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1 IntroductionIn recent years, distributed servers have become increasingly common because they allowfor increased computing power while being cost-e�ective and easily scalable.In a distributed server system, jobs (tasks) arrive and must each be dispatched toexactly one of several host machines for processing. We assume for simplicity that thesehost machines are identical and that there is no cost (time required) for dispatching jobsto hosts. The rule for assigning jobs to host machines is known as the task assignmentpolicy. The choice of the task assignment policy has a signi�cant e�ect on the performanceperceived by users. Designing a distributed server system often comes down to choosingthe \best" task assignment policy for the given model and user requirements. The questionof which task assignment policy is \best" is an age-old question which still remains openfor many models.In this paper we consider the particular model of a distributed server system in whichjobs are not preemptible { i.e. each job is run-to-completion. Jobs can be aborted, but thenall work is lost and the job must be restarted from scratch. Our model is motivated bydistributed servers for batch computing at Supercomputing Centers. For these distributedservers, each host machine is usually a multi-processor machine (e.g., an 8-processor CrayJ90) and each job submitted to the distributed server is a parallel job, intended to run ona single host. In such a setup, jobs are usually run-to-completion, rather than time-shared,for several reasons: First, the memory requirements of jobs tend to be huge, making itvery expensive to swap out a job's memory [11]. Thus timesharing between jobs onlymakes sense if all the jobs being timeshared �t within the memory of the host, which isvery unlikely. Also, many operating systems that enable timesharing for single-processorjobs do not facilitate preemption among several processors in a coordinated fashion [22].Examples of distributed server systems that �t the above description are given in Table 1.Lastly, we assume that no a priori information is known about the job at the timewhen the job arrives. In particular, the processing requirement of the job is not known.We will use the terms processing requirement, CPU requirement, service demand, and sizeinterchangeably. Many studies have shown that even in cases where user estimates oftheir job processing requirements are available, those estimates are grossly inaccurate.For example one study shows that for 38% of jobs, the actual processing requirement isonly 4% of the user-predicted requirement, and for over 95% of jobs the actual processingrequirement is under 10% of the user-predicted requirement [10].Figure 1 is one illustration of a distributed server. In this illustration, arriving jobsare immediately dispatched by the central dispatcher to one of the hosts and queue up atthe host waiting for service, where they are served in �rst-come-�rst-served (FCFS) order.Observe however that our model in general does not preclude the possibility of having acentral queue at the dispatcher where jobs might wait before being dispatched.Our main performance goal, in choosing a task assignment policy, is to minimize mean1
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Figure 1: Illustration of a distributed server.Name Location No. Hosts Host MachineXolas [18] MIT Lab for Computer Science 8 8-processor Ultra HPC 5000 SMPPleiades [17] MIT Lab for Computer Science 7 4-processor Alpha 21164 machineJ90 distributed server NASA Ames Research Lab 4 8-processor Cray J90 machineJ90 distributed server [1] Pittsburgh Supercomputing Center 2 8-processor Cray J90 machineC90 distributed server [2] NASA Ames Research Lab 2 16-processor Cray C90 machineTable 1: Examples of distributed servers described by the architectural model of this paper.The schedulers used are Load-Leveler, LSF, PBS, or NQS. These schedulers typically onlysupport run-to-completion (non-preemptive) [22].response time and more importantly mean slowdown. A job's slowdown is its waitingtime divided by its service requirement. All means are per-job averages. Mean slowdownis important because it is desirable that a job's delay be proportional to its processingrequirement [8, 3, 13]. Users are likely to anticipate short delays for short jobs, and arelikely to tolerate long delays for longer jobs. A secondary performance goal is fairness.We adopt the following de�nition of fairness: All jobs, long or short, should experiencethe same expected slowdown. In particular, long jobs should not be penalized { sloweddown by a greater factor than are short jobs.1Observe that for the architectural model we consider in this paper, memory usage isnot an issue with respect to scheduling. Recall that hosts are identical and each job hasexclusive access to a host machine and its memory. Thus a job's memory requirement isnot a factor in scheduling. However CPU usage is very much an issue in scheduling.Consider some task assignment policies commonly proposed for distributed server sys-tems: In the Random task assignment policy, an incoming job is sent to Host i with prob-ability 1=h, where h is the number of hosts. This policy equalizes the expected number1For example, Processor-Sharing (which requires in�nitely-many preemptions) is ultimately fair in thatevery job experiences the same expected slowdown. 2
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(a)                                                                                (b)Figure 2: The (a) Least-Work-Remaining policy and the (b) Central-Queue policy areequivalent.of jobs at each host. In Round-Robin assignment, jobs are assigned to hosts in a cyclicalfashion with the ith job being assigned to Host i mod h. This policy also equalizes theexpected number of jobs at each host, and has slightly less variability in interarrival timesthan does Random. In Shortest-Queue assignment, an incoming job is immediately dis-patched to the host with the fewest number of jobs. This policy has the bene�t of tryingto equalize the instantaneous number of jobs at each host, rather than just the expectednumber of jobs.Ideally we would like to send a job to the host which has the least total outstand-ing work (work is the sum of the job processing requirements at the host) because thathost would a�ord the job the shortest waiting time. However, we don't know a prioriwhich host currently has the least work, since we don't know job processing require-ments (sizes). Imagine for a moment that we did, however, know job sizes. Then wecould imagine a Least-Work-Remaining policy which sends each job to the host withthe currently least remaining work. It is in fact possible to achieve the performanceof Least-Work-Remaining without knowing job sizes: Consider a di�erent policy, calledCentral-Queue. The Central-Queue policy holds all jobs at the dispatcher in a FCFSqueue, and only when a host is free does the host request the next job. It turns out thatCentral-Queue is equivalent to Least-Work-Remaining for any sequence of job requests(see [12] for a rigorous proof and Figure 2 for an illustration). Thus, since Central-Queuedoes not require a priori knowledge of job sizes, we can in fact achieve the performance ofLeast-Work-Remaining without requiring knowledge of the job sizes.It may seem that Least-Work-Remaining is the best possible task assignment policy.In fact previous literature suggests that it is the optimal policy if the job size distributionis exponential (see Section 2). This is not in conict with our results.But what if job size distribution is not exponential? We are motivated in this respectby the increasing evidence for high variability in job size distributions, as seen in manymeasurements of computer workloads. In particular, measurements of many computerworkloads have been shown to �t heavy-tailed distributions with very high variance, as3



