ, we have rY ≤ rZ by the base case. By the inductive hypothesis, there
exist i ∈ {1, . . . , k} such that rY ≥ rXi . Thus, the lemma holds for n = k + 1. �

We are now ready to prove that an n-phase Erlang distribution has no greater r-value than any n-phase
PH distribution, which completes the proof of Lemma 1.

Lemma 3. The Erlang distribution has the least r-value among all the acyclic PH distribution with a
fixed number of phases, n, for all n ≥ 1.

Proof. We prove the lemma by induction on n.
Base case (n = 1): Any one-phase PH distribution is a mixture of O and an exponential distribution,

and the r-value is always 3
2 .

Inductive case: Suppose that the lemma holds for n ≤ k. We show that the lemma holds for n = k + 1
as well.

Consider any (k + 1)-phase acyclic PH distribution, G, which is not an Erlang distribution. We first
show that there exists a PH distribution, F1, with rF1 ≤ rG such that F1 is the convolution of an exponential
distribution, X, and a k-phase PH distribution, Y. The key idea is to see any PH distribution as a mixture
of PH distributions whose initial probability vectors, �τ, are base vectors. For example, the three-phase
PH distribution, G, in Fig. 1, can be seen as a mixture of O and the three 3-phase PH distribution, Gi

(i = 1, 2, 3), whose parameters are �τG1 = (1, 0, 0), �τG2 = (0, 1, 0), �τG3 = (0, 0, 1), and TG1 = TG2 =
TG3 = TG. Proposition 2 and Lemma 2 imply that there exists i ∈ {1, 2, 3} such that rGi ≤ rG. Without
loss of generality, let rG1 ≤ rG and let F1 = G1; thus, rF1 ≤ rG. Note that F1 is the convolution of an
exponential distribution, X, and a k-phase PH distribution, Y.

Next we show that if F1 is not an Erlang distribution, then there exists a PH distribution, F2, with
no greater r-value (i.e. rF2 ≤ rF1 ). Let Z be a mixture of O and an Erlang-k distribution, Ek, (i.e. Z(·) =
pO(·) + (1 − p)Ek(·)), where p is chosen such that µZ

1 = µY
1 and mZ

2 = mY
2 . There always exists such a

Z, since the Erlang-k distribution has the least m2 among all the PH distributions (in particular m
Ek

2 ≤ mY
2 )

and m2 is an increasing function of p (mZ
2 = m

Ek

2 /(1 − p)). Also, observe that, by Proposition 2 and the
inductive hypothesis, rZ ≤ rY . Let F2 be the convolution of X and Z, i.e. F2(·) = X(·) ∗ Z(·). We prove
that rF2 ≤ rF1 . Let y = µY

1 /µX
1 . Then,

rF1 = (rX(mX
2 )2 + 3mX

2 y + 3mY
2 y2 + rY (mY

2 )2y3)(1 + y)

(mX
2 + 2y + mY

2 y2)2

≥ (rX(mX
2 )2 + 3mX

2 y + 3mZ
2 y2 + rZ(mZ

2 )2y3)(1 + y)

(mX
2 + 2y + mZ

2 y2)2
= rF2,

where the inequality follows from µZ
1 = µY

1 , mZ
2 = mY

2 , and rZ ≤ rY .
Finally, we show that an Erlang distribution has the least r-value. F2 is the convolution of X and Z,

and it can also be seen as a mixture of X and a distribution, F3, where F3(·) = X(·) ∗ Ek(·). Thus, by
Lemma 2, at least one of rX ≤ rF2 and rF3 ≤ rF2 holds. When rX ≤ rF2 , the r-value of the Erlang-(k + 1)
distribution, rEk+1 , is smaller than rF2 , since rEk+1 < rX ≤ rF2 . When rX > rF2 (and hence rF3 ≤ rF2 ),
rEk+1 ≤ rF3 ≤ rF2 can be proved by showing that rF3 is minimized when µX

1 = µ
Ek

1 /k. Let y = µX
1 /µ

Ek

1 .
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Then,

rF3 = (rEk (mEk

2 )2 + 3m
Ek

2 y + 6y2 + 6y3)(1 + y)

m
Ek

2 + 2y + 2y2
,

where rEk = (k + 2)/(k + 1) and m
Ek

2 = (k + 1)/k. Therefore,

∂rF3

∂y
= 2k(k + 1)(6ky2 + 6ky + k − 1)(

k+1
k

+ 2y + 2y2
) (

y − 1

k

)
.

Since k > 1, rF3 is minimized at y = 1/k. �

4. EC distribution

The purpose of this section is two-fold: to provide a detailed characterization of the EC distribution,
and to discuss a narrowed-down subset of the EC distributions with only five free parameters (λY is fixed)
which we will use in our moment matching algorithms. Both results are summarized in Theorem 3.

To motivate the theorem in this section, suppose one is trying to match the first three moments of a
given distribution, G, to a distribution, P, which is the convolution of exponential distributions (possibly
with different rates) and a two-phase Coxian+ PH distribution. If G has sufficiently high second and
third moments, then a two-phase Coxian+ PH distribution alone suffices and we need no exponential
distributions (recall Theorem 1). If the variability of G is lower, however, we might try appending an
exponential distribution to the two-phase Coxian+ PH distribution. If that does not suffice, we might
append two exponential distributions to the two-phase Coxian+ PH distribution. Thus, if G has very
low variability, we might be forced to use many phases to get the variability of P to be low enough.
Therefore, to minimize the number of phases in P, it seems desirable to choose the rates of the expo-
nential distributions so that the overall variability of P is minimized. One could express the append-
ing of each exponential distribution as a “function” whose goal is to reduce the variability of P yet
further.

