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ABSTRACT
Scheduling policies that prioritize short jobs have received growing
attention in recent years. The class of SMART policies includes
many such disciplines, e.g. Shortest-Remaining-Processing-Time
(SRPT) and Preemptive-Shortest-Job-First (PSJF). In this work, we
study the delay distribution of SMART policies and contrast this
distribution with that of the Least-Attained-Service (LAS) policy,
which indirectly favors short jobs by prioritizing jobs with the least
attained service (age).

We study the delay distribution (rate function) of LAS and the
SMART class in a discrete-time queueing system under the many
sources regime. Our analysis in this regime (large capacity and
large number of flows) hinges on a novel two dimensional queue
representation, which creates tie-break rules. These additional rules
do not alter the policies, but greatly simplify their analysis. We
demonstrate that the queue evolution of all the above policies can
be described under this single two dimensional framework.

We prove that all SMART policies have the same delay distri-
bution as SRPT and illustrate the improvements SMART policies
make over First-Come-First-Served (FCFS). Furthermore, we show
that the delay distribution of SMART policies stochastically im-
proves upon the delay distribution of LAS. However, the delay dis-
tribution under LAS is not too bad – the distribution of delay under
LAS for most jobs sizes still provides improvement over FCFS.
Our results are complementary to prior work that studies delay-tail
behavior in the large buffer regime under a single flow.

1. INTRODUCTION
Recently there has been an increased focus on the scheduling

policies (disciplines) used in computer systems. With the goal
of improving user perceived delay, policies that bias towards jobs
with small sizes (service demands), e.g. SRPT and PSJF, are in-
creasingly being presented as alternatives to standard policies, e.g.
Processor-Sharing (PS) and FCFS. For example, variations of SRPT
have been shown to provide dramatic improvements for mean de-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMetrics/Performance’06, June 26–30, 2006, Saint Malo, France.
Copyright 2006 ACM 1-59593-320-4/06/0006 ...$5.00.

lay in web servers [8, 19], and other size based based policies have
been applied in an array of applications such as databases, super-
computing centers, and disks. Even in applications where the job
sizes are unknown, system designers have suggested policies such
as LAS1, which prioritizes jobs with small ages (attained service)
so that small jobs (which always have small ages) tend to have the
server to themselves. For example, in routers, variations of LAS
have been shown to dramatically reduce delay [17, 18].

Given the increased focus on the application of size based poli-
cies by practitioners, there has also been a growing amount of an-
alytic research studying policies that bias towards small jobs. The
focus of this work has been primarily on SRPT and LAS due to
the fact that SRPT is known to be optimal for mean delay [22],
and LAS is known to be optimal for mean delay among policies
that are blind to job sizes when the service distribution has a de-
creasing failure rate [20, 21]. However, SRPT and LAS are ide-
alized versions of the policies implemented in computer systems.
Implementation constraints force the use of more complex hybrid
policies in practice [19, 18, 13], though these hybrid policies still
obey the general heuristic of biasing towards small jobs. In order to
formalize this heuristic, the class of SMART policies was recently
introduced [25]. The SMART class includes SRPT and PSJF in
addition to other hybrid policies (excluding LAS), while still guar-
anteeing that the mean delay of any SMART policy is near optimal
under all service distributions. For a formal definition of SMART
see Section 5.

Recent studies of policies that prioritize small job sizes, such as
LAS, SRPT, and the SMART class, have focused on the delay expe-
rienced by a job of size k, W (k). The interest in W (k) is spurred
by the a desire to understand how the prioritization of small job
sizes affects the behavior of W (k) across jobs sizes, k. In particu-
lar, there are worries about the delay experienced by large k, which
are biased against. Much attention has been given to understanding
E[W (k)], the mean delay experienced by a job of size k, across k
[8, 17, 18, 24]; however far less is understood about the distribution
of W (k) under LAS and the SMART class.

The difficulty in direct analysis of the distribution of W (k) has
led researchers to study asymptotic scalings of the distribution. The
most common scaling is referred to as the large buffer large de-
viations framework, which studies the tail behavior of W (k), i.e.
Pr(W (k) > m), for large m in the GI/GI/1 queue [2, 5, 16].

1LAS is known in the literature under a variety of other names in-
cluding: Foreground-Background (FB) and Shortest-Elapsed-Time
first (SET).



In this framework, the tail of W (k) under LAS and the SMART
class have been shown to behave proportionally to a busy period
where the job size distribution is truncated at k. Under SMART
policies, jobs of size larger than k do not contribute to the busy
period; whereas under LAS jobs of size larger than k contribute k
to the busy period [11, 15, 14]. This is in contrast to the behavior
of FCFS, where the tail of W (k) is proportional to the tail of the
stationary workload for all k.

In this paper, we consider a different asymptotic scaling of the
distribution of W (k). Motivated by applications such as high traffic
web servers and routers that have enormous available bandwidth
and thousands of simultaneous flows, we consider the many sources
large deviations framework. The many sources framework scales
the number of arrival flows, the buffer size, and the service capacity
proportionally, as shown in Figure 1.

There are a number of interesting contrasts between the many
sources and large buffer regimes. One contrast is that, because the
many sources framework considers a very large number of flows, it
captures effects such as statistical multiplexing that the large buffer
framework does not. A second contrast is that it is possible to char-
acterize Pr(W (k) > m) for any finite delay m under the many
sources regime, with the caveat that this characterization is asymp-
totic in the service capacity. In contrast, the large buffer regime is
not asymptotic in the service capacity, but is asymptotic in m, and
thus can only characterize large delays but does so without scaling
the service capacity to infinity.

We believe that the many sources and large buffer scalings pro-
vide complementary views of the delay distribution, each of which
is useful in different settings. In particular, the “most likely way”
(the critical event in large deviations parlance) in which a large de-
lay occurs in the many sources framework is different from that in
the large buffer framework. In a typical web server, it is known that
file sizes are distributed as a truncated heavy-tailed distribution [1,
4]. With such a distribution, and with a single flow accessing a
server with moderate service capacity (a large buffer regime), the
most likely way in which files experience a large delay is due to
the arrival of a small number of very large jobs which “choke” the
server. On the other hand, in the many sources regime, the crit-
ical event that causes files to experience a large delay is a large
burst of arrivals (i.e. a moderate number of arrivals per flow from
a large number of flows). For example, a high traffic web server
with enormous bandwidth (typical large web-servers today handle
multi-Gbps traffic) that is accessed by a large number of flows can-
not be swamped by a handful of large arrivals from any single flow;
rather, the critical event is a burst of moderate sized (compared to
the scale of the server capacity) arrivals from a large number of
flows. Thus, the differing characterizations of the delay distribu-
tion provided by the many sources and large buffer regimes can
each prove useful depending on the application setting.

Summary of Contributions
We prove three main results under the many sources framework in
this paper. First, we prove that the decay rate of the delay experi-
enced by size k jobs is the same under all policies in the SMART
class (Theorem 1). Thus, we show that all SMART policies are
equivalent in the many sources framework. Second, we derive the
decay rate of the delay for a job of size k under LAS (Theorem 2).
Third, we prove that all SMART policies stochastically outperform
LAS with respect to delay for any job size (Corollary 3). Prior to
these results, very few scheduling policies have been analyzed in
the many sources framework. To the best of our knowledge, only
the decay rates of FCFS [3], a simple priority queueing system [7,
23], Generalized Processor Sharing [9], and SRPT [26] have been
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Figure 1: The many sources large deviation framework.

reported in literature.
Our results are enabled through the use of a new analytic frame-

work that we refer to as the two dimensional queueing framework.
This framework adds tie-break rules to policies in a way that does
not alter the asymptotic performance of the policies, but greatly
simplifies their analysis (see Section 4). The strength of this novel
framework is that it enables: (i) the study of policies that depend
on the job state (age and/or remaining size), as opposed to only the
queue length; and (ii) the study of a class of policies, as opposed
to only the analysis of individual policies. Using the two dimen-
sional queueing framework, we are able to conclude that the effect
of preemption becomes negligible under SMART policies in the
many sources regime, thus allowing us to treat the class as a more
tractable priority queuing discipline. For LAS, the two dimensional
queueing framework adds a secondary ordering scheme which al-
lows a more detailed snapshot of the queue state at any time, and
thus makes the system analysis tractable.