described in Section 3 { much higher variance than that of an exponential distribution. Isthere a better policy than Least-Work-Remaining when the job size variability is char-acteristic of empirical workloads? In evaluating various policies, we will be interested inunderstanding the inuence of job size variability on the decision of which policy is best.For analytical tractability, we will assume that the arrival process is Poisson { previouswork indicates that the variability in the arrival process is much less critical to choosinga task assignment policy than is the variability in the job size distribution [26].In this paper we propose a new algorithm called TAGS { Task Assignment by Guess-ing Size { which is speci�cally designed for high variability workloads. TAGS works byassociating a time limit with each host. A job is run at a host up to the designated timelimit associated with the host. If the job has not completed at this point, it is killedand restarted from scratch at a new host. We will prove analytically that when job sizesshow the degree of variability characteristic of empirical (measured) workloads, the TAGSalgorithm can outperform all the above mentioned policies by several orders of magnitude.In fact, we will show that the more heavy-tailed the job size distribution, the greater theimprovement of TAGS over the other policies.The above improvements are contingent on the system load not being too high.2 In thecase where the system load is high, we show that all the policies perform so poorly thatthey become impractical, and TAGS is especially negatively a�ected. However, in practice,if the system load is too high to achieve reasonable performance, one adds new hosts tothe server (without increasing the outside arrival rate), thus dropping the system load,until the system behaves as desired. We refer to the \number of new hosts which mustbe added" as the server expansion requirement. We show that TAGS outperforms all thepreviously-mentioned policies with respect to the server expansion metric (i.e., given anyinitial system load, TAGS requires far fewer additional hosts to perform well).We describe three avors of TAGS. The �rst, TAGS-opt-slowdown, is designed to mini-mize mean slowdown. The second, TAGS-opt-waitingtime, is designed to minimize meanwaiting time. Although very e�ective, these algorithms are not fair in their treatment ofjobs. The third avor, TAGS-opt-fairness, optimizes fairness. While managing to befair, TAGS-opt-fairness still achieves mean slowdown and mean waiting time close to theother avors of TAGS. The point of this paper is not to promote the TAGS algorithm in par-ticular, but rather to promote an appreciation for the unusual and counterintuitive ideason which TAGS is based, namely: load unbalancing, non-workconserving, and fairness.Section 2 elaborates on previous work. Section 3 provides the necessary backgroundon measured job size distributions and heavy-tails. Section 4 describes the TAGS algorithmand all its avors. Section 5 shows results of analysis for the case of 2 hosts, and Section 62For a distributed server, system load is de�ned as follows:System load = Outside arrival rate � Mean job size = Number of hostsFor example, a system with 2 hosts and system load .5 has same outside arrival rate as a system with 4hosts and system load .25. Observe that a 4 host system with system load � has twice the outside arrivalrate of a 2 host system with system load �. 4



shows results of analysis for the multiple-host case. Section 7 explores the e�ect of less-variable job size distributions. Lastly, we conclude in Section 8. Details on the analysisof TAGS are described in the Appendix.2 Previous work on task assignmentTask assignment with no preemptionThe problem of task assignment in a model like ours (no preemption3 and no a prioriknowledge) has been extensively studied, but many basic questions remain open.One subproblem which has been solved is that of task assignment under the furtherrestriction that all jobs be immediately dispatched to a host upon arrival. Under thisrestricted model, Winston showed that when the job size distribution is exponential andthe arrival process is Poisson, then the Shortest-Queue task assignment policy is optimal[30]. In this result, optimality is de�ned as maximizing the discounted number of jobswhich complete by some �xed time t. Ephremides, Varaiya, and Walrand [9] showed thatShortest-Queue also minimizes the expected total time for the completion of all jobsarriving by some �xed time t, under an exponential job size distribution and arbitraryarrival process. Koole, Sparaggis, and Towsley showed that Shortest-Queue is optimalif the job size distribution has Increasing Likelihood Ratio (ILR) [16]. The actual perfor-mance of the Shortest-Queue policy is not known exactly, but the mean response time isapproximated by Nelson and Phillips [20], [21]. Whitt has shown that as the variabilityof the job size distribution grows, Shortest-Queue is no longer optimal [29]. Whitt doesnot suggest which policy is optimal. Koole et. al. [16] later showed that Shortest-Queueis not even optimal for all job size distributions with Increasing Failure Rate.Under the model assumed in this paper, but with exponentially-distributed job sizes,several papers ([20], [21])) claim that the Central-Queue (or equivalently, Least-Work-Remaining)policy is optimal. Wol� [31] suggests that Least-Work-Remaining is optimal becauseit maximizes the number of busy hosts, thereby maximizing the downward drift in thecontinuous-time Markov chain whose states are the number of jobs in the system.Another model which has been considered is the case of no preemption but wherethe size of each job is known at the time of arrival of the job. Within this model, theSITA-E algorithm (see [12]) has been shown to outperform the Random, Round-Robin,Shortest-Queue, and Least-Work-Remaining algorithms by several orders of magnitudewhen the job size distribution is heavy-tailed. In contrast to SITA-E, the TAGS algorithmdoes not require knowledge of job size. Nevertheless, for not-too-high system loads (< :5),TAGS improves upon the performance of SITA-E by several orders of magnitude for heavy-tailed workloads.3All the results here assume FCFS service order at each host machine.5



