
14

AutoScale: Dynamic, Robust Capacity Management for Multi-Tier
Data Centers

ANSHUL GANDHI, MOR HARCHOL-BALTER, and RAM RAGHUNATHAN,
Carnegie Mellon University
MICHAEL A. KOZUCH, Intel Labs

Energy costs for data centers continue to rise, already exceeding $15 billion yearly. Sadly much of this
power is wasted. Servers are only busy 10–30% of the time on average, but they are often left on, while idle,
utilizing 60% or more of peak power when in the idle state.

We introduce a dynamic capacity management policy, AutoScale, that greatly reduces the number of
servers needed in data centers driven by unpredictable, time-varying load, while meeting response time
SLAs. AutoScale scales the data center capacity, adding or removing servers as needed. AutoScale has two
key features: (i) it autonomically maintains just the right amount of spare capacity to handle bursts in the
request rate; and (ii) it is robust not just to changes in the request rate of real-world traces, but also request
size and server efficiency.

We evaluate our dynamic capacity management approach via implementation on a 38-server multi-tier
data center, serving a web site of the type seen in Facebook or Amazon, with a key-value store workload.
We demonstrate that AutoScale vastly improves upon existing dynamic capacity management policies with
respect to meeting SLAs and robustness.

Categories and Subject Descriptors: C.4 [Performance of Systems]: reliability, availability, and
serviceability

General Terms: Design, Management, Performance

Additional Key Words and Phrases: Data centers, power management, resource provisioning

ACM Reference Format:
Gandhi, A., Harchol-Balter, M., Raghunathan, R., and Kozuch, M. A. 2012. AutoScale: Dynamic, robust
capacity management for multi-tier data centers. ACM Trans. Comput. Syst. 30, 4, Article 14 (November
2012), 26 pages.
DOI = 10.1145/2382553.2382556 http://doi.acm.org/10.1145/2382553.2382556

1. INTRODUCTION

Many networked services, such as Facebook and Amazon, are provided by multi-tier
data center infrastructures. A primary goal for these applications is to provide good

This work is supported by the National Science Foundation, under CSR Grant 1116282, and by a grant from
the Intel Science and Technology Center on Cloud Computing.
Some of the work in this article is based on a recent publication by the authors: “Are sleep states effective in
data centers?”, Anshul Gandhi, Mor Harchol-Balter, and Michael Kozuch, International Green Computing
Conference, 2012.
Authors’ addresses: A. Gandhi, M. Harchol-Balter, and R. Raghunathan, Carnegie Mellon Univer-
sity, 5000 Forbes Avenue, Pittsburgh, PA 15213; email: anshulg@cs.cmu.edu, harchol@andrew.cmu.edu,
rraghuna@andrew.cmu.edu; M. A. Kozuch, Intel Labs Pittsburgh, 4720 Forbes Avenue, Suite 410,
Pittsburgh, PA 15213; email: michael.a.kozuch@intel.com.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permission may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701, USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2012 ACM 0734-2071/2012/11-ART14 $15.00

DOI 10.1145/2382553.2382556 http://doi.acm.org/10.1145/2382553.2382556

ACM Transactions on Computer Systems, Vol. 30, No. 4, Article 14, Publication date: November 2012.

14:2 A. Gandhi et al.

response time to users; these response time targets typically translate to some re-
sponse time Service Level Agreements (SLAs). In an effort to meet these SLAs, data
center operators typically over-provision the number of servers to meet their esti-
mate of peak load. These servers are left “always on,” leading to only 10–30% server
utilization [Armbrust et al. 2009; Barroso and Hölzle 2007]. In fact, Snyder [2010]
reports that the average data center server utilization is only 18% despite years
of deploying virtualization aimed at improving server utilization. Low utilization is
problematic because servers that are on, while idle, still utilize 60% or more of peak
power.