In order to explore the behavior of the decay rates that we derived
for the SMART class and LAS, we perform simulations and nu-
meric calculations in Section 7. Using simulations we illustrate that
the distribution of W (k) converges to the many sources asymptote
very quickly: convergence is achieved after only 20 flows. Consid-
ering that high traffic web servers and routers routinely have many
more than 20 simultaneous flows, this provides practical motivation
for the many sources scaling. Further, we use numeric calculations
to compare the decay rate of W (k) under SMART and LAS across
large and small job sizes, and to study the penalty LAS pays (com-
pared with SMART policies) for not using job sizes to prioritize.

2. PRELIMINARIES
In this section we will introduce the many sources framework,

which we will use throughout the paper. We consider a queueing
system with a single queue and a single server having stationary
and ergodic arrival and service processes, where the arrival and
service processes are independent of each other. The system op-
erates in discrete time, i.e. a batch of jobs arrive at the beginning
of each time slot and jobs are serviced at the end of each time slot.
The queue state is measured immediately after the service – just
before the arrivals of the next time slot. We further assume that
the possible sizes of the jobs are restricted to bounded multiples
of a unit size. Thus, we represent the set of possible job sizes
as M = {1,2,3,. . . .,M}. The assumption that the service distri-
bution is bounded is natural given the numerous studies that have
observed that file sizes at web servers typically follow a bounded,
highly variable distribution size[1, 4].

In the many sources framework, the number of arrival processes
is scaled along with the capacity of the system and the buffer size
as depicted in Figure 1. Formally, for each job size k ∈M, we as-
sume N independent, identically distributed processes. Further, we
assume independence between arrival processes of different sized
jobs. Notice that job arrivals from a single stream of any given size
can be correlated across time-slots.

Equivalently, this model can be represented as a job arrival pro-
cess that can be decomposed into independent arrival processes ac-



cording to the job size. We define AN (a, b) as the total number of
arrivals by all N arrival processes in the time-interval (a, b), where
a ≤ b2. For example, AN (0, 0) signifies the total number of ar-
rivals in time slot 0. We define AN

k (a, b) as the total number of
jobs of size k that arrive in the queue during time-interval (a, b).
Thus, the volume of size k arrivals arrivals is kAN

k (a, b). Further,
we have AN (a, b) =

PM
k=1 AN

k (a, b). We assume that the capac-
ity of the server, C, is scaled in proportion to the load, and at most
NC data can be service at any time slot. We assume the queue is
stable, i.e.

E

"
MX

i=1

iAN
i (0, 0)

#
< NC.

Our goal is to study the tail probability of conditional delay in
the many sources regime. The conditional delay, W (N)(k), is the
delay experienced by the last job with size k in an arrival burst to
a stationary system. The tail probability of delay, Pr(W (N)(k) >
m), is the probability that the last job of size k in the burst arriving
at time slot l does not leave the system by the end of time slot
l + m. It has been shown that, in the large deviation framework,
the tail probability of delay decays as

Pr(W (N)(k) ≥ m) = g(k, m)Ne−NIW (k,m),

under general conditions, where limN→∞− 1
N

log g(k, m)N = 0.
In other words, the most dominant trend of the tail probability is
the exponential decay IW (k, m), which is appropriately called the
decay rate. The decay rate of delay is defined as follows.

IW (k, m) = lim
N→∞

− 1

N
log Pr(W (N)(k) > m) (1)

Note that the delay distribution for a job of size k depends on the
capacity C, the threshold value m, the job size k, and the arrival
process, AN

k (a, b), i.e. the decay rates of the arrival process, which
has been well analyzed:

I
(a,b)
Ak

(x) = lim
N→∞

− 1

N
log Pr(AN

k (a, b) > Nx) (2)

Alternatively, (2) can be derived using the moment generating func-
tion of the random variable AN

k (a, b) as follows.

I
(a,b)
Ak

(x) = sup
θ

�
θx− Λ

(a,b)
Ak

(θ)
�

(3)

where Λ
(a,b)
Ak

(θ) = limN→∞ 1
N

log E
�
eθAN

k (a,b)
�

.

At this point, it is important to digress and observe the differ-
ence between (1) and the corresponding definition of the decay rate
of conditional delay,γ(W (k)), in the large buffer large deviations
framework:

γ(W (k)) = lim
m→∞

− 1

m
log Pr(W (k) > m) (4)

Observe that the large buffer framework only considers a single
arrival flow and derives the decay rate for m →∞, while the many
sources framework calculates the decay rate under a large number
of flows assumption (N →∞) for all m > 0.

Though our goal is to study the decay rate of delay, the direct
derivation is difficult, so we first consider the distribution of the
virtual delay. The virtual delay, V (N)(k), is the delay seen by a
fictitious (virtual) job that arrives at Qk, queue for size k jobs, at
the end of an arrival burst at t = 0 (given that the system started at
t = −∞). The event

n
V (N)(k) > m

o
corresponds to a fictitious

2The notation (a, b) refers to time slots {a, a + 1, . . . , b} .

job arriving at the end of an arrival burst during time slot 0 and not
departing the system until the mth time slot. Note that this setup
ensures that the system is stationary at the arrival of the virtual job.
To avoid confusion, we will refer to the delay as the actual delay
in order to distinguish it from the virtual delay. Observe that the
virtual delay is different from actual delay: for example, even when
there is no arrival the virtual delay can be measured, whereas the
actual delay is not defined. The decay rate of the virtual delay is
defined as:

IV (k, m) = lim
N→∞

− 1

N
log Pr(V (N)(k) > m) (5)

In our proofs, it will be necessary to have a more general defi-
nition of the decay rate than we have defined so far. Thus, for any
sequence of rare events HN , we define

I(H) = lim
N→∞

− 1

N
log Pr

�
HN

�
,

as the decay rate of a general sequence of events HN whose prob-
ability becomes increasingly small as the system scales.

3. RESULTS AND DISCUSSION
The main results in this paper are the derivations of the decay

rates for (i) the class of SMART policies and for (ii) LAS. In this
section we will present and briefly discuss these results. The deriva-
tions of the results are postponed to later sections.

3.1 SMART
Our first theorem describes the decay rate of the SMART class.

The SMART class, introduced in [25], is a class of disciplines that
all bias towards jobs that were originally small and/or have small
remaining service requirement. We defer the formal definition of
SMART to Section 5, and for now just state that SMART con-
tains many common policies, e.g. SRPT and PSJF, in addition
to a wide array of hybrid policies with more complicated priori-
tization schemes. One important motivation for working with the
class of SMART policies is to illustrate the wide range of policies
that behave like SRPT. We will show that, under the many sources
framework, all SMART policies behave equivalently; thus proving
a strong link between the behavior of SRPT and the SMART class.

Our analysis of SMART hinges on coupling the queue dynamics
of a SMART policy to the queue dynamics of a two-level priority
queueing system. A two-level priority queueing system consists
of a pair of queues (high/low priority), where jobs in the low pri-
ority queue are served in a FCFS manner only if the high priority
queue is empty. Using the two dimensional queueing framework,
we show the effect of any SMART policy is to partition the two di-
mensional collection of queues into three groups in any given time
slot: a set with higher priority, a set with lower priority, and a set
with unknown priority. This partition enables us to adapt the anal-
ysis for priority queues in order to analyze all SMART policies.
For this purpose, we define a preemptive priority queueing system
(PRI) where there are M queues, with jobs of original size k ar-
riving to queue-k. Queues corresponding to smaller packets are
granted higher priority over larger packets. Further, jobs can not
switch queues and each queue is served using FCFS.