When preemption is allowedThroughout this paper we maintain the assumption that jobs are not preemptible. Thatis, once a job starts running, it can not be stopped and re-continued where it left o�.By contrast there exists considerable work on the very di�erent problem where jobs arepreemptible and maybe even migrateable, (see [13] for many citations).TAGS-like algorithmsThe idea of purposely unbalancing load has been suggested previously in [6] and in [4],under di�erent contexts from our paper. In both these papers, it is assumed that jobsizes are known a priori. In [6] a distributed system with preemptible jobs is considered.It is shown that in the preemptible model, mean waiting time is minimized by balancingload, however mean slowdown is minimized by unbalancing load. In [4], real-time schedul-ing is considered where jobs have �rm deadlines. In this context, the authors propose\load pro�ling," which distributes load so that the probability of satisfying the utilizationrequirements of incoming jobs is maximized.To the best of our knowledge, the TAGS idea of associating arti�cial \time-limits" withmachines, killing jobs which exceed the time-limit on their machines, and restarting thosejobs on hosts with higher time-limits, has not been considered before.3 Heavy tailsAs described in Section 1, we are concerned with how the distribution of job sizes a�ectsthe decision of which task assignment policy to use.Many application environments show a mixture of job sizes spanning many orders ofmagnitude. In such environments there are typically many short jobs, and fewer long jobs.Much previous work has used the exponential distribution to capture this variability, asdescribed in Section 2. However, recent measurements indicate that for many applicationsthe exponential distribution is a poor model and that a heavy-tailed distribution is moreaccurate. In general a heavy-tailed distribution is one for whichPrfX > xg � x��;where 0 < � < 2. The simplest heavy-tailed distribution is the Pareto distribution, withprobability mass function f(x) = �k�x���1; �; k > 0; x � k;and cumulative distribution functionF (x) = PrfX � xg = 1� (k=x)�:6
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1 2 4 8 16 32 64Figure 3: Measured distribution of UNIX process CPU lifetimes, taken from [13]. Dataindicates fraction of jobs whose CPU service requirement exceeds T seconds, as a functionof T .A set of job sizes following a heavy-tailed distribution has the following properties:1. Decreasing failure rate: In particular, the longer a job has run, the longer it isexpected to continue running.2. In�nite variance (and if � � 1, in�nite mean).3. The property that a tiny fraction (< 1%) of the very longest jobs comprise over halfof the total load. We will refer to this important property throughout the paper asthe heavy-tailed property.The lower the parameter �, the more variable the distribution, and the more pronouncedis the heavy-tailed property, i.e. the smaller the fraction of long jobs that comprise halfthe load.As a concrete example, Figure 3 depicts graphically on a log-log plot the measureddistribution of CPU requirements of over a million UNIX processes, taken from [13]. Thisdistribution closely �ts the curvePrfProcess CPU requirement > Tg = 1=T:In [13] it is shown that this distribution is present in a variety of computing environments,including instructional, research, and administrative environments.In fact, heavy-tailed distributions appear to �t many recent measurements of comput-ing systems. These include, for example:� Unix process CPU requirements measured at Bellcore: 1 � � � 1:25 [19].7