To reduce wasted power, we consider intelligent dynamic capacity management,
which aims to match the number of active servers with the current load, in situations
where future load is unpredictable. Servers that become idle when load is low could
be either turned off, saving power, or loaned out to some other application, or simply
released to a cloud computing platform, thus saving money. Fortunately, the bulk of
the servers in a multi-tier data center are application servers, which are stateless, and
are thus easy to turn off or give away–for example, one reported ratio of application
servers to data servers is 5:1 [Facebook 2011]. We therefore focus our attention on
dynamic capacity management of these front-end application servers.

Part of what makes dynamic capacity management difficult is the setup cost of get-
ting servers back on/ready. For example, in our lab the setup time for turning on an
application server is 260 seconds, during which time power is consumed at the peak
rate of 200W. Sadly, little has been done to reduce the setup overhead for servers. In
particular, sleep states, which are prevalent in mobile devices, have been very slow to
enter the server market. Even if future hardware reduces the setup time, there may
still be software imposed setup times due to software updates which occurred when
the server was unavailable [Facebook 2011]. Likewise, the setup cost needed to create
virtual machines (VMs) can range anywhere from 30s–1 minute if the VMs are locally
created (based on our measurements using kvm [Kivity 2007]) or 10–15 minutes if
the VMs are obtained from a cloud computing platform (see, e.g., Amazon Inc. [2008]).
All these numbers are extremely high, when compared with the typical SLA of half a
second.

The goal of dynamic capacity management is to scale capacity with unpredictably
changing load in the face of high setup costs. While there has been much prior work
on this problem, all of it has only focussed on one aspect of changes in load, namely,
fluctuations in request rate. This is already a difficult problem, given high setup
costs, and has resulted in many policies, including reactive approaches [Elnozahy
et al. 2002; Fan et al. 2007; Leite et al. 2010; Nathuji et al. 2010; Wang and Chen
2008; Wood et al. 2007] that aim to react to the current request rate, predictive ap-
proaches [Castellanos et al. 2005; Horvath and Skadron 2008; Krioukov et al. 2010;
Qin and Wang 2007] that aim to predict the future request rate, and mixed reactive-
predictive approaches [Bobroff et al. 2007; Chen et al. 2005, 2008; Gandhi et al. 2011a;
Gmach et al. 2008; Urgaonkar and Chandra 2005; Urgaonkar et al. 2005]. However,
in reality there are many other ways in which load can change. For example, request
size (work associated with each request) can change, if new features or security checks
are added to the application. As a second example, server efficiency can change, if
any abnormalities occur in the system, such as internal service disruptions, slow net-
works, or maintenance cycles. These other types of load fluctuations are all too com-
mon in data centers, and have not been addressed by prior work in dynamic capacity
management.

We propose a new approach to dynamic capacity management, which we call
AutoScale. To describe AutoScale, we decompose it into two parts: AutoScale-- (see
Section 3.5), which is a precursor to AutoScale and handles only the narrower case of

ACM Transactions on Computer Systems, Vol. 30, No. 4, Article 14, Publication date: November 2012.

AutoScale: Dynamic, Robust Capacity Management for Multi-Tier Data Center 14:3

unpredictable changes in request rate, and the full AutoScale policy (see Section 4.3),
which builds upon AutoScale-- to handle all forms of changes in load.

While AutoScale-- addresses a problem that many others have looked at, it does so
in a very different way. Whereas prior approaches aim at predicting the future request
rate and scaling up the number of servers to meet this predicted rate, which is clearly
difficult to do when request rate is, by definition, unpredictable, AutoScale-- does not
attempt to predict future request rate. Instead, AutoScale-- demonstrates that it is
possible to achieve SLAs for real-world workloads by simply being conservative in scal-
ing down the number of servers: not turning servers off recklessly. One might think
that this same effect could be achieved by leaving a fixed buffer of, say, 20% extra
servers on at all times. However, the extra capacity (20% in the above example) should
change depending on the current load. AutoScale-- does just this – it maintains just
the right number of servers in the on state at every point in time. This results in much
lower power/resource consumption. In Section 3.5, we evaluate AutoScale-- on a suite
of six different real-world traces, comparing it against five different capacity man-
agement policies commonly used in the literature. We demonstrate that in all cases,
AutoScale-- significantly outperforms other policies, meeting response time SLAs
while greatly reducing the number of servers needed, as shown in Table III.