Definition 12. Let X be an arbitrary distribution. Function φ maps X to φ(X) such that φ(X) = Y ∗ X,
the convolution of Y and X, where Y is an exponential distribution whose rate, λY , is chosen so that the
normalized second moment of φ(X) is minimized. Also, φi(X) = φ(φi−1(X)) refers to the distribution
obtained by applying function φ to φi−1(X) for integers i ≥ 1, where φ0(X) = X.

Observe that, when X is a k-phase PH distribution, φN(X) is a (k + N)-phase PH distribution.
In theory, function φ allows each successive exponential distribution which is appended to have a

different rate. Surprisingly, however, the following theorem shows that if the exponential distribution Y
being appended by function φ is chosen so as to minimize the normalized second moment of φ(X) (as
specified by the definition), then the rate of each successive Y is always the same and is defined by the
simple formula shown in the theorem below. The theorem also characterizes the normalized moments of
φi(X).
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Theorem 3. Let φi(X) = Yi ∗ φi−1(X), and let λYi
be the rate of the exponential distribution Yi for

i = 1, . . . , N. Then,

λYi
= 1

(mX
2 − 1)µX

1
(1)

for i = 1, . . . , N. The normalized moments of ZN = φN(X) are:

m
ZN

2 = (mX
2 − 1)(N + 1) + 1

(mX
2 − 1)N + 1

,

m
ZN

3 = mX
2 mX

3

((mX
2 − 1)(N + 1) + 1)((mX

2 − 1)N + 1)2

+ (mX
2 − 1)N(3mX

2 + (mX
2 − 1)(mX

2 + 2)(N + 1) + (mX
2 − 1)2(N + 1)2)

((mX
2 − 1)(N + 1) + 1)((mX

2 − 1)N + 1)2
.

Proof. We first characterize Z = φ(X) = Y ∗ X, where X is an arbitrary distribution with a finite third
moment and Y is an exponential distribution. The normalized second moment of Z is

mZ
2 = mX

2 + 2y + 2y2

(1 + y)2
,

where y = µY
1 /µX

1 . Observe that mZ
2 is minimized when y = mX

2 − 1, i.e. when

µY
1 = (mX

2 − 1)µX
1 . (2)

Observe that when µY
1 is set at this value, mZ

2 and mZ
3 satisfy:

mZ
2 = 2 − 1

mX
2

and mZ
3 = 1

mX
2 (2mX

2 − 1)
mX

3 + 3(mX
2 − 1)

mX
2

.

We next characterize Zi = φi(X) = Yi ∗ φi−1(X) for 2 ≤ i ≤ N. By the above expression on mZ
2 and mZ

3 ,
the second part of the theorem on the normalized moments of ZN follows from solving the following
recurrence equations (where we use bi to denote m

φi(X)
2 and Bi to denote m

φi(X)
3 ):

bi+1 = 2 − 1

bi

and Bi+1 = Bi

bi(2bi − 1)
+ 3(bi − 1)

bi

.

The solutions for these recurrence equations are

bi+1 = (b1 − 1)(i + 1) + 1

(b1 − 1)i + 1
,

Bi+1 = b1B1 + (b1 − 1)i(3b1 + (b1 − 1)(b1 + 2)(i + 1) + (b1 − 1)2(i + 1)2)

((b1 − 1)(i + 1) + 1)((b1 − 1)i + 1)2

for all i ≥ 0. These solutions can be verified by substitution. This completes the proof of the second part
of the theorem.
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The first part of the theorem on λYi
is proved by induction. When i = 1, (1) follows from (2). Assume

that (1) holds for i = 1, . . . , k. Let Zk = φk(X). By the second part of the theorem, which is proved above,

m
Zk

2 = (mX
2 − 1)(k + 1) + 1

(mX
2 − 1)k + 1

.

Thus, by (2),

1

λYk+1

= µ
Yk+1
1 = (mZk

2 − 1)µZk

1 = (mX
2 − 1)µX

1 . �

Corollary 1. If X ∈ {F |2 < mF
2 }, then Z = φN(X) ∈ {F |(N + 2)/(N + 1) < mF

2 < (N + 1)/N}.

Proof. By Theorem 3, mZ
2 is a continuous and monotonically increasing function of mX

2 . Thus, the infi-
mum and the supremum of mZ

2 are given by evaluating mZ
2 at the infimum and the supremum, respectively,

of mX
2 . When mX

2 → 2, mZ
2 → (N + 2)/(N + 1). When mX

2 → ∞, mZ
2 → (N + 1)/N. �

Corollary 1 suggests the number, N, of times that function φ must be applied to X to bring mZ
2 into a

desired range, given the value of mX
2 .

Concluding remarks: Theorem 3 implies that the parameter λY of the EC distribution can be fixed
without excluding the distributions of lowest variability from the set of EC distributions. Below, we
constrain λY as follows:

λY = 1

(mX
2 − 1)µX

1
, (3)

and derive closed form representations of the remaining free parameters (n, p, λX1, λX2, pX), where these
free parameters will determine mX

2 and µX
1 , which in turn gives λY by (3). Obviously, at least three degrees

of freedom are necessary to match three moments. As we will see, the additional degrees of freedom
allow us to accept all input distributions in PH3 and to use a smaller number of phases.

5. Simple closed form solution

The Simple solution is the simplest among our three closed form solutions, and the Complete and
Positive solutions will be built upon the Simple solution. Before, presenting the Simple solution,
we first classify the input distributions. This classification is used, in particular, to determine the number
of phases used in the Simple solution.

5.1. Preliminaries

Set T (n), which is used to characterize set S(n), gives us a sense of how many phases are necessary
to well represent a given distribution. It turns out that it is useful to divide set T (n) into smaller subsets
to describe the closed form solutions compactly. Roughly speaking, we divide the set T (n) \ T (n−1) into
three subsets, Un−1, Mn−1, and Ln−1 (see Fig. 4). More formally,
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Fig. 4. A classification of distributions. The dotted lines delineate the set of all nonnegative distributions G (mG
3 ≥ mG

2 ≥ 1).