� Unix process CPU requirements, measured at UC Berkeley: � � 1 [13].� Sizes of �les transferred through the Web: 1:1 � � � 1:3 [5, 7].� Sizes of �les stored in Unix �lesystems: [14].� I/O times: [24].� Sizes of FTP transfers in the Internet: :9 � � � 1:1 [23].� Pittsburgh Supercomputing Center (PSC) workloads for distributed servers consist-ing of Cray C90 and Cray J90 machines [26]4.In most of these cases where estimates of � were made, � tends to be close to 1, whichrepresents very high variability in job service requirements.In practice, there is some upper bound on the maximum size of a job, because �lesonly have �nite lengths. Throughout this paper, we therefore model job sizes as beinggenerated i.i.d. from a distribution that is heavy-tailed, but has an upper bound { a veryhigh one. We refer to this distribution as a Bounded Pareto. It is characterized by threeparameters: �, the exponent of the power law; k, the shortest possible job; and p, thelargest possible job. The probability density function for the Bounded Pareto B(k; p; �)is de�ned as: f(x) = �k�1� (k=p)� x���1 k � x � p: (1)In this paper, we will vary the �-parameter over the range 0 to 2 in order to observethe e�ect of variability of the distribution. To focus on the e�ect of changing variance, wekeep the distributional mean �xed (at 3000) and the maximum value �xed (at p = 1010),which correspond to typical values taken from [5]. In order to keep the mean constant,we adjust k slightly as � changes (0 < k � 1500).Note that the Bounded Pareto distribution has all its moments �nite. Thus, it is nota heavy-tailed distribution in the sense we have de�ned above. However, this distributionwill still show very high variability if k � p. For example, Figure 4 (right) shows the secondmoment E �X2	 of this distribution as a function of � for p = 1010, where k is chosen tokeep E fXg constant at 3000, (0 < k � 1500). The �gure shows that the second momentexplodes exponentially as � declines. Furthermore, the Bounded Pareto distribution alsostill exhibits the heavy-tailed property and (to some extent) the decreasing failure rateproperty of the unbounded Pareto distribution. We mention these properties because theyare important in choosing the best task assignment policy.4While the distribution of job processing requirements at the PSC does not seem to exactly �t a Paretodistribution, these workloads do have a very strong heavy-tailed property and high variance. Speci�cally,our measurements showed that half the load is made up by only the biggest 1:3% of all jobs, and thesquared coe�cient of variation is 43. 8
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alphaFigure 4: Parameters of the Bounded Pareto Distribution (left); Second Moment ofB(k; p = 1010; �) as a function of �, when E fXg = 3000 (right).4 The TAGS algorithmThis section describes the TAGS algorithm. Let h be the number of hosts in the distributedserver. Think of the hosts as being numbered: 1; 2; : : : ; h. The ith host has a number siassociated with it, where s1 < s2 < : : : < sh.TAGS works as shown in Figure 5: All incoming jobs are immediately dispatched toHost 1. There they are serviced in FCFS order. If they complete before using up s1amount of CPU, they simply leave the system. However, if a job has used s1 amount ofCPU at Host 1 and still has not completed, then it is killed (remember jobs cannot bepreempted). The job is then put at the end of the queue at Host 2, where it must berestarted from scratch5. Each host services the jobs in its queue in FCFS order. If a jobat host i uses up si amount of CPU and still has not completed it is killed and put at theend of the queue for Host i+1. In this way, the TAGS algorithm \guesses the size" of eachjob, hence the name.The TAGS algorithm may sound counterintuitive for a few reasons: First of all, there's asense that the higher-numbered hosts will be underutilized and the �rst host overcrowdedsince all incoming jobs are sent to Host 1. An even more vital concern is that the TAGSalgorithm wastes a large amount of resources by killing jobs and then restarting them fromscratch.6 There's also the sense that the big jobs are especially penalized since they arethe ones being restarted.TAGS comes in 3 avors; these only di�er in how the si's are chosen. In TAGS-opt-slowdown,the si's are chosen so as to optimize mean slowdown. In TAGS-opt-waitingtime, the si'sare chosen so as to optimize mean waiting time. As we'll see, TAGS-opt-slowdown and5Note, although the job is restarted, it is still the same job, of course. We must therefore be careful inour analysis not to assign it a new service requirement.6My dad, Micha Harchol, would add that there's also the psychological concern of what the angry usermight do when he's told his job has been killed to help the general good.9
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case of 2 hosts. Finally, in Section 6 we will consider distributed servers with > 2 hosts.We evaluate the Random, Least-Work-Remaining, and TAGS policies via analysis, allas a function of �, where � is the variance-parameter for the Bounded Pareto job sizedistribution, and � ranges between 0 and 2. Recall from Section 3 that the lower � is, thehigher the variance in the job size distribution. Recall also that empirical measurements ofjob size distributions often show � � 1. Round-Robin (see Section 1) will not be evaluateddirectly because we showed in a previous paper [12] that Random and Round-Robin havealmost identical performance.Figure 6(a) shows mean slowdown under TAGS-opt-slowdown as compared with theother policies. The y-axis is shown on a log scale. Observe that for very high �, the per-formance of all the task assignment policies is comparable and very good, however as �decreases, the performance of all the policies degrades. The Least-Work-Remainingpolicyconsistently outperforms Random by about an order of magnitude, however TAGS-opt-slowdowno�ers several orders of magnitude further improvement: At � = 1:5, TAGS-opt-slowdownoutperforms Least-Work-Remainingby 2 orders of magnitude; at � � 1, TAGS-opt-slowdownoutperforms Least-Work-Remainingby over 4 orders of magnitude; at � = :4, TAGS-opt-slowdownoutperforms Least-Work-Remaining by over 9 orders of magnitude.Figure 6(b) shows mean slowdown of TAGS-opt-fairness, as compared with the otherpolicies. Surprisingly, the performance of TAGS-opt-fairness is not far from that ofTAGS-opt-slowdown and yet TAGS-opt-fairness has the additional bene�t of fairness.Figure 7 is identical to Figure 6 except that in this case the performance metric ismean waiting time, rather than mean slowdown. Again the TAGS algorithm shows severalorders of magnitude improvement over the other task assignment policies.Why does the TAGS algorithm work so well? Intuitively, it seems that Least-Work-Remainingshould be the best performer, since Least-Work-Remaining sends each job to where itwill individually experience the lowest waiting time. The reason why TAGS works so wellis two-fold: The �rst reason is variance reduction (Section 5.1) and the second reason isload unbalancing (Section 5.2).5.1 Variance ReductionVariance reduction refers to reducing the variance of job sizes that share the same queue.Intuitively, variance reduction improves performance because it reduces the chance of ashort job getting stuck behind a long job in the same queue. This is stated more formallyin Theorem 1 below, which is derived from the Pollaczek-Kinchin formula.Theorem 1 Given an M/G/1 FCFS queue, where the arrival process has rate �, X de-notes the service time distribution, and � denotes the utilization (� = �E fXg). Let W bea job's waiting time in queue, S be its slowdown, and Q be the queue length on its arrival.11
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(b)Figure 6: Mean slowdown for distributed server with 2 hosts and system load .5under (a) TAGS-opt-slowdown and (b) TAGS-opt-fairness as compared with theLeast-Work-Remaining and Random task assignment policies.12
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(b)Figure 7: Mean waiting time for distributed server with 2 hosts and system load.5 under (a) TAGS-opt-slowdown and (b) TAGS-opt-fairness as compared with theLeast-Work-Remaining and Random task assignment policies.13



Then, E fWg = �E �X2	2(1� �) (Pollaczek-Kinchin formula [25, 15])E fSg = E fW=Xg = E fWg �EnX�1oE fQg = �E fWgProof: The slowdown formula follows from the fact that W and X are independent for aFCFS queue, and the queue size follows from Little's formula.The above formulas apply to just a single FCFS queue, not a distributed server. Ob-serve that every metric for the simple FCFS queue is dependent on E �X2	, the secondmoment of the service time. Recall that if the workload is heavy-tailed, the second mo-ment of the service time explodes (Figure 4). We now discuss the e�ect of high variabilityin job sizes on a distributed server with h hosts under the various task assignment policies.Random Task Assignment This policy simply performs Bernoulli splitting on theinput stream, with the result that each host becomes an independent M=B(k; p; �)=1queue. The load at the ith host, �i, is equal to the system load, �. The arrival rate at theith host is 1=h-fraction of the total outside arrival rate. Theorem 1 applies directly, andall performance metrics are proportional to the second moment of B(k; p; �). Performanceis generally poor because the second moment of the B(k; p; �) is high.Round Robin This policy splits the incoming stream so each host sees anEh=B(k; p; �)=1queue, with utilization �i = �, where Ehdenotes an h-stage Erlang distribution. This sys-tem has performance close to the Random policy since it still sees high variability in servicetimes, which dominates performance.Least-Work-Remaining This policy is equivalent to Central-Queue which is simplyan M/G/h queue, for which there exist known approximations, [28],[31]:EnQM=G=ho = EnQM=M=ho � E �X2	E fXg2 ;where X denotes the service time distribution, and Q denotes queue length. What's im-portant to observe here is that the mean queue length, and therefore the mean waitingtime and mean slowdown, are all proportional to the second moment of the service timedistribution, as was the case for the Random and Round-Robin policies. In fact, the perfor-mance metrics are all proportional to the squared coe�cient of variation (C2 = EfX2gEfXg2 )of the service time distribution. 14