To fully investigate the applicability of AutoScale--, we experiment with multiple
setup times ranging from 260 seconds all the way down to 20 seconds in Section 3.7
and with multiple server idle power consumption values ranging from 140 Watts all
the way down to 0 Watts in Section 3.8. Our results indicate that AutoScale-- can
provide significant benefits across the entire spectrum of setup times and idle power,
as shown in Figures 9 and 10.

To handle a broader spectrum of possible changes in load, including unpredictable
changes in the request size and server efficiency, we introduce the AutoScale policy
in Section 4.3. While prior approaches to dynamic capacity management of multi-tier
applications react only to changes in the request rate, AutoScale uses a novel capacity
inference algorithm, which allows it to determine the appropriate capacity regardless
of the source of the change in load. Importantly, AutoScale achieves this without re-
quiring any knowledge of the request rate or the request size or the server efficiency,
as shown in Tables V, VI, and VII.

To evaluate the effectiveness of AutoScale, we build a three-tier testbed consisting
of 38 servers that uses a key-value based workload, involving multiple interleavings of
CPU and I/O within each request. While our implementation involves physically turn-
ing servers on and off, one could instead imagine that any idle server that is turned
off is instead “given away”, and there is a setup time to get the server back. To under-
stand the benefits of AutoScale, we evaluate all policies on three metrics: T95, the 95th
percentile of response time, which represents our SLA; Pavg, the average power usage;
and Navg, the average capacity, or number of servers in use (including those idle and
in setup). Our goal is to meet the response time SLA, while keeping Pavg and Navg as
low as possible. The drop in Pavg shows the possible savings in power by turning off
servers, while the drop in Navg represents the potential capacity/servers available to
be given away to other applications or to be released back to the cloud so as to save on
rental costs.

This article makes the following contributions.

— We overturn the common wisdom that says that capacity provisioning requires
“knowing the future load and planning for it,” which is at the heart of existing
predictive capacity management policies. Such predictions are simply not possible
when workloads are unpredictable, and, we furthermore show they are unneces-
sary, at least for the range of variability in our workloads. We demonstrate that

ACM Transactions on Computer Systems, Vol. 30, No. 4, Article 14, Publication date: November 2012.

14:4 A. Gandhi et al.

Fig. 1. Our experimental testbed.

simply provisioning carefully and not turning servers off recklessly achieves bet-
ter performance than existing policies that are based on predicting current load or
over-provisioning to account for possible future load.

— We introduce our capacity inference algorithm, which allows us to determine the
appropriate capacity at any point of time in response to changes in request rate,
request size and/or server efficiency, without any knowledge of these quantities (see
Section 4.3). We demonstrate that AutoScale, via the capacity inference algorithm,
is robust to all forms of changes in load, including unpredictable changes in request
size and unpredictable degradations in server speeds, within the range of our traces.
In fact, for our traces, AutoScale is robust to even a 4-fold increase in request size.
To the best of our knowledge, AutoScale is the first policy to exhibit these forms
of robustness for multi-tier applications. As shown in Tables V, VI, and VII, other
policies are simply not comparable on this front.

2. EXPERIMENTAL SETUP

2.1. Our Experimental Testbed

Figure 1 illustrates our data center testbed, consisting of 38 Intel Xeon servers, each
equipped with two quad-core 2.26 GHz processors. We employ one of these servers as
the front-end load generator running httperf [Mosberger and Jin 1998] and another
server as the front-end load balancer running Apache, which distributes requests from
the load generator to the application servers. We modify Apache on the load balancer
to also act as the capacity manager, which is responsible for turning servers on and
off. Another server is used to store the entire data set, a billion key-value pairs, on a
database.