Definition 13. We define Ui, Mi, and Li as follows:

U0 = {F |mF
2 > 2 and mF

3 > 2mF
2 − 1}, M0 = {F |mF

2 > 2 and mF
3 = 2mF

2 − 1},

L0 =
{

F

∣∣∣∣32mF
2 < mF

3 < 2mF
2 − 1

}
,

and

Ui =
{

F

∣∣∣∣ i + 2

i + 1
< mF

2 <
i + 1

i
and mF

3 > 2mF
2 − 1

}
,

Mi =
{

F

∣∣∣∣ i + 2

i + 1
< mF

2 <
i + 1

i
and mF

3 = 2mF
2 − 1

}
,

Li =
{

F

∣∣∣∣ i + 3

i + 2
mF

2 < mF
3 <

i + 2

i + 1
mF

2 and mF
3 < 2mF

2 − 1
}

for nonnegative integers i. Also, let U+ = ∪∞
i=1Ui, M+ = ∪∞

i=1Mi, L+ = ∪∞
i=1Li, U = U0 ∪ U+, M =

M0 ∪ M+, and L = L0 ∪ L+. Further, let

Û = {F |mF
3 > 2mF

2 − 1} ⊃ U, M̂ = {F |mF
3 = 2mF

2 − 1} ⊃ M,

L̂ = {F |mF
3 < 2mF

2 − 1} ⊃ L.

Observe that Û includes both U and borders between Ui and Ui+1, for i ≥ 0, that are not included in U.
The sets Û, M̂, and L̂ provide a classification of distributions into three categories such that, for any

distribution X, X and φ(X) lie in the same category.

Lemma 4. Let ZN = φN(X) for integers N ≥ 1. If X ∈ Û (respectively, X ∈ M̂, X ∈ L̂), then ZN ∈ Û
(respectively, ZN ∈ M̂, ZN ∈ L̂).

Proof. We prove the case when N = 1. The lemma then follows by induction. Let Z = φ(X). By Theorem
3, mX

2 = 1/(2 − mZ
2 ), and

mZ
3 > (respectively, =, and <)

2mX
2 − 1

mX
2 (2mX

2 − 1)
+ 3

mX
2 − 1

mX
2

> (respectively, =, and <) 2mZ
2 − 1,

where the last equality follows from mX
2 = 1/(2 − mZ

2 ). �
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By Corollary 1 and Lemma 4, we get the following corollary.

Corollary 2. Let ZN = φN(X) for N ≥ 0. If X ∈ U0 (respectively, X ∈ M0), then ZN ∈ UN (respectively,
ZN ∈ MN).

The corollary implies that for any G ∈ UN ∪ MN , G can be well represented by an (N + 2)-phase EC
distribution with no mass probability at zero (p = 1), because, for any X ∈ U0 ∪ M0, X can be well
represented by a two-phase Coxian+ PH distribution, and hence ZN = φN(X) can be well represented
by an (N + 2)-phase EC distribution. (Recall UN,MN,LN ⊂ TN+1.) Below, it will also be shown that
for any G ∈ LN , G can be well represented by an (N + 2)-phase EC distribution with positive mass
probability at zero (p < 1).

By Corollary 2, it is relatively easy to provide a closed form solution for the parameters (n, p, λX1,
λX2, pX) of an EC distribution, Z, so that a given distribution is well represented by Z. Essentially, one
just needs to find an appropriate N and solve Z = φN(X) for X in terms of normalized moments, which
is immediate since N is given by Corollary 1 and the normalized moments of X can be obtained from
Theorem 3.

5.2. The Simple solution

We are now ready to present the Simple solution. The Simple solution assumes that G ∈ PH−
3 ,

where PH−
3 = U ∪ M ∪ L. Observe PH−

3 includes almost all distributions in PH3. Only the borders
between the Ui’s, Mi’s, and Li’s are not included. The solution differs according to the classification of
the input distribution G. When G ∈ U0 ∪ M0, a two-phase Coxian+ PH distribution suffices to match
the first three moments. When G ∈ U+ ∪ M+, G is well represented by an EC distribution with p = 1.
When G ∈ L, G is well represented by an EC distribution with p < 1.

(i) If G ∈ U0 ∪ M0 (see Fig. 5(i)), then a two-phase Coxian+ PH distribution suffices to match the first
three moments, i.e., p = 1 and n = 2 (N = 0). The parameters (λX1, λX2, pX) of the two-phase

Fig. 5. Ideas in the Simple solution. Let G be the input distribution. (i) If G ∈ U0 ∪ M0, G is well represented by a two-
phase Coxian+ PH distribution X. (ii) If G ∈ U+ ∪ M+, G is well represented by φN (X), where X is a two-phase Coxian+ PH
distribution. (iii) If G ∈ L, G is well represented by Z, where Z has a distribution function pφN (X)(·) + (1 − p)O(·).
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Coxian+ PH distribution are chosen as follows [25]:

λX1 = u + √
u2 − 4v

2µG
1

, λX2 = u − √
u2 − 4v

2µG
1

, and pX = λX2(λX1µ
G
1 − 1)

λX1
, (4)

where

u = 6 − 2mG
3

3mG
2 − 2mG

3

and v = 12 − 6mG
2

mG
2 (3mG

2 − 2mG
3 )

. (5)

(ii) If G ∈ U+ ∪ M+ (see Fig. 5(ii)), Corollary 1 specifies the number of phases needed:

n = min
{

k

∣∣∣∣mG
2 >

k

k − 1

}
=
⌊

mG
2

mG
2 − 1

+ 1

⌋
. (6)

Let N = n − 2. Next, we find the two-phase Coxian+ PH distribution X ∈ U0 ∪ M0 such that G is
well represented by Z = φN(X). By Theorem 3, this can be achieved by setting

mX
2 = (n − 3)mG

2 − (n − 2)

(n − 2)mG
2 − (n − 1)

, mX
3 = βmG

3 − α

mX
2

, and µX
1 = µG

1

(n − 2)mX
2 − (n − 3)

,

where

α = (n − 2)(mX
2 − 1)(n(n − 1)(mX

2 )2 − n(2n − 5)mX
2 + (n − 1)(n − 3)),

β = ((n − 1)mX
2 − (n − 2))((n − 2)mX

2 − (n − 3))2.