TAGS The TAGS policy is the only policy which reduces the variance of job sizes at theindividual hosts. Consider the jobs which queue at Host i: First there are those jobs whichare destined for Host i. Their job size distribution is B(si�1; si; �) because the original jobsize distribution is a Bounded Pareto. Then there are the jobs which are destined for hostsnumbered greater than i. The service time of these jobs at Host i is capped at si. Thusthe second moment of the job size distribution at Host i is lower than the second momentof the original B(k; p; �) distribution (for all hosts except the highest-numbered host, itturns out). The full analysis of the TAGS policy is presented in the Appendix. A sketch isgiven here: The initial di�culty is �guring out what to condition on, since jobs may visitmultiple hosts. The solution is to partition the jobs based on their �nal host destination.Thus the mean response time of the system is a linear combination of the mean responsetime of jobs whose �nal destination is Host i, where i = 1; : : : ; h. The mean responsetime for a job whose �nal destination is Host i is the sum of the job's response times atHosts 1 through i. The mean response time at Host i is computed via the M/G/1 formula.These computations are relatively straightforward except for one point which we have toapproximate and which we explain now: For analytic convenience, we need to be able toassume that the jobs arriving at each host form a Poisson Process. This is of course truefor Host 1. However the arrivals at Host i are those departures from Host i � 1 whichexceed size si�1. They form a less bursty process than a Poisson Process since they arespaced apart by at least si�1. Since we make the assumption that the arrival process intoHost i is a Poisson Process (which is more bursty than the actual process), our analysis ifanything produces an upper bound on the response time and slowdown of TAGS. Finally,once the �nal expression for mean response time is derived, MathematicaTM is used toderive those cuto�s which minimize the expression.5.2 Load UnbalancingThe second reason why TAGS performs so well has to do with load unbalancing. Observethat all the other task assignment policies we described speci�cally try to balance loadat the hosts. Random and Round-Robin balance the expected load at the hosts, whileLeast-Work-Remaining goes even further in trying to balance the instantaneous load atthe hosts. In TAGS we do the opposite.Figure 8 shows the load at Host 1 and at Host 2 for TAGS-opt-slowdown, TAGS-opt-waitingtime,and TAGS-opt-fairness as a function of �. Observe that all 3 avors of TAGS (purposely)severely underload Host 1 when � is low but for higher � actually overload Host 1 some-what. In the middle range, � � 1, the load is balanced in the two hosts.We �rst explain why load unbalancing is desirable when optimizing overall mean slow-down of the system. We will later explain what happens when optimizing fairness. Tounderstand why it is desirable to operate at unbalanced loads, we need to go back to theheavy-tailed property. The heavy-tailed property says that when a distribution is veryheavy-tailed (very low �), only a miniscule fraction of all jobs { the very longest ones {are needed to make up more than half the total load. As an example, for the case � = :2,15
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than on Host 1.The above has been an explanation for why load unbalancing is important with respectto optimizing the system mean slowdown. However it is not at all clear why load unbal-ancing also optimizes fairness, as shown in Figure 8(c). Under TAGS-opt-fairness, themean slowdown experienced by the short jobs is equal to the mean slowdown experiencedby the long jobs. However it seems in fact that we are treating the long jobs unfairly on3 counts:1. The short jobs run on Host 1 which has very low load (for low �).2. The short jobs run on Host 1 which has very low E �X2	.3. The short jobs don't have to be restarted from scratch and wait on a second line.So how can it possibly be fair to help the short jobs so much? The answer is simplythat the short jobs are short. Thus they need low waiting times to keep their slowdownlow. Long jobs on the other hand can a�ord a lot more waiting time. They are better ableto amortize the punishment over their long lifetimes. It is important to mention, though,that this would not be the case for all distributions. It is because our job size distributionfor low � is so heavy-tailed that the long jobs are truly elephants (way longer than theshorts) and thus can a�ord to su�er more.5.3 Di�erent LoadsUntil now we have studied only the model of a distributed server with two hosts andsystem load 0:5. In this section we consider the e�ect of system load on the perfor-mance of TAGS. We continue to assume a 2 host model. Figure 9 shows the perfor-mance of TAGS-opt-slowdown on a distributed server run at system load (a) 0:3, (b)0:5, and (c) 0:7. In all three �gures TAGS-opt-slowdown improves upon the performanceof Least-Work-Remaining and Random under the full range of �, however the improve-ment of TAGS-opt-slowdown is much better when the system is more lightly loaded. Infact, all the policies improve as the system load is dropped, however the improvement inTAGS is the most dramatic. In the case where the system load is 0:3, TAGS-opt-slowdownimproves upon Least-Work-Remaining by over 4 orders of magnitude at � = 1, by 7orders of magnitude when � = :6 and by almost 20 orders of magnitude when � = :2.When the system load is 0:7 on the other hand, TAGS-opt-slowdown behaves comparablyto Least-Work-Remaining for most � and only improves upon Least-Work-Remainingin the narrower range of :6 < � < 1:5. Notice however that at � � 1, the improvement ofTAGS-opt-slowdown is still about 4 orders of magnitude.Why is the performance of TAGS so correlated with load? There are 2 reasons, both ofwhich are explained by Figure 10 which shows the loads at the 2 hosts under TAGS-opt-slowdownin the case where the system load is (a) 0:3, (b) 0:5, and (c) 0:7.17
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(a) System load 0:3
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(b) System load 0:5
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