Seven servers are used as memcached servers, each with 4GB of memory for
caching. The remaining 28 servers are employed as application servers, which parse
the incoming php requests and collect the required data from the back-end memcached
servers. Our ratio of application servers to memcached servers is consistent with the
typical ratio of 5:1 [Facebook 2011].

We employ capacity management on the stateless application servers only, as they
maintain no volatile state. Stateless servers are common among today’s application
platforms, such as those used by Facebook [Facebook 2011], Amazon [DeCandia et al.
2007] and Windows Live Messenger [Chen et al. 2008]. We use the SNMP communica-
tion protocol to remotely turn application servers on and off via the power distribution
unit (PDU). We monitor the power consumption of individual servers by reading the

ACM Transactions on Computer Systems, Vol. 30, No. 4, Article 14, Publication date: November 2012.

AutoScale: Dynamic, Robust Capacity Management for Multi-Tier Data Center 14:5

power values off of the PDU. The idle power consumption for our servers is about 140W
(with C-states enabled) and the average power consumption for our servers when they
are busy or in setup is about 200W.

In our experiments, we observed the setup time for the servers to be about 260
seconds. However, we also examine the effects of lower setup times that could either be
a result of using sleep states (which are prevalent in laptops and desktop machines, but
are not well supported for server architectures yet), or using virtualization to quickly
bring up virtual machines. We replicate this effect by not routing requests to a server
if it is marked for sleep, and by replacing its power consumption values with 0W. When
the server is marked for setup, we wait for the setup time before sending requests to
the server, and replace its power consumption values during the setup time with 200W.

2.2. Workload

We design a key-value workload to model realistic multi-tier applications such as the
social networking site, Facebook, or e-commerce companies like Amazon [DeCandia
et al. 2007]. Each generated request (or job) is a php script that runs on the applica-
tion server. A request begins when the application server requests a value for a key
from the memcached servers. The memcached servers provide the value, which itself
is a collection of new keys. The application server then again requests values for these
new keys from the memcached servers. This process can continue iteratively. In our
experiments, we set the number of iterations to correspond to an average of roughly
3,000 key requests per job, which translates to a mean request size of approximately
120 ms, assuming no resource contention. The request size distribution is highly vari-
able, with the largest request being roughly 20 times the size of the smallest request.

We can also vary the distribution of key requests by the application server. In this
paper we use the Zipf [Newman 2005] distribution, whereby the probability of generat-
ing a particular key varies inversely as a power of that key. To minimize the effects of
cache misses in the memcached layer (which could result in an unpredictable fraction
of the requests violating the T95 SLA), we tune the parameters of the Zipf distribution
so that only a negligible fraction of requests miss in the memcached layer.

2.3. Trace-Based Arrivals

We use a variety of arrival traces to generate the request rate of jobs in our experi-
ments, most of which are drawn from real-world traces. Table I describes these traces.
In our experiments, the seven memcached servers can together handle at most 800 job
requests per second, which corresponds to roughly 300,000 key requests per second
at each memcached server. Thus, we scale the arrival traces such that the maximum
request rate into the system is 800 req/s. Further, we scale the duration of the traces
to 2 hours. We evaluate our policies against the full set of traces (see Table III for
results).

3. RESULTS: CHANGING REQUEST RATES

This section and the next both involve implementation and performance evaluation of
a range of capacity management policies. Each policy will be evaluated against the
six traces described in Table I. We will present detailed results for the Dual phase
trace and show summary results for all traces in Table III. The Dual phase trace is
chosen because it is quite bursty and also represents the diurnal nature of typical data
center traffic, whereby the request rate is low for a part of the day (usually the night
time) and is high for the rest (day time). The goal throughout will be to meet 95%ile

ACM Transactions on Computer Systems, Vol. 30, No. 4, Article 14, Publication date: November 2012.

14:6 A. Gandhi et al.

Table I. Description of the Traces We Use for Experiments

guarantees of T95 = 400 − 500 ms1, while minimizing the average power consumed by
the application servers, Pavg, or the average number of application servers used, Navg.
Note that Pavg largely scales with Navg.