Thus, we set p = 1, and the parameters (λX1, λX2, pX) of X are given by case (i), using mX
2 , mX

3 , and
µX

1 , specified above.
(iii) If G ∈ L (see Fig. 5(iii)), then let

p = 1

2mG
2 − mG

3

, mW
2 = pmG

2 , mW
3 = pmG

3 , and µW
1 = µG

1

p
.

Observe that p satisfies 0 ≤ p < 1. Also, since W is in M, W can be chosen as an EC distribution
with no mass probability at zero. If W ∈ M0, the parameters of W are provided by case (i), using
mW

2 , mW
3 , and µW

1 , specified above. If W ∈ M+, the parameters of W are provided by case (ii),
using mW

2 , mW
3 , and µW

1 , specified above. G is then well represented by distribution Z, where Z(·) =
pW(·) + (1 − p)O(·).

5.3. Analyzing the number of phases required

The number of phases used in the Simple solution is characterized by the following theorem.

Theorem 4. The Simple solution uses at most OPT(G) + 1 phases to well represent a distribution
G ∈ PH−

3 .
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Proof. Since S(n) ⊂ T (n) (by Lemma 1), it suffices to prove that if a distribution G ∈ T (n), then at most
n + 1 phases are needed. If G ∈ T (n) ∩ (U ∪ M), then mG

2 > (n + 1)/n. Also, if G ∈ T (n) ∩ L, then

mW
2 = mG

2

2mG
2 − 1

>
n + 1

n
.

Thus, by (6), the EC distribution provided by the Simple solution has at most n + 1 phases. �

6. Complete closed form solution

The Complete solution improves upon the Simple solution in the sense that it is defined for all the in-
put distributions G ∈ PH3. Fig. 6 shows an implementation of the Complete solution. Below, we elabo-

Fig. 6. An implementation of the Complete solution, defined for G ∈ PH3.
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rate on the Complete solution, and prove an upper bound on the number of phases used in the Complete
solution.

6.1. The Complete solution

Consider an arbitrary distribution G ∈ PH3. Our approach consists of two steps, the first of which
involves constructing a baseline EC distribution, and the second of which involves reducing the number
of phases in this baseline solution. If G ∈ PH−

3 , then the baseline solution used is simply given by the
Simple solution. Also, if G /∈ PH−

3 but G ∈ L̂ ∪ M̂, then it turns out that the Simple solution could
be defined for this G, and this gives the baseline solution. If G /∈ PH−

3 but G ∈ Û, then to obtain the
baseline EC distribution we first find a distribution W ∈ PH−

3 such that rW = rG and mW
2 < mG

2 and then
set p such that G is well represented by distribution Z, where Z(·) = pW(·) + (1 − p)O(·) (see Fig. 7(a)).
The parameters of the EC distribution that well represents W are then obtained by the Simple solution.

To reduce the number of phases used in the baseline EC distribution, we exploit the subset of two-
phase Coxian+ PH distributions that are not used in the Simple solution. The Simple solution is
based on the fact that a distribution X is well represented by a two-phase Coxian+ PH distribution when
X ∈ U0 ∪ M0. In fact, a wider range of distributions are well represented by the set of two-phase Coxian+

PH distributions. In particular, if X is in set S = {F |3/2 ≤ mX
2 ≤ 2 and mX

3 = 2mX
2 − 1}, then X is well

represented by a two-phase Coxian+ PH distribution (see Fig. 7(a)). By exploiting two-phase Coxian+

PH distributions in S ∪ U0 ∪ M0, the Complete solution reduces the number of phases used. The above
ideas lead to the following solution:

(i) If G ∈ Û ∩ PH−, then the Simple solution provides the parameters (n, p, µX1, µX2, pX).
(ii) If G ∈ Û ∩ (PH−)c (see Fig. 7(a)), where (PH−)c denotes the complement of PH−, then let

n = 2mG
2 − 1

mG
2 − 1

, (7)

Fig. 7. Ideas in the Complete solution. (a) A distribution G not in PH−
3 is well represented by an EC distribution W mixed

with O. (b) The set of two-phase Coxian+ PH distributions used is extended.
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and

mW
2 = 1

2

(
n − 1

n − 2
+ n

n − 1

)
, mW

3 = mG
3

mG
2

mW
2 , and µW

1 = µG
1

pW

,

where pW = mW
2 /mG

2 . G is then well represented by Z, where Z(·) = pWW(·) + (1 − pW )O(·),
where W is an EC distribution with normalized moments mW

2 and mW
3 and mean µW

1 . The parameters
(n, µX1, µX2, pX) of W are provided by the Simple solution. Also, set p = pW , since W has no
mass probability at zero.

(iii) If G ∈ M̂ ∪ L̂, then the Simple solution provides the parameters (n, p, µX1, µX2, pX), except that
(6) is replaced by

n =
⎧⎨
⎩
⌈

mG
2

mG
2 −1

⌉
− 1 if mG

2 ≤ 2,

2 otherwise.
(8)

The next theorem guarantees that parameters obtained with the reduced n are still feasible.