THEOREM 1. Let ε > 0. For any k ∈ M, the decay rate of
delay for a size k job under any SMART policy, IW (k, m), satisfies

IVC−ε(k, m) ≤ IW (k, m) ≤ IVC (k, m), (6)

where IVµ(k, m) is the virtual decay rate of delay under a priority
queueing system, PRI, with capacity Nµ and

IVµ (k, m) = inf
T≥0

�
inf
~z:Z

{A<k(~z) + Ak}
�

, (7)



where condition Z states that
Pk

i=1 izi = µ(T +m+1). Further,

A<k(~z) =

k−1X
i=1

I
(−T,m)
Ai

(zi)

Ak = I
(−T,0)
Ak

(zk)

This theorem states that asymptotically (in the large capacity and
large number of flows regime), all SMART policies behave alike, in
that their delay decay rates are the same. In other words, for a job
of original size k and for any fixed integer m ≥ 0, we have that the
delay distribution for W

(N)
(k) is given by

P
�
W

(N)
(k) > m

�
= g(k, m)Ne−NI

W
(k,m),

where IW (k, m) is the same for all SMART policies. Thus, the
decay rate of any SMART policy is the same as that of SRPT, which
was derived in [26].

The decay rate in (7) appears complicated, but does have intu-
ition. It can be shown that in the many sources asymptote, the
decay rate depends on the “most likely” way that the arrival pro-
cesses deviate from their mean arrival rates in order to cause delay
exceeding m. Thus, the two infimums choose the most likely time
scale (T ) and partition of the overall arrival rate to job sizes (~z)
respectively. Then, inside the infimums, A<k(~z) and Ak character-
ize the delay caused to a size k job by jobs arriving over the time
interval (−T, m) with size < k and by jobs arriving over the time
interval (−T, 0) with size k.

To illustrate this intuition, we now consider the special case when
jobs are one of two sizes (1 or M ). For this special case, we can
provide simplified expressions which relate the delay distributions
of jobs to the arrival process statistics. As a baseline for compari-
son, we compare with the delay distribution of FCFS [3].

For FCFS, it follows from the results in [3] that

Pr(W (N)(k) > m) ∝ max
T≥0

Pr(D(N)(T ) > C(T + m + 1)) (8)

for k = 1 and k = M and where a ∝ b means that a and b have
the same decay rate. Here D(N)(T ) is the cumulative workload
(including both size 1 and size M jobs) that arrives to the server
over the time-interval (−T, 0), i.e.,

D(N)(T ) = AN
1 (−T, 0) + MAN

M (−T, 0)

Recall that the server capacity is C units per time-slot. The above
expression (8) states that the probability that a job of size 1 or M
experiences a delay of at least m is the same as the probability
that the cumulative arrival workload over a time interval of T + 1
slots exceeds the cumulative server capacity over a time interval of
T + m + 1 slots, for some fixed value of T. The maximizing value
of T in the RHS of (8) is sometimes referred to as the critical time
scale of the queue. Note that the decay rates for size 1 and M jobs
are the same, since the only difference is their service requirement
which is negligible in the large deviation framework.

Moving to SMART, it follows from Theorem 1 that

Pr(W (N)(k) > m) ∝ max
T≥0

Pr(E
(N)
k (T ) > C(T + m + 1)) (9)

where

E
(N)
k (T ) =

�
AN

1 (−T, 0), k = 1;
AN

1 (−T, m) + MAN
M (−T, 0), k = M .

Note that for size 1 jobs, the above is the “best possible” delay
distribution that can be achieved over the class of all work con-
serving policies. However, in the case of size k jobs for each fixed

T , E
(N)
M (T ) ≥ D(N)(T ), which immediately implies that the de-

lay of a job of original size M with SMART stochastically domi-
nates (i.e., is larger in a distributional-sense) the corresponding de-
lay with FCFS. However, for heavy-tailed arrivals, it can be shown
that this difference is small, of order O(1/M), by observing that
the decay rate of SMART matches that of SRPT, which has been
compared to FCFS in [26]. This means that in the large N and
M regime (i.e. large number of flows, and a large difference in
arriving job sizes), the delay experienced by a size M job is simi-
lar under FCFS and SMART, while size 1 jobs experience far less
delay under SMART than under FCFS.

3.2 Least Attained Service
LAS is a preemptive scheduling policy that shares the server

evenly among the jobs in the system with the least attained service
(age). Note that a newly arriving job always preempts the job (or
jobs) currently in service and retains the processor until one of the
following occurs: (i) the job departs, (ii) the next arrival appears, or
(iii) the job has obtained an amount of service equal to that received
by the job(s) preempted on arrival.

LAS is an important policy because it provides an approxima-
tion of SRPT in the case when job sizes (processing times) are not
known, which is especially relevant for applications such as routers
and operating systems where variations of LAS have been used in
practice [17, 18]. LAS can be viewed as an approximation of SRPT
because (i) small jobs need not queue behind large jobs and (ii) in
many cases the age of a job is a good indicator of its remaining size.
However, without use of job sizes, LAS cannot bias as strongly to-
wards small job sizes as SMART policies. Thus, our goal in study-
ing the decay rate of LAS is to understand the penalty LAS pays
for not using job sizes to prioritize.

THEOREM 2. Under Assumptions 1 and 2 (some reasonable
technical assumptions to be defined in Section 6.2), the decay rate
of delay for size k jobs under LAS, IŴ (k, m), is

IŴ (k, m) = inf
T≥0

�
inf
~y:Y

(A<k(~y) + Ak(~y) + A>k(~y))

�
, (10)

where condition Y states that
P

i∈k̂ iyi +kyk +
P

i∈ǩ(k−1)yi =

C(T + m + 1) with k̂{1, . . . , k − 1}, ǩ = {k + 1, . . . , M}, and
y
(1)
k + k−1

k
y
(2)
k = yk. Further,

A<k(~y) =

k−1X
i=1

I
(−T,m)
Ai

(yi)

Ak(~x) = I
(−T,0)
Ak

(y
(1)
k ) + I

(1,m)
Ak

(y
(2)
k )

A>k(~y) =
MX

j=k+1

I
(−T,m)
Ai

(yj)

Theorem 2 characterizes the delay distribution of LAS in the
many sources regime. Though the form of (10) is complicated,
we can obtain intuition for it. Again, the decay rate depends on
the “most likely” way that the arrival processes deviate from their
mean arrival rates in order to cause delay exceeding m. Thus, the
two infimums choose the most likely time scale (T ) and arrival
rates for each job size (~y), where yk is separated into the arrivals
before (y(1)

k ) and after (y(2)
k ) the tagged arrival. Then, inside the in-

fimums, A<k(~y), Ak(~y), and A>k(~y) characterize the contribution
to the delay of a size k job made by jobs with size < k, other jobs of
size k, and jobs of size > k arriving in the time interval (−T, m).
This intuition points out one key difference between the decay rates
of W (k) under SMART and LAS. While under LAS A>k(~y) char-
acterizes the effect of jobs with size larger than k, there is no such
term in the decay rate of SMART (see (7)).
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Figure 2: Two Dimensional Queueing Framework.

To illustrate the intuition of the above result, we will use the
special case when jobs are only of sizes 1 and M . For LAS, in the
special case when there only exist size 1 and M jobs, it follows
from Theorem 2 that

Pr(W (N)(k) > m) ∝ max
T≥0

Pr(F
(N)
k (T ) > C(T + m + 1)) (11)

where

F
(N)
k (T ) =

8<: AN
1 (−T, 0), k = 1;

AN
1 (−T, m) + MAN

M (−T, 0)
+(M − 1)AN

M (1, m), k = M .