10
0

10
5

10
10

10
15

10
20

10
25

10
30

Results: Mean Slowdown

alpha

m
e

a
n

 s
lo

w
d

o
w

n

Random              
Least−Work−Remaining
TAGS−opt−slowdown   

(c) System load 0:7Figure 9: Mean slowdown under TAGS-opt-slowdown in a distributed server with 2hosts with system load (a) 0:3, (b) 0:5, and (c) 0:7. In each �gure the mean slow-down under TAGS-opt-slowdown is compared with the performance of Random andLeast-Work-Remaining. Observe that in all the �gures TAGS outperforms the other poli-cies under all �. However TAGS is most e�ective at lower system loads.18
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(a) System load 0:3 (b) System load 0:5 (c) System load 0:7Figure 10: Load at Host 1 and Host 2 under TAGS-opt-slowdown shown for a distributedserver with 2 hosts and system load (a) 0:3 (b) 0:5 (c) 0:7. The dotted line shows the sumof the loads at the 2 hosts. If there were no excess, the dotted line would be at (a) 0:6 (b)1:0 and (c) 1:4 in each of the graphs respectively. In �gures (a) and (b) we see excess onlyat the higher � range. In �gure (c) we see excess in both the low � and high � range, butnot around � � 1.The �rst reason for the ine�ectiveness of TAGS under high loads is that the higher theload, the less able TAGS is to play the load-unbalancing game described in Section 5.2. Forlower �, TAGS reaps much of its bene�t at the lower � by moving all the load onto Host2. When the system load is only 0:5, TAGS is easily able to pile all the load on Host 2without exceeding load 1 at Host 2. However when the system load is 0:7, the restrictionthat the load at Host 2 must not exceed 1 implies that Host 1 can not be as underloadedas TAGS would like. This is seen by comparing Figure 10(b) and Figure 10(c) where in (c)the load on Host 1 is much higher for the lower � than it is in (b).The second reason for the ine�ectiveness of TAGS under high loads is due to what wecall excess. Excess is the extra work created in TAGS by restarting jobs from scratch. Inthe 2-host case, the excess is simply equal to ��p2 �s1, where � is the outside arrival rate, p2is the fraction of jobs whose �nal destination is Host 2, and s1 is the cuto� di�erentiatingshort jobs from long jobs. An equivalent de�nition of excess is the di�erence between theactual sum of the loads on the hosts and h times the system load, where h is the numberof hosts. The dotted line in Figure 10(a)(b)(c) shows the sum of the loads on the hosts.Observe that for loads under 0:5, excess is not an issue. The reason is that for low �,where we need to do the severe load unbalancing, excess is basically non-existent for loads0:5 and under, since p2 is so small (due to the heavy-tailed property) and since s1 couldbe forced down. For high �, excess is present. However all the task assignment policiesalready do well in the high � region because of the low job size variability, so the excessis not much of a handicap.When system load exceeds 0:7, however, excess is much more of a problem, as isevidenced by the dotted line in Figure 10(c). One reason that the excess is worse is simply19



that overall excess increases with load because excess is proportional to � which is in turnproportional to load. The other reason that the excess is worse at higher loads has to dowith s1. In the low � range, although p2 is still low (due to the heavy-tailed property), s1cannot be forced low because the load at Host 2 is capped at 1. Thus the excess for low� is very high. In the high � range, excess again is high because p2 is high.Fortunately, observe that for higher loads excess is at its lowest point at � � 1. In fact,it is barely existent in this region. Observe also that the � � 1 region is the region wherebalancing load is the optimal thing to do (with respect to minimizing mean slowdown),regardless of the system load. This \sweet spot" is fortunate because � � 1 is characteristicof many empirically measured computer workloads, see Section 3.6 Analytic results for case of more than 2 hostsUntil now we have only considered distributed servers with 2 hosts. For 2 hosts, we sawthat the performance of TAGS-opt-slowdown was amazingly good if the system load was0:5 or less, but not nearly as good for system load > 0:5. In this section we consider thecase of more than 2 hosts. 7One claim that can be made straight o� is that an h host system (h > 2) with systemload � can always be con�gured to produce performance which is at least as good as thebest performance of a 2-host system with system load �. To see why, observe that we canuse the h host system (assuming h is even) to simulate a 2 host system as illustrated inFigure 11: Rename Hosts 1 and 2 as Subsystem 1. Rename Hosts 3 and 4 as Subsystem2. Rename Hosts 5 and 6 as Subsystem 3, etc. Now split the tra�c entering the h hostsystem so that 2=h fraction of the jobs go to each of the h=2 subsystems. Now applythe best known task assignment policy to each subsystem independently { in our case wechoose TAGS. Each subsystem will behave like a 2 host system with load � running TAGS.Since each subsystem will have identical performance, the performance of the whole h hostsystem will be equal to the performance of any one subsystem. (Observe that the aboveargument works for any task assignment policy).However, the performance of a distributed server with h > 2 hosts and system load� is often much superior to that of a distributed server with 2 hosts and system load �.Figure 12 shows the mean slowdown under TAGS-opt-slowdown for the case of a 4 hostdistributed server with system load 0:3. Comparing these results to those for the 2 hostsystem with system load 0:3 (Figure 9(a)), we see that:7The phrase \adding more hosts" can be ambiguous because it is not clear whether the arrival rate isincreased as well. For example, given a system with 2 hosts and system load 0:7, we could increase thenumber of hosts to 4 hosts without changing the arrival rate, and the system load would drop to 0:35. Onthe other hand, we could increase the number of hosts to 4 hosts and increase the arrival rate appropriately(double it) so as to maintain a system load of 0:7. In our discussions below we will attempt to be clear asto which view we have in mind. 20
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Figure 12: Mean slowdown under TAGS-opt-slowdown compared with other policies inthe case of a distributed server with 4 hosts and system load 0:3. The cuto�s forTAGS-opt-slowdown were optimized by hand. In many cases it is possible to improveupon the results shown here by adjusting the cuto�s further, so the slight bend in the graphmay not be meaningful. Observe that the mean slowdown of TAGS almost never exceeds 6.6.1 The Server Expansion Performance MetricThere is one thing that seems very arti�cial about our current comparison of task assign-ment policies. No one would ever run a system with a mean of slowdown 105. In practice,if a system was operating with mean slowdown of 105, the number of hosts would be in-creased, without increasing the arrival rate, thus dropping the system load, until the sys-tem's performance improved to a reasonable mean slowdown, say 3. Consider the followingexample: Suppose we have a 2-host system running at system load .7 and with variabilityparameter � = :6. For this system the mean slowdown under TAGS-opt-slowdown is 109,and no other policy that we know of does better. Suppose however we desire a systemwith mean slowdown under 3. So we double the number of hosts (without increasing theoutside arrival rate). At 4 hosts, with system load 0:35, TAGS-opt-slowdown now hasmean slowdown of around 1, whereas Least-Work-Remaining's slowdown has improvedto 108. It turns out we would have to increase number of hosts to 13 for the performanceof Least-Work-Remaining to improve to the point of mean slowdown under 3. And forRandom to reach that level it would require an additional 109 hosts.The above example suggests a new practical performance metric for distributed servers,which we call the server expansion metric. The server expansion metric asks how manyadditional hosts must be added to the existing server (without increasing outside arrivalrate) to bring mean slowdown down to a reasonable level (where we will arbitrarily de�ne22