Theorem 5. If X is in set {F |3/2 ≤ mF
2 ≤ 2 and mF

3 = 2mF
2 − 1}, then Z = φN(X) is in set {F |(N +

1)/N ≤ mF
2 ≤ N/(N − 1) and mF

3 = 2mF
2 − 1}.

Proof. By Theorem 3, mZ
2 is a continuous and monotonically increasing function of mX

2 , Thus,

N + 1

N
≤ mZ

2 ≤ N

N − 1

follows by simply evaluating mZ
2 at the lower and upper bound of mX

2 . mZ
3 = 2mZ

2 − 1 follows from
Lemma 4. �
6.2. Analyzing the number of phases required

The number of phases used in the Complete solution is characterized by the following theorem.

Theorem 6. The Complete solution uses at most OPT(G) + 1 phases to well represent any distribution
G ∈ PH3.

Proof. If G ∈ PH−
3 , the number of phases used in the Complete solution is at most that

used in the Simple solution, i.e. ≤ OPT(G) + 1. Thus, it suffices to prove that if a distribution
G ∈ (T (n) \ T (n−1)) ∩ (PH−

3 )c, then at most n + 1 phases are needed (recall S(n) ⊂ T (n) by Lemma 1).
If G ∈ (T (n) \ T (n−1)) ∩ (PH−

3 )c ∩ Û, then mG
2 = n/(n − 1). Thus, by (7), the number of phases used is

n + 1. If G ∈ (T (n) \ T (n−1)) ∩ (PH−
3 )c ∩ (M̂ ∪ L̂), then the number of phases given by (8) is exactly

n, except for input distribution G with mG
2 ≥ 2 and rG = 3/2 (i.e. exponential distribution possibly

mixed with O) for which (8) gives 1. Thus, the number of phases used in the Complete solution for
G ∈ (PH−

3 )c ∩ (M̂ ∪ L̂) is OPT(G). �
Theorem 6 implies that any distribution in S(n) is well represented by an EC distribution of n + 1

phases. In the proof, we prove a stronger property that any distribution in T (n), which is a superset of S(n),
is well represented by an EC distribution of n + 1 phases, which implies the following corollary.

Corollary 3. For all integers n ≥ 2, T (n) ⊂ S(n+1).
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7. Positive closed form solution

The Simple and Complete solutions can have mass probability at zero (i.e. p < 1). In some applica-
tions, mass probability at zero is not an issue. Such applications include approximating busy period distri-
butions in the analysis of multiserver systems [17] and approximating shortfall distributions in inventory
system analysis [26,27]. However, there are also applications where a mass probability at zero increases
the computational complexity or even makes the analysis intractable. For example, a PH/PH/1/FCFS
queue can be analyzed efficiently via matrix analytic methods when the PH distributions have no mass
probability at zero; however, no simple analytical solution is known when the PH distributions have
nonzero mass probability at zero.

The Positive solution is built upon the Complete solution, but does not have mass probability
at zero. The key idea in the design of the Positive solution is to match the input distribution either
by a mixture of an EC distribution (with no mass probability at zero) and an exponential distribution,
or by the convolution of an EC distribution (with positive mass probability at zero) and an exponential
distribution. The use of these types of distributions makes intuitive sense, since they can approximate
the EC distribution with mass probability at zero arbitrarily closely by letting the rate of the exponential
distributions approach infinity. Therefore, in this section, we extend the definition of the EC distribution
and use the extended EC distribution to well represent the input distribution.

Definition 14. An extended EC distribution has a distribution function either of the form pX(·) + (1 −
p)W(·) or of the form Z(·) ∗ X(·), where X is an EC distribution with no mass probability at zero; Z and
W are exponential distributions.

Note that the parameter n in an extended EC distribution denotes the number of phases in the EC portion
of the extended EC distribution. Therefore, the total number of phases in the extended EC distribution is
n + 1.

7.1. The Positive solution

The Positive solution is defined for almost all the input distributions in PH3. Specifically, it is
defined for all the distributions in

U ∪ M̂ ∪
{

F

∣∣∣∣rF �= 3

2
and mF

3 < 2mF
2 − 1

}
.

Although the Positive solution is not defined for a very small set (with measure 0) of input distributions,
this is not a problem in practice, since distributions lying in the very small subset can be perturbed to
move out of the subset. Fig. 8 shows an implementation of the Positive solution. Below, we elaborate
on the Positive solution, and prove an upper bound on the number of phases used in the Positive
solution.

When the input distribution G is in U ∪ M̂, the EC distribution produced by the Complete solution
does not have a mass probability at zero. When G is in {F |mF

3 < 2mF
2 − 1 and rF > 3

2 }, G can be well
represented by a two-phase Coxian+ PH distribution, whose parameters are given by (4) and (5). Below,
we focus on input distributions G ∈ {F |mF

3 < 2mF
2 − 1 and rF < 3

2 }.
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Fig. 8. An implementation of the Positive solution, defined for a distribution G ∈ U ∪ M̂ ∪ {F |rF �= 3/2 and mF
3 < 2mF

2 −
1}.

We first consider the first approach of using a mixture of an EC distribution (with no mass probability
at zero), X, and an exponential distribution, W, (i.e. λZ = ∞). Let

L̂N =
{

F

∣∣∣∣N + 3

N + 2
mF

2 < mF
3 ≤ N + 2

N + 1
mF

2 and mF
3 < 2mF

2 − 1
}

.