Note, that for size 1 jobs, SMART and LAS are asymptotically
identical (i.e., the decay rates are the same). On the other-hand, for
size M jobs, observe that for each fixed T, F

(N)
M (T ) ≥ E

(N)
M (T ),

which immediately implies the delay of a job of original size M
with LAS stochastically dominates the corresponding delay with
SMART. Thus, the delay experienced by a size M job under LAS
is larger than that under SMART (in distribution). Thus it follows
that for the case where arriving jobs are one of two sizes (1 or M ),
LAS is uniformly worse than any SMART policy. We can prove the
following corollary using a simple extension of the above example.
The proof is omitted for space.

COROLLARY 3. Any SMART policy is uniformly better (for any
job size) than the LAS policy with respect to delay in the many
sources large deviation regime, i.e.

IW (k, m) ≥ IŴ (k, m),

where IW (k, m) and IŴ (k, m) are the delay decay rates of all
SMART policies and LAS respectively.

In Section 7, we will investigate the magnitude of the difference
between LAS and SMART as a function of the system load and the
job size distribution.

4. TWO DIMENSIONAL QUEUEING
FRAMEWORK

In order to analyze LAS and the class of SMART policies in
the many sources regime, we develop a new analysis framework
that we will refer to as the two dimensional queueing framework.
The two dimensional queueing framework is composed of two con-
cepts: discretization and ordering.

First, by discretization we reduce the problem to consider only
finite-sized jobs that are restricted to multiples of a unit size. More
importantly, we assume that the server services the jobs in discrete
amounts. For example, in this paper, we assume that the set of
possible job sizes is M = {1, 2, 3, . . . ., M} and that the service
occurs in unit size increments. The important consequence of dis-
cretization is that at any time slot, the distribution of the remaining
size of a job is discrete and finite. This results in a more tractable
description of the queue state.

The second important concept of the two dimensional queueing
framework is ordering. Many scheduling policies specify a scheme
of ordering (prioritization), in which the server considers some jobs
more important and services those first. FCFS orders jobs by their
time of arrival, PSJF by the job size (i.e., service requirement),
SRPT by the remaining size (i.e., remaining service requirement),
and LAS by the age (i.e., attained service). The two dimensional
queueing framework takes this concept of ordering one step fur-
ther by assigning a secondary ordering scheme to the previously
existing one. In other words, jobs are serviced in the order speci-
fied by the scheduling policy, but when there are multiple jobs with
the same priority, the secondary ordering scheme is used to select
the next job to serve. For example, let us consider the ordering
of “smaller job size first” as the secondary ordering for FCFS. In
this case, when multiple jobs arrive to the system at the same time
slot, smaller jobs are served before larger jobs. The importance of
the secondary ordering is that it further constrains the policy, thus
making the analysis more tractable, as we will see in the cases of
SMART and LAS.

We note that by applying discretization and ordering to LAS and
the policies in the SMART class, we are not altering the perfor-
mance of these policies in the asymptotic framework. The dis-
cretization and ordering are simply modeling aids. In particular,
we will use job size as a secondary ordering variable for LAS, but
this does not mean that LAS needs to know the size of a job, rather
that using the job size makes the analysis of LAS more tractable.

The term “two dimensional queueing framework” comes from
the observation that the state of all jobs in the system at any time
can be viewed as a two dimensional grid, where the y-axis is the
variable related to the original ordering and the x-axis is the vari-
able of the secondary ordering as shown in Figure 2. This setup
allows the scheduling policy to be analyzed as a two dimensional
priority queueing system.

5. SMART
We will now formally describe the SMART class and then prove

that the decay rate for all SMART policies matches that for SRPT.
Formally, SMART is defined as follows [25]. Denote jobs using

a, b, and c where job a has original size sa and remaining size ra.
SMART is defined to be the set of scheduling policies that obey the
following properties.

(i) Bias Property: If rb > sa, then job a has priority over job
b.

(ii) Consistency Property: If job a ever receives service while
job b is in the system, thereafter job a has priority over job b.

(iii) Transitivity Property: If an arriving job b preempts job c;
thereafter, until job c receives service, every arrival, a, with
size sa < sb is given priority over job c.

Notice that the Bias Property guarantees that SMART policies
favor “small” jobs, while the Consistency and Transitivity Proper-
ties enforce “coherency” in how priority is assigned over time.

The SMART class includes, for example, SRPT and PSJF. Fur-
thermore, it is easy to prove that the SMART class includes all
policies that assign to a job the product of its remaining size raised
to the ith power and its original size raised to the jth power (for
i, j > 0) and give priority to the job with lowest product. Such
policies can provide lower weighted response times in many cases
than SRPT. Further, the SMART class also includes a range of poli-
cies with more complicated priority schemes, even ones that do
not maintain a static priority structure, e.g., a SMART policy may
switch from using the SRPT rule to using the PSJF rule over time.
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Figure 3: Illustrations of the two dimensional queueing framework for SMART policies. The progression of a job between queues
while in the system is illustrated in (a). The priority structure for an incoming job is shown in (b) and for a partially served job is
shown in (c).

Despite its breadth, many policies are excluded from SMART e.g.
LAS and FCFS.

The SMART classification represents an emerging style of re-
search based on analyzing large groups of policies instead of in-
dividual disciplines in an attempt to add structure to the space of
scheduling policies that cannot be obtained through the analysis of
individual policies. Beyond this theoretical motivation for study-
ing classifications, the study of such classifications is important in
practice because system designers can never implement the ideal-
ized policies (such as SRPT) that are the focus of theoretical re-
search. By analyzing classifications of policies, the hope is that
theoretical results can be obtained for the unique, hybrid policies
that are actually implemented.

Note that SMART falls into the two dimensional queueing frame-
work very nicely. We arrange queues in a two dimensional grid
where the x-axis is the original size of the job and the y-axis is the
remaining size of the job (see Figure 3). A new job arrives to the
queues on the upper most diagonal strip, where the original size
and the remaining size are equal. The job then progresses through
the system by moving downward until the remaining size becomes
0. We denote by Qi,j , i ≥ j, the queue that contains all the jobs
that were originally of size i and have remaining size j. A job of
size k arrives at Qk,k, and then moves through Qk,k−1, Qk,k−2, ...,
Qk,1, Qk,0 as service is received. We denote Qi,j(t) as the volume
of Qi,j during time slot t. Additionally, we define Qi as the queue
containing all jobs of original size i and Qi(t) =

Pi
j=1 Qi,j(t)

similarly.
Within the two dimensional queueing framework, the proper-

ties in the definition of SMART specify a partial priority ordering
on the queues. For instance, the Consistency Property guarantees
that a job which has begun service can only be preempted by a
new arrival of jobs. Further, when considering a new arrival of a
tagged job, the Bias Property guarantees that all jobs with smaller
remaining size will have higher priority. However, the Bias Prop-
erty does not specify any ordering for jobs with equal original size
or equal remaining processing time. The spirit of the two dimen-
sional queueing framework is to provide a specific ordering in such
situations, thus we adjust the Bias Property as follows.

(i) Bias Property (2DQ): If rb ≥ sa, then job a has priority
over job b.

This adjustment guarantees that, among jobs with equal original
size, jobs with smaller remaining size are given higher priority, and
among jobs with equal remaining size, jobs with smaller original

size are assigned higher priority. Lastly, for jobs that have the same
original size and have the same remaining processing time, the jobs
are serviced using FCFS. Note that this change to the Bias Property
does not alter the performance of SMART in the asymptotic frame-
work, it is simply a modeling decision used to make the analysis
tractable.