\reasonable" as slowdown of 3 or less). Figure 13 compares the performance of our policiesaccording to the server expansion metric, given that we start with a 2 host system withsystem load of 0:7. For TAGS-opt-slowdown, the server expansion is only 3 for � = :2 andno more than 2 for all the other �. For Least-Work-Remaining, on the other hand, theserver expansion ranges from 1 to 27, as � decreases. Still Least-Work-Remaining is notso bad because at least its performance improves somewhat quickly as hosts are addedand load is decreased, the reason being that both these e�ects increase the probability ofa job �nding an idle host. By contrast Random, shown in Figure 13(b), is exponentiallyworse than the others, requiring as many as 105 additional hosts when � � 1. AlthoughRandom does bene�t from increasing the number of hosts, the e�ect isn't nearly as strongas it is for TAGS and Least-Work-Remaining.7 The e�ect of the range of task sizesThe purpose of this section is to investigate what happens when the range of job sizes issmaller than we have heretofore assumed, resulting in a smaller coe�cient of variation inthe job size distribution.Until now we have always assumed that the job sizes are distributed according to aBounded Pareto distribution with upper bound p = 1010 and �xed mean 3000. Thismeans, for example, that when � � 1, we need to set the lower bound on job sizes tok = 167. However this implies that the range of job sizes spans 8 orders of magnitude.It is not clear that all applications have job sizes ranging 8 orders in magnitude. Inthis section we rederive the performance of all the task assignment policies when the upperbound p is set to p = 107, while still holding the mean of the job size distribution at 3000.This means, for example, that when � � 1 (as agrees with empirical data), we need to setthe lower bound on job sizes to k = 287, which implies the range of job sizes spans just 5orders of magnitude. Figure 14 shows the second moment of the Bounded Pareto job sizedistribution as a function of � when p = 107. Comparing this �gure to Figure 4, we seethat the job size variability is far lower when p = 107.Lower variance in the job size distribution suggests that the improvement of TAGS overthe other assignment policies will not be as dramatic as in the higher variability setting(when p = 1010). This is in fact the case. What is interesting, however, is that even in thislower variability setting the improvement of TAGS over the other policies is still impressive,as shown in Figure 15. Figure 15 shows the mean slowdown of TAGS-opt-slowdown ascompared with Random and Least-Work-Left for the case of two hosts with system load0:5. Observe that for � � 1, TAGS improves upon the other policies by over 2 orders ofmagnitude. As � drops, the improvement increases. This �gure should be contrasted withFigure 6(a), which shows the same scenario where p = 1010.23
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(a) Non-log scale
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(b) Log scaleFigure 13: Server expansion requirement for each of the task assignment policies,given that we start with a 2 host system with system load of 0:7. (a) Showsjust Least-Work-Remaining and TAGS-opt-slowdown on a non-log scale (b) ShowsLeast-Work-Remaining, TAGS-opt-slowdown, and Random on a log scale.24
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Figure 15: Mean slowdown under TAGS-opt-slowdown in a distributed server with 2 hostswith system load 0:5, as compared with Random and Least-Work-Remaining. In this setof results the job size distribution is B(k; p; �), where p = 107.25