Given a distribution G ∈ L̂N , we seek mX
2 , mX

3 , 0 < p < 1, and w > 0 such that

N + 2

N + 1
≤ mX

2 <
N + 1

N
, (9)

mX
3 = 2mX

2 − 1, (10)

mG
2 = pmX

2 + 2(1 − p)w2

(p + (1 − p)w)2
, (11)

mG
3 = pmX

2 mX
3 + 6(1 − p)w3

(p + (1 − p)w)(pmX
2 + 2(1 − p)w2)

. (12)
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Note that (9) and (10) guarantee that we can find, via the Complete solution, an (N + 1)-phase EC
distribution, X, such that X has no mass probability at zero and has normalized moments mX

2 and mX
3 .

Let W be the exponential distribution with µW
1 = w/µX

1 . (11) and (12) guarantee that, by choosing µX
1

appropriately, G is well represented by a distribution Y, where Y (·) = pX(·) + (1 − p)W(·).
The following lemma provides conditions on the input distribution for which the first approach is

defined.

Lemma 5. Suppose

G ∈ L̂N and
(N + 1)mG

2 + (N + 4)

2(N + 2)
≤ rG

for N ≥ 1 (see Fig. 9(a)). Let

w = 2 − mG
2

4
(

3
2 − rG

) , p = (2 − mG
2 )2

(2 − mG
2 )2 + 4(2mG

2 − 1 − mG
3 )

,

mX
2 = 2w, and mX

3 = 2mX
2 − 1. Then, w > 0, 0 < p < 1, and conditions (9)–(12) are satisfied.

Proof. It is easy to check, by substitution, that conditions (10)–(12) are satisfied. It is easy to see
0 < p < 1, since mG

3 < 2mG
2 − 1. Also, mX

2 ≥ (N + 2)/(N + 1) implies w > 0. Thus, it suffices to prove
that condition (9) is satisfied.

We first consider the first inequality of condition (9). The assumption on rG in the lemma gives

3

2
− rG ≤ 3

2
− (N + 1)mG

2 + (N + 4)

2(N + 2)
= N + 1

N + 2

2 − mG
2

2
.

Fig. 9. Two regions in LN that input G can fall into under the Positive solution: (a) G is well represented by a mixture of an
EC distribution X and an exponential distribution W; (b) G is well represented by the convolution of an EC distribution X and an
exponential distribution Z.
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Therefore, since rG < 3/2, it follows that

mX
2 = 2w = 2 − mG

2

2

1
3
2 − rG

≥ N + 2

N + 1
.

We next consider the second inequality of condition (9). We begin by bounding the range of mG
2 for G

considered in the lemma. Condition G ∈ L̂N implies mG
2 ≥ (N + 2)/(N + 1). Also, if mG

2 > 2, then by
the assumption on rG in the lemma,

rG ≥ (N + 1)mG
2 + (N + 4)

2(N + 2)
>

2(N + 1) + (N + 4)

2(N + 2)
= 3

2
.

This contradicts rG < 3/2. Thus, mG
2 ≤ 2. So far, we derived the range of mG

2 as (N + 2)/(N + 1) <

mG
2 ≤ 2.
We prove mX

2 < (N + 1)/N in two cases: (i) (N + 1)/N ≤ mG
2 ≤ 2 and (ii) (N + 2)/(N + 1) ≤ mG

2 <

(N + 1)/N. (i) When (N + 1)/N ≤ mG
2 ≤ 2,

mX
2 = 2 − mG

2

2
(

3
2 − rG

) <
2 − N+1

N

2
(

3
2 − N+2

N+1

) = N + 1

N
.

The inequality follows frommG
2 < (N + 1)/N and rG ≤ (N + 2)/(N + 1). (ii) When (N + 2)/(N + 1) ≤

mG
2 < (N + 1)/N,

mX
2 = 2 − mG

2

2
(

3
2 − rG

) <
2 − mG

2

2
(

3
2 − 2mG

2 −1
mG

2

) = mG
2 <

N + 1

N
.

The inequality follows from

rG = mG
3

mG
2

<
2mG

2 − 1

mG
2

,

which follows from G ∈ L̂N . �
The key idea behind Lemma 5 is to fix some of the parameters so that the set of equations becomes

simpler and yet there exists a unique solution. The difficulty in finding closed form solutions is that we
are given a system of nonlinear equations with high degree (10)–(12), and the solutions are not unique.
By fixing some of the parameters, the system of equations can be reduced to have a unique solution.
We find that w given by Lemma 5 has nice characteristics. First, mX

2 leads to a very simple expression:
mX

2 = 2w. Second, with this expression of mX
2 , the expression involving rG is significantly simplified:

rG = 2prX + 3(1 − p)w

2(p + (1 − p)w)
.
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Now, solving (10)–(12) for p and w is a relatively easy task, and p and w immediately yield mX
2 and mX

3 .
Although Lemma 5 allows us to find a simple closed form solution, the set of input distributions defined
for Lemma 5 is rather small. This necessitates the second approach of using the convolution of an EC
distribution and an exponential distribution. Note that the second approach alone does not suffice, either.
Applying the first approach to a small set of input distributions and applying the second approach to the
rest of the input distribution lead to simpler closed form solutions by both approaches.

Next, we consider the second approach of using the convolution of an EC distribution (with mass
probability at zero) and an exponential distribution (i.e. λW = ∞). Given a distribution G ∈ L̂N (we
assume rG �= 3/2), we seek mX

2 , mX
3 , and z > 0 such that

mX
2 ≥ N + 2

N + 1
, (13)

mX
3 = N + 3

N + 2
mX

2 , (14)

mG
2 = mX

2 + 2z + 2z2

(1 + z)2
, (15)

mG
3 = mX

2 mX
3 + 3mX

2 z + 6z2 + 6z3

(mX
2 + 2z + 2z2)(1 + z)

. (16)

Note that (13) and (14) guarantee that we can find, via the Complete solution, an (N + 1)-phase EC
distribution, X, such that X has no mass probability at zero and has normalized moments mX

2 and mX
3 . Let Z

be the exponential distribution whose first moment is µZ
1 = zµX

1 , where µX
1 is the first moment of X. (15)

and (16) guarantee that, by choosing µX
1 appropriately, G is well represented by the convolution of X and Z.