Let us now consider the behavior of a size k job under a SMART
policy. Upon arrival, the job resides in Qk,k. By the Bias Prop-
erty (2DQ), the following queues have higher and lower priority
compared to Qk,k:

Higher Priority:
k[

i=1

k−1[
j=1

Qi,j , Lower Priority:
M[

i=k+1

M[
j=k

Qi,j (12)

This is illustrated in Figure 3. We denote the group of higher prior-
ity queues as area A and lower priority queues as area C. Note that,
there is an another area where the queues do not have any fixed pri-
ority order compared to Qk,k. Jobs in this area, B, can be serviced
before or after the size k job. Due to the priority scheme, area A
must be empty for the job in Qk,k to receive one unit of service.
As depicted in Figure 3, when a job receives service it moves down
the vertical line in the two dimensional queue and the priority ar-
eas change according to the position of the queue in which the job
resides. For the partially serviced size k job to receive service, all
queues in the corresponding area A, as depicted in Figure 3, must
be empty. In both the cases of an incoming size k job and partially
serviced size k job, the relative priority of queues in area B is un-
known. However, the volume of jobs in area B can be bounded by
the following observation, which will be used in the derivation of
the decay rate. The Consistency Property guarantees that a job in
service can be preempted only by a new arrival. Thus at every time
slot, at most one additional job can become partially serviced.

5.1 The decay rate of delay under SMART
We now derive the actual delay decay rate of SMART in the

many sources regime. We prove Theorem 1 by first considering the
virtual delay, Pr(V

(N)
(k) > m), for size k jobs then deriving the

actual delay, Pr(W
(N)

(k) > m).
Define IW (k, m) as the decay rate of the actual delay of a size

k job under SMART with total service rate NC. Let IV µ
(k, m)

denote the decay rate of the virtual delay of a size k job under
SMART with total service rate Nµ. For bounding purposes, we
consider the virtual delay of SMART where an additional size k
job is inserted before the virtual job, and denote it as IṼµ

(k, m).



LEMMA 4. For any k ∈M, under any SMART policy

IṼC
(k, m) ≤ IW (k, m) ≤ IV C

(k, m) (13)
PROOF. First, we derive the upper bound by showing

Pr
�
V

(N)
(k) > m|AN (0, 0) > 0

�
≤ Pr

�
W

(N)
(k) > m

�
(14)

Note that a virtual job (with size 0) need only to arrive at the front
of the queue to be fully serviced. Thus, (14) follows from the ob-
servation that, if a fictitious job did not leave the system (i.e. arrive
at the head of the queue) before time m, then the actual job did not
leave the queue. That is, the actual job did not even receive one unit
of service. Thus, the actual job is guaranteed to have not left the
system by time m. This queue state is depicted in Figure 4, where
the last job corresponds to the actual job. Thus, we have

− 1

N
log Pr

�
W

(N)
(k) > m

�
≤ − 1

N
log Pr

�
V

(N)
(k) > m|AN (0, 0) > 0

�
(15)

As N → ∞, (15) can be further upper bounded by IV C
(k, m)

using similar techniques to those in [23]. Finally,

− 1

N
log Pr

�
W

(N)
(k) > m

�
−→

N→∞
IW (k, m)

gives the upper bound.
To prove the lower bound, we add an extra size k job in front

of the virtual queue and consider the virtual delay, Ṽ (N)(k) . The
queue state is depicted in Figure 4. We prove the following inequal-
ity using a contra-positive argument..

Pr(W
(N)

(k) > m) ≤ Pr
�
Ṽ (N)(k) > m|AN (0, 0) > 0

�
(16)

The event
n

Ṽ (N)(k) ≤ m|AN (0, 0) > 0
o

is equivalent to the state-
ment that the virtual job leaves the system before time m. Note that
for a virtual job to leave the system, all that is required is for the
virtual job to reach the head of the queue. The virtual job reaches
the head of the queue when the extra job leaves the queue, i.e.,
the extra job gets one unit of service. The key observation is that,
the extra job need not be fully serviced, only partially serviced.
However, for the extra job to be even partially serviced, the last
job of the batch arrival must leave the system completely. This is
due to the secondary priority scheme introduced in the two dimen-
sional queueing framework: jobs with the same original size but
with smaller remaining sizes have higher priority. This last job in
the front of the virtual job is the job that represents the actual delay.
Thus, we have the followingn

Ṽ (N)(k) ≤ m|AN (0, 0) > 0
o
⇒
n

W
(N)

(k) ≤ m
o

where A ⇒ B denotes A implies B. This proves (16) by a contra-
positive argument. Thus we have

− 1

N
log Pr

�
Ṽ (N)(k) > m|AN (0, 0) > 0

�
≤ − 1

N
log Pr

�
W

(N)
(k) > m

�
.

As N → ∞, above equation can be lower bounded by IṼC
(k, m)

using similar arguments to [23]. Finally, noting the definition of
IW (k, m), completes the proof.

We are now ready to prove Theorem 1. Define B
N
(k,k)(a, b) as

the volume of potential service that jobs in Qk,k can receive in
interval (a, b) under SMART. Potential service corresponds to the
maximum amount of service that can be received if the correspond-
ing queue is never empty. Note that Qk,k does not include original
size k jobs that have received partial service.

conditional arrival: A(0,0)

last job

virtual job

conditional arrival: A(0,0)

last job

virtual job

(a)

conditional arrival: A(0,0)

last job

virtual job size k extra job

conditional arrival: A(0,0)

last job

virtual job size k extra job

(b)

Figure 4: Depiction of the queue state for the lower bound (a)
and upper bound (b) in the analysis of SMART.

PROOF. (of Theorem 1) First, we derive the lower bound on the
decay rate in (6) by finding an upper bound of Pr

�
Ṽ (N)(k) > m

�
and using Lemma 4.

Let us consider the virtual delay in SMART with the extra job,
i.e., Pr

�
Ṽ (N)(k) > m

�
. Observe that if the virtual delay with the

extra size k job exceeds m, then we have that the queue length at
time zero (i.e. Qk,k(0)) and the extra job is not served by time m.

In other words,
n

Ṽ (N)(k) > m
o
⇒
n

Qk,k(0) + k > B
N
(k,k)(1, m)

o
,

which results in

Pr
�
Ṽ (N)(k) > m

�
≤ Pr

�
Qk,k(0) + k > B

N
(k,k)(1, m)

�
(17)

From Loynes’ formula, we have

Pr
�
Qk,k(0) + k > B

N
(k,k)(1, m)

�
= Pr

�
sup
T≥0

h
kAN

k (−T, 0) + k −B
N
(k,k)(−T, m)

i
≥ 0

�
= Pr

�
kAN

k (−T ∗, 0)−B
N
(k,k)(−T ∗, m) + k ≥ 0

�
. (18)

Note that in addition to the volume of Qk,k (Qk,k(0)), k is added
in deriving (18) due to the construction of Ṽ . Also, −T ∗ is the
most recent time in the past such that Qk,k(−T ∗ − 1) = 0.

Now, we derive a lower bound on B
N
(k,k)(−T ∗, m), which will

in turn provide an upper bound of Pr(Ṽ (N)(k) > m). We make
use of the priority scheme of SMART in the two dimensional queue-
ing framework, which has been discussed above. An observation
was made that area A is higher priority compared to Qk,k, and
the queues in area B may or may not have higher priority. Thus
a simple lower bound on B̂N

(k,k)(−T ∗, m) is the available service
assuming that both areas A and B have higher priority. The volume
of service that area A requires can be derived using the fact that all
queues in area A are empty at time −T ∗ − 1, i.e., Q(i,j)(−T ∗ −
1) = 0, for all i ≤ k and j ≤ k − 1. The proof follows im-
mediately from Theorem 4.1 in [23], which is stated in the con-
text of priority queues. Additionally, the volume of service that
area B requires during interval (−T ∗, m) is upper bounded by
(T ∗+m+1)(M−1). This is due to the observation that at most a
single partially serviced job can occur in a time slot, and the worst
partially serviced job is of size M − 1. Thus B

N
(k,k)(−T ∗, m) is

lower bounded as follows.