For capacity management, we want to choose the number of servers at time t, k(t),
such that we meet a 95 percentile response time goal of 400 − 500 ms. Figure 2 shows
measured 95 percentile response time at a single server versus request rate. According
to this figure, for example, to meet a 95 percentile goal of 400 ms, we require the
request rate to a single server to be no more than r = 60 req/s. Hence, if the total
request rate into the data center at some time t is say, R(t) = 300 req/s, we know that
we need at least k = �300/r� = 5 servers to ensure our 95 percentile SLA.

3.1. AlwaysOn

The AlwaysOn policy [Chen et al. 2008; Horvath and Skadron 2008; Verma et al. 2009]
is important because this is what is currently deployed by most of the industry. The

1It would be equally easy to use 90%ile guarantees or 99%ile guarantees. Likewise, we could easily have
aimed for 300ms or 1 second response times rather than 500ms. Our choice of SLA is motivated by recent
studies [DeCandia et al. 2007; Krioukov et al. 2010; Meisner et al. 2011; Urgaonkar and Chandra 2005] that
indicate that 95 percentile guarantees of hundreds of milliseconds are typical.

ACM Transactions on Computer Systems, Vol. 30, No. 4, Article 14, Publication date: November 2012.

AutoScale: Dynamic, Robust Capacity Management for Multi-Tier Data Center 14:7

Fig. 2. A single server can optimally handle 60 req/s. Fig. 3. AlwaysOn.

policy selects a fixed number of servers, k, to handle the peak request rate and always
leaves those servers on. In our case, to meet the 95 percentile SLA of 400ms, we set
k = �Rpeak/60�, where Rpeak = 800 req/s denotes the peak request rate into the system.
Thus, k is fixed at �800/60� = 14.

Realistically, one doesn’t know Rpeak, and it is common to overestimate Rpeak by a
factor of 2 (see, e.g., [Krioukov et al. 2010]). In this article, we empower AlwaysOn, by
assuming that Rpeak is known in advance.

Figure 3 shows the performance of AlwaysOn. The solid line shows kideal, the ideal
number of servers/capacity which should be on at any given time, as given by k(t) =
�R(t)/60�. Circles are used to show kbusy+idle, the number of servers which are actually
on, and crosses show kbusy+idle+setup, the actual number of servers that are on or in setup.
For AlwaysOn, the circles and crosses lie on top of each other since servers are never
in setup. Observe that Navg = � 800

60 � = 14 for AlwaysOn, while Pavg = 2323W, with
similar values for the different traces in Table III.

3.2. Reactive

The Reactive policy (see, e.g., Urgaonkar and Chandra [2005]) reacts to the current
request rate, attempting to keep exactly �R(t)/60� servers on at time t, in accordance
with the solid line. However, because of the setup time of 260s, Reactive lags in turning
servers on. In our implementation of Reactive, we sample the request rate every 20
seconds, adjusting the number of servers as needed.

Figure 4(a) shows the performance of Reactive. By reacting to current request rate
and adjusting the capacity accordingly, Reactive is able to bring down Pavg and Navg
by as much as a factor of two or more, when compared with AlwaysOn. This is a huge
win. Unfortunately, the response time SLA is almost never met and is typically ex-
ceeded by a factor of at least 10–20 (as in Figure 4(a)), or even by a factor of 100 (see
Table III).

3.3. Reactive with Extra Capacity

One might think the response times under Reactive would improve a lot by just adding
some x% extra capacity at all times. This x% extra capacity can be achieved by running
Reactive with a different r setting. Unfortunately, for this trace, it turns out that to
bring T95 down to our desired SLA, we need 100% extra capacity at all times, which
corresponds to setting r = 30. This brings T95 down to 487 ms, but causes power to jump
up to the levels of AlwaysOn, as illustrated in Figure 4(b). It is even more problematic
that each of our six traces in Table I requires a different x% extra capacity to achieve

ACM Transactions on Computer Systems, Vol. 30, No. 4, Article 14, Publication date: November 2012.