The following lemma provides conditions on the input distribution for which the second approach is
defined.

Lemma 6. Suppose

G ∈ L̂N and rG <
(N + 1)mG

2 + (N + 4)

2(N + 2)

for N ≥ 1 (see Fig. 9(b)). If mG
2 = 2, we choose

z = mG
3 − 2N+3

N+2

3 − mG
3

, mX
2 = 2(1 + z), mX

3 = N + 3

N + 2
mX

2 .

If mG
2 �= 2, we choose

z =
mG

2

(
(mG

3 − 3) − 2N+3
N+2 (mG

2 − 2)
)

+ mG
2

√
(mG

3 − 3)2 + 8N+3
N+2 (mG

2 − 2)
(

3
2 − mG

3

mG
2

)
2N+3

N+2 (mG
2 − 2)2

,

mX
2 = (1 + z)(mG

2 (1 + z) − 2z), mX
3 = N + 3

N + 2
mX

2 .

Then, z > 0 and conditions (13)–(16) are satisfied.
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Proof. For each case, it is easy to check, by substitution, that conditions (14)–(16) are satisfied. Below,
we prove condition (13) and z > 0.

We begin with the first case, where mG
2 = 2. It is easy to see (13) is true if z > 0, since

mX
2 = 2(1 + z) > 2 >

N + 2

N + 1
.

Further, z > 0 if 2(N + 3)/(N + 2) < mG
3 < 3, which is true by G ∈ LN , rG < 3/2, and mG

2 = 2.
Below, we consider the case where mG

2 �= 2. We first prove z > 0 by showing that z is the larger solution
of the two solutions of a quadratic equation that has a unique positive solution. Observe that

mG
3 (mX

2 + 2z + 2z2)(1 + z) = mX
2 mX

3 + 3mX
2 z + 6z2 + 6z3 (by (16))

⇐⇒ mG
3 mG

2 (1 + z)3 = N+3
N+2 (mX

2 )2 + 3z(mX
2 + 2z + 2z2) (by (14) and (15))

⇐⇒ mG
3 mG

2 (1 + z)3 = N+3
N+2 (1 + z)2(mG

2 (1 + z) − 2z)2 + 3z(1 + z)2mG
2 (by (15))

⇐⇒ mG
3 mG

2 (1 + z) = N+3
N+2 (mG

2 (1 + z) − 2z)2 + 3zmG
2

Thus, z is a solution of the following quadratic equation: f (z) = 0, where

f (z) ≡ N + 3

N + 2
(mG

2 − 2)2z2 − mG
2

(
(mG

3 − 3) − 2
N + 3

N + 2
(mG

2 − 2)
)

z − (mG
2 )2

(
rG − N + 3

N + 2

)
.

Since the coefficient of the leading term, ((N + 3)/(N + 2))(mG
2 − 2)2, is positive and f (0) < 0, there

exists a unique positive solution of f (z) = 0.
Second, we show mX

2 ≥ (N + 2)/(N + 1). We consider two cases: (i) mG
2 ≥ 2 and (ii) mG

2 < 2. Case
(i) is easy to show. Suppose mG

2 ≥ 2. Observe that by (15),

mX
2 = z((mG

2 − 2)z + 2(mG
2 − 1)) + mG

2 .

Thus, if mG
2 ≥ 2, then mX

2 ≥ mG
2 ≥ (N + 2)/(N + 1). Below, we consider case (ii).

Suppose mG
2 < 2. Observe that

mX
2 = −(2 − mG

2 )z2 + 2(mG
2 − 1)z + mG

2 ,

again by (15). Thus, mX
2 ≥ (N + 2)/(N + 1) iff 0 < z ≤ z∗, where z∗ is a larger solution, x, of the

following quadratic equation: χ(x) = 0, where

χ(x) = −(2 − mG
2 )x2 + 2(mG

2 − 1)x + mG
2 − N + 2

N + 1
.

That is,

z∗ ≡
mG

2 − 1 +
√

N+2
N+1mG

2 − N+3
N+1

2 − mG
2

. (17)
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Thus, it suffices to show f (z∗) ≥ 0. Since χ(z∗) = 0, we obtain (z∗)2 as a linear function of z∗:

(z∗)2 = 2(mG
2 − 1)z∗ + mG

2 − N+2
N+1

2 − mG
2

.

By substituting this (z∗)2 into the expression for f (z∗), we obtain

f (z∗) = N + 3

N + 2
(2 − mG

2 )2

(
2(mG

2 − 1)z∗ + mG
2 − N+2

N+1

2 − mG
2

)

− mG
2

(
2
N + 3

N + 2
(2 − mG

2 ) − (3 − mG
3 )
)

z∗ − (mG
2 )2

(
rG − N + 3

N + 2

)

=
(

3mG
2 − 2

N + 3

N + 2
(2 − mG

2 ) − mG
2 mG

3

)
z∗ + 2

N + 3

N + 2
mG

2 − N + 3

N + 1
(2 − mG

2 )

− mG
2 mG

3 >

(
3mG

2 − 2
N + 3

N + 2
(2 − mG

2 ) − (mG
2 )2

(
(N + 1)mG

2 + (N + 4)

2(N + 2)

))
z∗

+ 2
N + 3

N + 2
mG

2 − N + 3

N + 1
(2 − mG

2 ) − (mG
2 )2

(
(N + 1)mG

2 + (N + 4)

2(N + 2)

)

= 2 − mG
2

2(N + 2)
((N + 1)(mG

2 )2 + 3(N + 2)mG
2 − 4(N + 3))z∗

− (N + 1)mG
2 − (N + 2)

2(N + 1)(N + 2)
((N + 1)(mG

2 )2 + (2N + 6)mG
2 − 4(N + 3)),

where the inequality follows from the assumption on rG in the lemma. By substituting (17) into the last
expression, we obtain

f (z∗) = g(mG
2 ) + h(mG

2 )

√
(N + 2)mG

2 − (N + 3)

N + 1
,

where

g(mG
2 ) ≡ (N + 1)2(mG

2 )2 − (N − 3)(N + 2)mG
2 − 4(N + 3)

2(N + 1)(N + 2)
,

h(mG
2 ) ≡ (N + 1)(mG

2 )2 + 3(N + 2)mG
2 − 4(N + 3)

2(N + 2)
.