B
N
(k,k)(−T ∗, m) ≥ NC(T ∗ + m + 1)−

kX
i=1

k−1X
j=1

Q(i,j)(−T ∗ − 1)

−
k−1X
i=1

iAN
i (−T ∗, m)− (T ∗ + m + 1)(M − 1)

= NC(T ∗ + m + 1)−
k−1X
i=1

iAN
i (−T ∗, m)

−(T ∗ + m + 1)(M − 1). (19)

From (17), (18), and (19), we have

Pr
�
Ṽ (N)(k) > m

�



≤ Pr
h
kAN

k (−T ∗, 0) + k −B
N
(k,k)(−T ∗, m) > 0

i
≤ Pr

"
kAN

k (−T ∗, 0) +

k−1X
i=1

iAN
i (−T ∗, m)

−NC(T ∗ + m + 1) + (T ∗ + m + 1)(M − 1) + k > 0]

≤ Pr

"
kAN

k (−T ∗, 0) +

k−1X
i=1

iAN
i (−T ∗, m)−NC(T ∗ + m + 1)

+2(T ∗ + m + 1)M > 0]

≤ Pr

"
kAN

k (−T ∗, 0) +

k−1X
i=1

iAN
i (−T ∗, m)

−N

�
C − 2M

N

�
(T ∗ + m + 1) > 0

�
≤ Pr

24 [
T≥0

 
kAN

k (−T, 0) +

k−1X
i=1

iAN
i (−T, m)

−N

�
C − 2M

N

�
(T + m + 1) > 0

��
≤

X
T≥0

Pr

"
kAN

k (−T, 0) +

k−1X
i=1

iAN
i (−T, m)

−N

�
C − 2M

N

�
(T + m + 1) > 0

�
,

Fix any ε > 0 and observe that for N large enough, we have (C −
2M
N

) > (C − ε). Hence

Pr
�
Ṽ (N)(k) > m

�
≤

X
T≥0

Pr

"
kAN

k (−T, 0) +

k−1X
i=1

iAN
i (−T, m)

−N(C − ε)(T + m + 1) > 0] . (20)

Note that (20) is the expression for the decay rate of size k jobs
in PRI having capacity C − ε, which was described in Section 3.
Using similar techniques as in [6, 10], it follows that the lower
bound of IṼµ

(k, m) is IV C−ε
(k, m). Applying Lemma 4, we have

the lower bound on the decay rate in (6). Specifically, we apply
the contraction principle, to obtain the closed form expression of
IVC−ε(k, m).

Next, we derive the upper bound on the decay rate in (6) by de-
riving a lower bound on Pr(V (N)(k) > m) and combining it with
the result of Lemma 4. We do so by comparing the SMART pol-
icy with a priority queueing system which lower bounds the delay
experienced by the job.

Consider a PRI(see Section 3) system with capacity NC, which
we describe again. This system consists of M queues, with jobs
of original size k arriving to queue-k. Partially served jobs in this
system continue to reside in the same queue and the jobs in each
queue are served in a FCFS manner. In comparing the PRI system
to SMART, we can think of PRI as a SMART scheme where Qk =Pk

i=1 Q(k,i) and priorities are assigned such that area A has higher
priority whereas area B and C have lower priority.

Denote V (N)(k) as the virtual delay of a size k job for PRI. Then
event {V (N)(k) ≤ m} of PRI ensures the event {V (N)

(k) ≤ m}
of SMART policies. This comes from the fact that the external ar-
rival to both PRI and SMART are the same but the residual service
available to Qk,k in SMART is upper bounded by the residual ser-
vice for queue-k of PRI. This follows from the fact that the resid-
ual service of SMART is the remaining service after servicing of
all of area A and possibly a part or all of area B. However, the
residual service in PRI is that of after servicing only the area A,
and none of area B. Thus PRI provides a lower bound on the vir-
tual delay of a job compared to SMART. In other words, we have
IV C

(k, m) ≤ IV (k, m) and combining it with Lemma 4 the proof
is complete.
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Figure 5: Illustrations of the two dimensional queueing frame-
work for LAS. The progression of a job between queues while
in the system is illustrated in (a). The priority structure for a
job is shown in (b).

6. LEAST ATTAINED SERVICE
In this section we will derive the decay rate for delay under LAS

using the two dimensional queueing framework. This may seem
surprising since the prioritization of LAS depends only on the at-
tained service of a job; however adding a secondary variable is the
key to making the analysis tractable.

The secondary variable we add is the original job size. This
means that, in the event of ties in attained service, instead of shar-
ing the server among the jobs with equal attained service, the job
with the smallest original size is served first. Further, jobs that have
the same original size and the same attained service are serviced ac-
cording to a FCFS rule. Keep in mind that jobs are not served with
the full service capacity, but are only serviced a single unit at once,
which is consistent with the discrete version of PS. Note that us-
ing the job size as a secondary ordering variable does not alter the
performance of LAS in the asymptotic framework, it is simply a
modeling decision used to make the analysis tractable.

Formally, a queue Qi,j , i ≥ j, denotes the queue that con-
tains all the jobs having original size i that have received j unit of
service. Thus a job of original size k arrives to Qk,0 and then pro-
gresses to Qk,1, Qk,2 ... Qk,k−1, Qk,k, at which point the job is
fully serviced and leaves the system. This is depicted in Figure 5.
We again denote Qi,j(t) as the volume of Qi,j at time t, and Qi(t)
as the volume of the queue that contains all jobs that have original
size i, Qi, where Qi =

Sj=i−1
j=0 Qi,j .

Let us now consider a tagged size k job that arrives in the system
at time 0 and has received r units of service (see Figure 5). By
the definition of LAS, all jobs that have been served less than r
units have higher priority than the tagged job. Additionally, jobs
with smaller original size that have attained service r also have
higher priority. In other words, for any job in Qk,r to be serviced
an additional unit, the following queues must be empty,

k−1[
i=1

r[
j=0

Qi,j +

M[
i=k+1

r−1[
j=0

Qi,j +

r−1[
j=0

Qk,j

Further, since in each queue, Qi,j , jobs are serviced in a FCFS
order, jobs that arrived to Qk before the tagged job must be serviced
r units and job that arrived after must be served only r − 1 units.
The same argument can be made for Qk,k−1, which is the queue
for jobs that will leave the system once it is served again.

6.1 Bounding the decay rate of virtual delay
under LAS



We start the analysis of LAS by deriving a bound on the virtual
delay under LAS. Denote the virtual delay of LAS as V̂ (0). We
bound the probability that the virtual delay for size k jobs exceeds
m, Pr(V̂ (N)(k) > m), as follows.

LEMMA 5. For any k ∈ M, the virtual delay of size k jobs in
LAS satisfies

Pr
�
V̂ (N)(k) > m

�
≤ Pr

 
sup
T≥0

�
kAN

k (−T, 0) + (k − 1)AN
k (1, m)

−B̂N
k (−T, m)

�
> 0
�

= Pr
�
kAN

k (−T ∗, 0) + (k − 1)AN
k (1, m)

−B̂N
k (−T ∗, m) > 0

�
, (21)

where AN
k (−T, 0) is the number of size k job arrivals in the in-

terval (−T, 0), B̂k(−T, m) is the service available to Qk during
(−T, m), and T ∗ is the last time before 0 that Qk(−T ∗ − 1) = 0

The theorem states that a possible scenario in which the event
{V̂ (N)(k) > m} could occur is when the total volume of arrivals
for size k job before the virtual job and a portion ((k − 1)/k) of
the volume of arrivals for size k job after the virtual job, exceed the
available capacity for Qk .