14:8 A. Gandhi et al.

Fig. 4. (a) Reactive and (b) Reactive with extra capacity.

the desired SLA (with x% typically ranging from 50% to 200%), rendering such a policy
impractical.

3.4. Predictive

Predictive policies attempt to predict the request rate 260 seconds from now. This
section describes two policies that were used in many papers [Bodı́k et al. 2009;
Grunwald et al. 2000; Pering et al. 1998; Verma et al. 2009] and were found to be the
most powerful by Krioukov et al. [2010].

Predictive - Moving Window Average (MWA). In the MWA policy, we consider a
“window” of some duration (say, 10 seconds). We average the request rates during that
window to deduce the predicted rate during the 11th second. Then, we slide the window
to include seconds 2 through 11, and average those values to deduce the predicted rate
during the 12th second. We continue this process of sliding the window rightward until
we have predicted the request rate at time 270 seconds, based on the initial 10 seconds
window.

If the estimated request rate at second 270 exceeds the current request rate, we
determine the number of additional servers needed to meet the SLA (via the k = �R/r�
formula) and turn these on at time 11, so that they will be ready to run at time 270.
If the estimated request rate at second 270 is lower than the current request rate, we
look at the maximum request rate, M, during the interval from time 11 to time 270.
If M is lower than the current request rate, then we turn off as many servers as we
can while meeting the SLA for request rate M. Of course, the window size affects the
performance of MWA. We empower MWA by using the best window size for each trace.

Figure 5(a) shows that the performance of Predictive MWA is very similar to what
we saw for Reactive: low Pavg and Navg values, beating AlwaysOn by a factor of 2, but
high T95 values, typically exceeding the SLA by a factor of 10 to 20.

Predictive - Linear Regression (LR). The LR policy is identical to MWA except that,
to estimate the request rate at time 270 seconds, we use linear regression to match the
best linear fit to the values in the window. Then we extend our line out by 260 seconds
to get a prediction of the request rate at time 270 seconds.

The performance of Predictive LR is worse than that of Predictive MWA. Response
times are still bad, but now capacity and power consumption can be bad as well. The
problem, as illustrated in Figure 5(b), is that the linear slope fit used in LR can end up
overshooting the required capacity greatly.

ACM Transactions on Computer Systems, Vol. 30, No. 4, Article 14, Publication date: November 2012.

AutoScale: Dynamic, Robust Capacity Management for Multi-Tier Data Center 14:9

Fig. 5. (a) Predictive: MWA and (b) Predictive: LR.

Table II. The (In)sensitivity of AutoScale--’s Performance to twait
�����������Trace

twait 60s 120s 260s

Dual phase
[nlanr 1995]

T95 503ms 491ms 445ms
Pavg 1,253W 1,297W 1,490W
Navg 7.0 7.2 8.8

3.5. AutoScale−−
One might think that the poor performance of the dynamic capacity management poli-
cies we have seen so far stems from the fact that they are too slow to turn servers on
when needed. However, an equally big concern is the fact that these policies are quick
to turn servers off when not needed, and hence do not have those servers available
when load subsequently rises. This rashness is particularly problematic in the case of
bursty workloads, such as those in Table I.

AutoScale-- addresses the problem of scaling down capacity by being very conser-
vative in turning servers off while doing nothing new with respect to turning servers
on (the turning on algorithm is the same as in Reactive). We will show that by simply
taking more care in turning servers off, AutoScale-- is able to outperform all the prior
dynamic capacity management policies we have seen with respect to meetings SLAs,
while simultaneously keeping Pavg and Navg low.

When to Turn a Server Off? Under AutoScale--, each server decides autonomously
when to turn off. When a server goes idle, rather than turning off immediately, it
sets a timer of duration twait and sits in the idle state for twait seconds. If a request
arrives at the server during these twait seconds, then the server goes back to the busy
state (with zero setup cost); otherwise, the server is turned off. In our experiments for
AutoScale--, we use a twait value of 120s. Table II shows that AutoScale-- is largely
insensitive to twait in the range twait = 60s to twait = 260s. There is a slight increase in
Pavg (and Navg) and a slight decrease in T95 when twait increases, due to idle servers
staying on longer.