8 ConclusionThis paper is interesting not only because it proposes a powerful new task assignmentpolicy, but more so because it challenges some natural intuitions which we have come toadopt over time as common knowledge.Traditionally, the area of task assignment, load balancing and load sharing has con-sisted of heuristics which seek to balance the load among the multiple hosts. TAGS, on theother hand, speci�cally seeks to unbalance the load, and sometimes severely unbalance theload. Traditionally, the idea of killing a job and restarting it from scratch on a di�erentmachine is viewed with skepticism, but possibly tolerable if the new host is idle. TAGS,on the other hand, kills jobs and then restarts them from scratch at a target host whichis typically operating at extremely high load, much higher load than the original sourcehost. Furthermore, TAGS proposes restarting the same job multiple times. Traditionallyoptimal performance and fairness are viewed as conicting goals. In TAGS, fairness andoptimality are surprisingly close.It is interesting to consider further implications of these results, outside the scope oftask assignment. Consider for example the question of scheduling CPU-bound jobs ona single CPU, where jobs are not preemptible and no a priori knowledge is given aboutthe jobs. At �rst it seems that FCFS scheduling is the only option. However in the faceof high job size variability, FCFS may not be wise. This paper suggests that killing andrestarting jobs may be worth investigating as an alternative, if the load on the CPU islow enough to tolerate the extra work created.This work may also have implications in the area of network ow routing. A very in-teresting recent paper by Shaikh, Rexford, and Shin [27] takes a �rst step in this direction.The paper discusses routing of IP ows (which also have heavy-tailed size distributions)and recommends routing long ows di�erently from short ows.References[1] The PSC's Cray J90's. http://www.psc.edu/machines/cray/j90/j90.html, 1998.[2] Supercomputing at the NAS facility.http://www.nas.nasa.gov/Technology/Supercomputing/, 1998.[3] Baily, Foster, Hoang, Jette, Klingner, Kramer, Macaluso, Messina, Nielsen, Reed, Rudolph,Smith, Tomkins, Towns, and Vildibill. Valuation of ultra-scale computing systems. WhitePaper, 1999.[4] Azer Bestavros. Load pro�ling: A methodology for scheduling real-time tasks in a distributedsystem. In Proceedings of ICDCS '97, May 1997.[5] Mark E. Crovella and Azer Bestavros. Self-similarity in World Wide Web tra�c: Evidenceand possible causes. IEEE/ACM Transactions on Networking, 5(6):835{846, December 1997.26
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9 AppendixThis section provides the analysis of the TAGS policy. Throughout this discussion it willbe necessary to refer to Table 2 to understand the notation.We start with some properties of the original distribution of job sizes B(k; p; �):f(x) = �k�1� (k=p)� x���1 k � x � pEnXjo = Z pk f(x) � xjdx = 8>><>>: �k� (kj���pj��)(��j)(1�(k=p)�) if � 6= jk1�(k=p) � (ln p� ln k) if � = j = 1� = 1E fXg � h � �Let pi denote the fraction of jobs whose �nal destination is Host i and pvisiti denotethe fraction of jobs which ever visit Host i.pi = Z sisi�1 f(x)dx = k�1� (k=p)� �s��i�1 � s��i �pvisiti = hXj=i pjNow consider those jobs whose �nal destination is Host i. Observe that since theoriginal distribution is Bounded Pareto B(k; p; �), then the distribution of jobs whose�nal destination is Host i is also a Bounded Pareto B(si�1; si; �). This makes it easy tocompute EnXji o, the jth moment of the distribution of jobs whose �nal destination isHost i:EnXji o = Z sisi�1 xj f(x)pi dx = 8>>>>>>>>><>>>>>>>>>: �s�i�1 (sj��i�1 �sj��i )(��j) (1�(si�1=si)�) if � 6= jsi�1sisi�si�1 (ln si � ln si�1) if � = j = 1�s�i�1�1�� si�1si ��� � (ln si � ln si�1) if � = j = 2Now consider all jobs which visit Host i. These include the pi fraction of all jobs whichhave Host i as their �nal destination. However these also include the pvisiti � pi fraction of29



h Number of hostsB(k; p; �) Job size distributionp Upper bound on job size distributionk Lower bound on job size distributionf(x) Probability density function for B(k; p; �).� Heavy-tailed parameters0; s1; : : : ; sh Job size cuto�ssi Upper bound on job size seen by Host i� Outside arrival rate into system� System load�visiti Load at Host ipi Fraction of jobs whose �nal destination is Host i,i.e., whose size is between si�1 and si.pvisiti Fraction of jobs which spend time at Host i�visiti Arrival rate into Host iE fXg Mean job size under B(k; p; �) distributionE �Xj	 jth moment of job size distribution B(k; p; �)E fXig Expected size of jobs whose �nal destination is Host i.E �Xvisiti 	 Expected size of jobs which spend time at Host iE �X2i 	 Second moment of size of jobs whose �nal destination is Host i.EnXji o jth moment of size of jobs whose �nal destination is Host i.EnX2(visit)i o Second moment of size of jobs which spend time at Host iEnXj(visit)i o jth moment of size of jobs which spend time at Host iE f1=Xig Expected 1/size of jobs whose �nal destination is Host iE �W visiti 	 Expected waiting time at Host iE fWig Total expected waiting time for jobs with �nal destination Host iE fSig Expected slowdown for jobs with �nal destination Host iE fWg Expected waiting time for jobs under TAGSE fSg Expected slowdown for jobs under TAGSExcess Total excess work being doneTable 2: Notation for analysis of TAGS30



all jobs which have Host j as their �nal destination, where j > i. Those jobs which haveHost j, j > i, as their �nal destination will only have a service requirement of si at Hosti. Thus it follows that:EnXvisiti o = pipvisiti �E fXig+ pvisiti � pipvisiti � siEnX2(visit)i o = pipvisiti �EnX2i o+ pvisiti � pipvisiti � s2i�visiti = � � pvisiti�visiti = �visiti �EnXvisiti oEn1=Xji o = EnX�ji oThere are two equivalent ways of de�ning excess. We show both below and check themagainst each other in our computations.true-sum-of-loads = hXi=1 �visitidesired-sum-of-loads = h � �Excessa = true-sum-of-loads� desired-sum-of-loadsExcessb = hXi=2 �visiti � si�1Excess = Excessa = ExcessbComputing mean waiting time and mean slowdown follows from Theorem 1, exceptfor one approximation, as explained earlier in the text: we will assume that the arrivalprocess into each host is a Poisson Process. Observe that in computing mean slowdown,we have to be careful about which jobs we're averaging over. The calculation works outmost easily if we condition on the �nal destination of the job, as shown below.EnW visiti o = �visiti �EnX2(visit)i o =(2(1� �visiti ))E fWig = iXj=1EnW visitj oE fWg = hXi=1E fWig � piE fSig = E fWig �E f1=Xig31



E fSg = hXi=1E fSig � piAll the formulas above assume knowledge of the cuto� points s0; s1; : : : ; sh. To deter-mine these cuto� points, we feed all of the above formulas into MathematicaTM , leavingthe si's as undetermined variables. We then solve for the optimal setting of the si'swhich minimizes the mean slowdown, mean waiting time, or fairness, as desired, subjectto conditions that the load at each host stays below 1.

32