PROOF. Consider Qk. By the operation of LAS, {V̂ (N)(k) >
m} implies that all jobs in Qk(0) have not been fully serviced by
time m, i.e., {kAN

k (−T ∗, 0) > B̂N
k (−T ∗, m)}. Since adding

more jobs makes the event of exceeding the available capacity more
probable, we have the following.

Pr
�
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�
≤ Pr

 
sup
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�
kAN
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k (−T, 0)

�
− B̂N
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!
= Pr
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�
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!
≤ Pr

 
sup
T≥0

�
kAN

k (−T, 0) + (k − 1)AN
k (1, m)

−B̂N
k (−T, m)

�
> 0
�

Finally, (21) follows from Loynes’ formula.

Note that the total available capacity to Qk in interval (−T, m)

with regards to the event {V̂ (N)(k) > m}, i.e. B̂N
k (−T, m), is the

remaining capacity after all the higher priority queues are served in
LAS. So, the following holds

B̂N
k (−T, m)

≥ NC(T + m + 1)−
k−1X
i=1

iAN
i (−T, m)−

k−1X
i=1

Qi(−T − 1)

−
MX

i=k+1

(k − 1)AN
i (−T, m)−

MX
i=k+1

k−2X
j=0

Qi,j(−T − 1)

(22)

Using Lemma 5 and the above, we can derive the following.

THEOREM 6. The virtual decay rate of size k jobs under LAS
is bounded as follows

IV̂ (k, m) ≥ inf
T≥0

�
inf
~y:Y

�
inf
~x:X

(A<k(~y) + Ak(~y) + A>k(~y))

��
, (23)

where Y , X , A<k(~y), Ak(~y), and A>k(~y) are defined as in Theo-
rem 2.

PROOF. Combining (22) with Lemma 5 we have the following
upper bound on the probability of {V̂ (N)(k) > m}.
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+
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i (−T, m)−NC(T + m + 1) > 0

1A
where (24) follows from the following observation that Qi(−T ∗−
1) = 0 for 1 ≤ i ≤ k−1 and Qi,j(−T ∗−1) = 0 for k+1 ≤ i ≤
M , 0 ≤ j ≤ k− 2. The justification is similar to that for a priority
queueing system. Namely, since the above queues have higher pri-
ority than Qk, when Qk is empty all higher priority queues must be
empty. Applying the contraction principle completes the proof.

Theorem 6 provides a possible scenario in which {V̂ (N)(k) >
m} could occur. To show that this scenario is indeed the most
dominant and controls the behavior of the probability, in the next
section we will show that the same scenario provides the upper
bound on the decay rate of {V̂ (N)(k) > m}.

6.2 The decay rate of delay under LAS
We now develop an upper bound for the decay rate of LAS which

is tight with the lower bound derived in Section 6.1, i.e., we develop
the tight lower bound for the tail probability. The main argument
for the upper bound is that, using the two dimensional queueing
framework, LAS can be viewed as a simple priority queueing sys-
tem, as was the case with SMART. Thus, using a similar analysis,
we can derive the tight upper bound for the decay rate.

THEOREM 7. The probability of the virtual delay for size k jobs
in LAS can be lower bounded as

Pr
�
V̂ (N)(k) > m

�
≥ Pr
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(
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iAN
i (−T ∗, l)

+ kAN
k (−T ∗, 0) + (k − 1)AN

k (1, l)

+
MX

i=k+1

(k − 1)AN
i (−T ∗, l)−NC(T ∗ + l + 1)

9=; > 0

1A(25)
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Figure 6: Plot of the rate of convergence to the decay rate un-
der the uniform workload with M = 16, ρ = 0.8, and m = 4.
The asymptotic decay rate is shown as a dotted line. Note that
only the decay rates of the larger sizes are shown because only
these can be estimated accurately in simulation since a large
delay for smaller job sizes is a very low probability event as N
grows. Though not shown here, we have found similar conver-
gence rates under other SMART policies.
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Figure 7: Plot of the decay rate as a function of the job size,
k, with the threshold m = 20 and maximum job size M = 16
held fixed. The load is 0.8. Recall that IW (k, m) measures
the decay rate of Pr(W (k) > m) and that a larger IW (k, m)
indicates a stochastically smaller delay. Note that since decay
rates of size 1 jobs for both SMART and LAS are infinite, they
are omitted.

where−T ∗ is the last time before time 0 when Qk(−T ∗− 1) = 0.
PROOF. As explained in Section 6.1, there exists a group of

queues and arrivals that constitute higher priority compared to the
virtual job that arrived at time 0. At time l the volume of jobs from
higher priority queues and arrivals is

k−1X
i=1

i−1X
j=0

Qi,j(l) +

MX
i=k+1

k−2X
j=0

Qi,j(l)

+

k−2X
j=0

Qk,j(l) + Ak(−T ∗, 0). (26)

If the higher priority queues and arrivals with respect to the vir-
tual job (26) are never empty at any time during (0, m), then the
virtual job is guaranteed not to leave the system in the interval
(0, m). Based on this observation we derive a lower bound on
Pr(V̂ (N)(k) > m) as follows.
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In the calculation above, note that we have argued in Section 6.1
that at time −T ∗ − 1 all higher priority queues are empty.

Extending the above to obtain a tight lower bound on the decay
rate of LAS is difficult without further assumptions on the inputs.
We make 2 assumptions in order to complete the derivation.

ASSUMPTION 1. Let Ahigh denote the sum of all higher prior-
ity arrivals described in Theorem 7, then we assume that the corre-
sponding rate function satisfies

I
(−T∗,l)
Ahigh

(C(T ∗ + l + 1)− v) < I
(−T∗,0)
Ahigh

(C(T ∗ + 1)) (27)

for v ∈ [v∗ − δ, v∗ + δ], v∗ > 0, and δ > 0 sufficiently small.

ASSUMPTION 2. Define

~Ahigh =
�
. . . , AN

high(−T, 0), . . . , AN
high(−1, 0), AN

high(0, 0)
�

Then, we assume that the stochastic process ~Ahigh satisfies�
~Ahigh|AN

high(0, 0) = 0
�
≤st

�
~Ahigh|AN

high(0, 0) > 0
�

.

where ~Ahigh was defined in Assumption 1.

The first assumption is equivalent to the decay rate being addi-
tive. Intuitively, a decay rate with the property of additive function-
als implies that the occurrence of a rare event in the large deviation
framework happens in a straight line. This assumption has been
used extensively in large deviation literature [2, 12, 7]. Further,
arrival processes that satisfy Assumption 1 include many common
processes such as all stationary and Markov dependent processes.
Additionally, if the arrival process is of Levy type then the decay
rate of the the arrival satisfies (27).

The second assumption allows us to show that the virtual delay
decay rate is equal to the actual delay decay rate. This assump-
tion essentially says that the arrival process has the property that if
there are very few arrivals in a given time slot, there were also very
few arrivals in the immediate past (and vice versa). It is a kind of
“burstiness” assumption for the source.

We are now ready to complete the proof of Theorem 2.
PROOF. (of Theorem 2) It follows from Theorem 7 and Assump-

tion 1 that IV̂ (k, m) is upper bounded by the expression in (10) us-
ing the same technique as in [7]. Further, applying Theorem 6, we
obtain equality. Lastly, using similar arguments as in [23], we can
conclude that the actual delay decay rate is equal to the virtual delay
decay rate under Assumption 2, which completes the proof.