The idea of setting a timer before turning off an idle server has been proposed before
(see, e.g., Kim and Rosing [2006], Lu et al. [2000], and Iyer and Druschel [2001]), how-
ever, only for a single server. For a multi-server system, independently setting timers
for each server can be inefficient, since we can end up with too many idle servers. Thus,
we need a more coordinated approach for using timers in our multiserver system that
takes routing into account, as explained here.

ACM Transactions on Computer Systems, Vol. 30, No. 4, Article 14, Publication date: November 2012.

14:10 A. Gandhi et al.

Fig. 6. For a single server, packing factor, p = 10. Fig. 7. AutoScale--.

How to Route Jobs to Servers?. Timers prevent the mistake of turning off a server
just as a new arrival comes in. However, they can also waste power and capacity by
leaving too many servers in the idle state. We’d basically like to keep only a small
number of servers (just the right number) in this idle state.

To do this, we introduce a routing scheme that tends to concentrate jobs onto a small
number of servers, so that the remaining (unneeded) servers will naturally “time out.”
Our routing scheme uses an index-packing idea, whereby all on servers are indexed
from 1 to n. Then, we send each request to the lowest numbered on server that cur-
rently has fewer than p requests, where p stands for packing factor and denotes the
maximum number of requests that a server can serve concurrently and meet its re-
sponse time SLA. For example, in Figure 6, we see that to meet a 95%ile guarantee
of 400 ms, the packing factor is p = 10 (in general, the value of p depends on the
system in consideration). When all on servers are already packed with p requests
each, additional request arrivals are routed to servers via the join-the-shortest-queue
routing.

In comparison with all the other policies, AutoScale-- hits the “sweet spot” of low
T95 as well as low Pavg and Navg. As seen from Table III, AutoScale-- is close to
the response time SLA in all traces except for the Big spike trace. Simultaneously,
the mean power usage and capacity under AutoScale-- is typically significantly better
than AlwaysOn, saving as much as a factor of two in power and capacity.

Figure 7 illustrates how AutoScale-- is able to achieve these performance results.
Observe that the crosses and circles in AutoScale-- form flat constant lines, instead
of bouncing up and down, erratically, as in the earlier policies. This comes from a
combination of the twait timer and the index-based routing, which together keep the
number of servers just slightly above what is needed, while also avoiding toggling
the servers between on and off states when the load goes up and down. Comparing
Figures 7 and 4(b), we see that the combination of timers and index-based routing is
far more effective than using Reactive with extra capacity, as in Section 3.3.

3.6. Opt

As a yardstick for measuring the effectiveness of AutoScale--, we define an optimal
policy, Opt, which behaves identically to Reactive, but with a setup time of zero. Thus,
as soon as the request rate changes, Opt reacts by immediately adding or removing
the required capacity, without having to wait for setup.

Figure 8 shows that under Opt, the number of servers on scales exactly with the
incoming request load. Opt easily meets the T95 SLA, and consumes very little power
and resources (servers). Note that while Opt usually has a T95 of about 320–350ms,

ACM Transactions on Computer Systems, Vol. 30, No. 4, Article 14, Publication date: November 2012.

AutoScale: Dynamic, Robust Capacity Management for Multi-Tier Data Center 14:11

Table III. Comparison of All Policies. Setup Time = 260s Throughout
�����������Trace

Policy AlwaysOn Reactive
Predictive Predictive

Opt AutoScale--MWA LR

Slowly varying
[ita 1998]

T95 271ms 673ms 3,464ms 618ms 366ms 435ms
Pavg 2,205W 842W 825W 964W 788W 1,393W
Navg 14.0 4.1 4.1 4.9 4.0 5.8