Since

g′(mG
2 ) = 2(N + 1)2

(
mG

2 − N + 2

N + 1

)
+ (N + 2)(N + 5) > 0
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for (N + 2)/(N + 1) ≤ mG
2 < 2, g(mG

2 ) and h(mG
2 ) are increasing functions of mG

2 in the range of (N +
2)/(N + 1) ≤ mG

2 < 2. Since

g

(
N + 2

N + 1

)
= 2

(N + 1)2(N + 2)
> 0 and h

(
N + 2

N + 1

)
= 2

N2 + 3N + 2
> 0,

we have g(mG
2 ) ≥ 0 and h(mG

2 ) ≥ 0 for (N + 2)/(N + 1) ≤ mG
2 < 2. This implies f (z∗) ≥ 0. �

7.2. Analyzing the number of phases required

The number of phases used in the Positive solution is characterized by the following theorem.

Theorem 7. The Positive solution uses at most OPT(G) + 1 phases to well represent any distribution
G ∈ U ∪ M̂ ∪ {F |rF �= 3/2 and mF

3 < 2mF
2 − 1}.

Proof. Since S(n) ⊂ T (n) (by Lemma 1), it suffices to prove that if a distribution G ∈ T (n), then at most
n + 1 phases are needed. When an input distribution G ∈ U ∪ M̂, the Positive solution is the same as
the Complete solution, and hence requires the same number of phases, which is at most OPT(G) + 1.
When G ∈ {F |rF > 3/2 and mF

3 < 2mF
2 − 1}, the number of phase used in the Positive solution is

2 = OPT(G). When G ∈ {F |rF < 3/2 and mF
3 < 2mF

2 − 1}, it is immediate, from the construction of
the solution, that the Positive solution requires at most one more phase than the Complete solution.
For this G, the Complete solution requires OPT(G) phases, and hence the Positive solution requires
OPT(G) + 1 phases. �

Finally, we remark that the Positive solution can be used as a building block for yet another solution,
ZeroMatching, that not only matches the first three moments of the input distribution but also matches
the mass probability at zero. Consider a distribution G whose mass probability at zero is q. Then, G can
be expressed as a mixture of O and a distribution F that does not have mass probability at zero. The
Positive solution can be used to match the first three moments of F by an extended EC distribution,
E. Now, a mixture of O and E, whose distribution function is qO(·) + (1 − q)E(·), matches the first three
moments and mass probability at zero of G. Observe that the ZeroMatching solution uses at most
OPT(G) + 1 phases.

8. Conclusion

In this paper, we propose a closed form solution for the parameters of a PH distribution, P, that well
represents a given distribution G. Our solution is the first that achieves all of the following goals: (i) the
first three moments of G and P agree, (ii) any distribution G that is well represented by a PH distribution
(i.e., G ∈ PH3) can be well represented by some P, (iii) the number of phases used in P is at most
OPT(G) + 1, (iv) the solution is expressed in closed form.

The key idea is the definition and use of EC distributions, which sew together a two-phase Coxian+

PH distribution and an Erlang distribution, each of which provides complementary properties. The set
of EC distributions includes minimal PH distributions, in the sense that for any distribution, G, that is
well represented by n-phase acyclic PH distribution, there exists an EC distribution, E, with at most
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n + 1 phases such that G is well represented by E. This property of the set of EC distributions is the
key to achieving the above goals (i)–(iii). Also, the EC distribution is defined so that it has only six free
parameters. This property of the EC distribution is the key to achieving the above goal (iv).

We provide a complete characterization of the EC distribution with respect to the normalized moments.
The analysis is an elegant induction based on the recursive definition of the EC distribution; the inductive
analysis is enabled by a solution to a nontrivial recursive formula. Based on the characterization, we
provide three variants of closed form solutions for the parameters of the EC distribution that well represents
the input distribution. The closed form solutions proposed in this paper have been largely implemented
and tested. The most recent implementation of the solutions is available at an online code repository:
http://www.cs.cmu.edu/∼osogami/code/.

Another contribution is a characterization of the set, S(n), of distributions that are well represented by
an n-phase acyclic PH distribution. We introduce two ideas that help in creating a simple formulation of
S(n). The first is the concept of normalized moments and their ratio, the r-value. The second is the notion
of T (n), which is a superset of S(n), is close to S(n) in size, and has a simple characterization via normalized
moments. The characterization of S(n) is used to prove the minimality of the number of phases used in
our moment matching solutions. This characterization also has practical use in its own right, as it allows
algorithm designers to determine how close their PH distribution is to the minimal PH distribution, and
provides intuition for coming up with improved algorithms. We have ourselves benefited from exactly
this point in this paper. Another benefit of characterizing S(n) is that some existing moment matching
algorithms, such as the nonlinear programming approach in [12], require knowing the number of phases,
n, in the minimal PH distribution. The current approach involves simply iterating over all choices for n
[12], whereas our characterization would immediately specify n.
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