7. NUMERICAL AND SIMULATION RESULTS
Though Theorems 1 and 2 provide expressions for the decay

rates of SMART policies and LAS in the many sources regime,
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Figure 8: Plot of the decay rate as a function of the threshold
m under the high variability workload under both SMART
and LAS with the maximum job size M = 16 and ρ = 0.8.
Each line in the figures corresponds to the decay rate of delay
experienced by a specific job size k. The decay rate of FCFS is
included as a benchmark. Note that since decay rates of size 1
jobs are infinite, they are omitted.
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Figure 9: Plot of the decay rate as a function of the maximum
job size M under the high variability workload under both
SMART and LAS with the threshold m = 4 and ρ = 0.8.
Each line in the figures corresponds to the decay rate of delay
experienced by a specific job size k. The decay rate of FCFS is
included as a benchmark. Note that since decay rates of size 1
jobs are infinite, they are omitted.

the complicated nature of these formulas hide the behavior of the
decay rates. In this section, we will use simulations and numerical
experiments to illustrate how the decay rate IW (k, m), and thus
Pr(W (k) > m), of SMART and LAS are affected by the load (ρ),
the variability of the service distribution, the range of the service
distribution (M ), and the threshold value (m). In performing these
studies we focus on three practical questions:

1. How does the delay distribution behave under a large, but
not infinite, number of flows? That is, what is the rate of
convergence to the decay rate, IW (k, m)?

2. How does the decay rate for a job of size k vary across k?
That is, how much do large job sizes suffer under policies
that bias towards small job sizes?

3. How much penalty does LAS pay for not using job size in-
formation to prioritize? That is, by how much does SMART
outperform LAS?

7.1 Setup
In our experiments, we assume that jobs are of sizes 1, M/4,

M/2, 3M/4, or M , and we vary M between 8 and 20. Each job
size arrives according to an on-off process, i.e. in each discrete in-
terval a size k job arrives with probability pk. We assume that the
capacity of the system, C, is 1.

We will consider three cases for the distribution of job sizes,
which we refer to as uniform, power-law, and high variability.
In the uniform case each job size is equally likely. In the power-
law case, the arrival probabilities follow the power-law distribution
with exponent 2, i.e. a discrete and truncated counterpart of the
Pareto distribution. Note that due to the small spread of job sizes,
this distribution is not highly variable; thus, to study the impact of
variability, we also consider a distribution where the largest jobs
make up half the load (as has been observed in web file sizes). In
particular, the high variability workload has size 1, M/4, M/2,
3M/4, and M job arrivals make up 1/24, 1/12, 1/8, 1/4, and 1/2
of the total load.

7.2 Discussion
Moving to our results, we will first investigate question 1. Figure

6 illustrates the convergence of the delay distribution to the asymp-
totic decay rate as N grows under both SRPT and LAS. The dot-
ted lines are the numeric calculations of the asymptotic decay rates
proven in the paper and the other lines are generated using an event-
driven simulation. The simulation matches the uniform workload
described above except that a Poisson arrival process is used. Thus,

in addition to the error from using a finite N , Figure 6 illustrates
the error from the discretization of the arrival process. Note that
when N = 20 there is already little difference between the em-
pirical decay rate and the asymptotic limit under either SRPT or
LAS. Further, though omitted for lack of space, we have also gen-
erated plots that indicating similar convergence behavior under two
other SMART policies: PSJF and RS (which prioritizes towards
the smallest product of remaining size and original size). Thus, in
answer to question 1, it seems that rate of convergence to the de-
cay rate is very fast, and thus the asymptotic decay rate provides
information that is useful in practical settings such as high traffic
web servers and routers, which have far more than 20 simultaneous
flows.

To address question 2, Figure 7 illustrates how the decay rate for
a job of size k varies across k under SMART policies, LAS, and
FCFS (which we include as a baseline for comparison). The results
are shown for both the power-law and high variability workloads
under high load. Note that a larger decay rate indicates a stochas-
tically smaller delay.

The first observation we make is that, in each of the plots, small
job sizes have much better decay rates under SMART policies and
LAS than under FCFS; whereas large job sizes have better decay
rates under FCFS than under LAS and SMART. Thus, there is al-
ways crossover point for each of SMART and LAS where their
decay rate “crosses over” that of FCFS. Figure 7 illustrates that
the crossover point is highly dependent on the service distribution.
When the load is high and the largest jobs make up a significant
fraction of the load, the decay rate of SMART does not cross that
of FCFS until the largest job size, k = M . The behavior of the
crossover point can be understood using the following key obser-
vation: while the decay rate under FCFS gets worse (smaller) as the
load of largest jobs is increased and the total load is held constant,
the decay rates of LAS and SMART get better (larger). Thus, in
answer to question 2 above, since large job sizes make up a signif-
icant fraction of the load in many computer applications, it seems
that one need not worry too much about the suffering of large job
sizes under policies that prioritize small jobs. Though not shown,
we have also investigated the impact of load on the crossover point
and found that load only changes the magnitude of the decay rates
(the higher the load, the lower the decay rate), not the relative be-
havior of the decay rates under FCFS, LAS, and SMART policies.

The next observation we make from Figure 7 is that both SMART
and LAS exhibit a similar trend in decay rate across k, with SMART
always providing stochastically smaller delays than LAS. Further,



in answer to question 3, Figure 7 illustrates that the improvement
of SMART over LAS is again highly dependent on the job size dis-
tribution: as the load of the largest jobs increases, the difference
in the decay rates of SMART and LAS increases. The fact that
SMART is better for small jobs follows from the operation of two
policies: small jobs typically do not get preempted under SMART,
but are preempted by all arrivals under LAS. However, the result
that SMART is better than LAS even for larger jobs less obvious.
An explanation for this fact is that under LAS, though larger jobs
gain higher priority at arrival compared to SMART, as large jobs re-
ceive service their priority is dropping quickly under LAS but may
be increasing under SMART.

In Figure 7, both the maximum job size M and the threshold
value m are fixed. However, we have also investigated a range of
other M and m and we illustrate the effect of these variables in
Figures 8 and 9 respectively. Note that in both of these figures,
we again see that the trends under SMART and LAS are parallel
and that SMART always provides stochastically smaller delay than
LAS. These plots also illustrate the effect of increasing M and m
on the decay rate of delay. As the threshold value m increases,
Figure 8 shows that the decay rate increases, and thus Pr(W (k) >
m) decreases. It is interesting to note that the decay rate seems
to grow linearly with m for all jobs sizes k under both LAS and
SMART. As the maximum job size M increases, Figure 9 shows
that the decay rate of all job sizes decreases, which is not surprising
since this leads to an increase in service times for all job sizes.

8. CONCLUSION
We conclude the paper by summarizing our results. We have

derived expressions for the delay decay rate of the SMART class
and LAS in the many sources large deviation framework. We have
shown that all scheduling policies in the SMART class have the
same decay rate. In addition, we have shown that LAS results in
a (stochastically) worse delay distribution than any SMART policy
in the many sources regime, and that the magnitude of this differ-
ence is highly dependent on the variability the job size distribu-
tion: as the variability increases, the difference in the decay rates
of SMART and LAS increases. Further, the decay rates we derive
for the SMART class and LAS provide insight into the “dominant”
event of the delay distribution.

From a methodological point of view, a key contribution of this
paper is a two dimensional queue representation that enables: (i)
the study of policies that depend on the job state (age and/or re-
maining size), as opposed to the queue length; and (ii) the study of
a class of policies, as opposed to the analysis of individual policies.
The second of these points is extremely important since practition-
ers can never implement the idealized policies, such as SRPT, that
are typically the focus of theoretical research. However, by ana-
lyzing classes of policies defined by scheduling heuristics, theoret-
ical results can hopefully be applied to the complex hybrid poli-
cies that are actually implemented. We believe that the two dimen-
sional queue representation we introduce provides a promising ap-
proach for the analysis of other priority-based scheduling policies
and classes of policies in the many sources large deviations regime
– a regime of increasing relevance to high traffic modern computer
systems such as routers and web servers.
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