Quickly
varying

T95 303ms 20,005ms 3,335ms 12,553ms 325ms 362ms
Pavg 2,476W 1,922W 2,065W 3,622W 1,531W 2,205W
Navg 14.0 10.1 10.6 22.1 8.2 15.1

Big spike
[nlanr 1995]

T95 229ms 3,426ms 9,337ms 1,753ms 352ms 854ms
Pavg 2,260W 985W 998W 1,503W 845W 1,129W
Navg 14.0 4.9 4.9 8.1 4.5 6.6

Dual phase
[nlanr 1995]

T95 291ms 11,003ms 7,740ms 2,544ms 320ms 491ms
Pavg 2,323W 1,281W 1,276W 2,161W 1,132W 1,297W
Navg 14.0 6.2 6.3 11.8 5.9 7.2

Large
variations

[nlanr 1995]

T95 289ms 4,227ms 13,399ms 20,631ms 321ms 474ms
Pavg 2,363W 1,391W 1,461W 2,576W 1,222W 1,642W
Navg 14.0 7.8 8.1 16.4 7.1 10.5

Steep tri phase
[sap 2011]

T95 377ms > 1 min > 1 min 661ms 446ms 463ms
Pavg 2,263W 849W 1,287W 3,374W 1,004W 1,601W
Navg 14.0 5.2 7.2 20.5 5.1 8.0

Fig. 8. Opt.

and thus it might seem like Opt is over-provisioning, it just about meets the T95 SLA
for the Tri phase trace (see Table III) and hence cannot be made more aggressive.

In support of AutoScale--, we find that Opt’s power consumption and server usage is
only 30% less than that of AutoScale--, averaged across all traces, despite AutoScale--
having to cope with the 260s setup time.

3.7. Lower Setup Times

While production servers today are only equipped with “off” states that necessitate
huge setup times (260s for our servers), future servers may support sleep states,

ACM Transactions on Computer Systems, Vol. 30, No. 4, Article 14, Publication date: November 2012.

14:12 A. Gandhi et al.

Fig. 9. Effect of lower setup times for (a) Big spike trace [nlanr 1995] and (b) Dual phase trace [nlanr 1995].

which can lower setup times considerably. Further, with virtualization, the setup time
required to bring up additional capacity (in the form of virtual machines) might also go
down. In this section, we again contrast the performance of AutoScale-- with simpler
dynamic capacity management policies, for the case of lower setup times. We achieve
these lower setup times by tweaking our experimental testbed as discussed at the end
of Section 2.1. Furthermore, for AutoScale--, we reduce the value of twait in proportion
to the reduction in setup time.

When the setup time is very low, approaching zero, then by definition, all policies
approach Opt. For moderate setup times, one might expect that AutoScale-- does not
provide significant benefits over other policies such as Reactive, since T95 should not
rise too much during the setup time. This turns out to be false since the T95 under
Reactive continues to be high even for moderate setup times.

Figure 9(a) shows our experimental results for T95 for the Big spike trace [nlanr
1995], under Reactive and AutoScale--. We see that as the setup time drops, the
T95 drops almost linearly for both Reactive and AutoScale--. However, AutoScale--
continues to be superior to Reactive with respect to T95 for any given setup time. In
fact, even when the setup time is only 20s, the T95 under Reactive is almost twice that
under AutoScale--. This is because of the huge spike in load in the Big spike trace
that cannot be handled by Reactive even at low setup times. We find similar results
for the Steep tri phase trace [sap 2011], with T95 under Reactive being more than
three times as high as that under AutoScale--. The Pavg and Navg values for Reactive
and AutoScale-- also drop with setup time, but the changes are not as significant as
for T95.

Figure 9(b) shows our experimental results for T95 for the Dual phase trace [nlanr
1995], under Reactive and AutoScale--. This time, we see that as the setup time
drops below 100s, the T95 under Reactive approaches that under AutoScale--. This is
because of the relatively small fluctuations in load in the Dual phase trace, which can
be handled by Reactive once the setup time is small enough. However, for setup times
larger than 100s, AutoScale-- continues to be significantly better than Reactive. We
find similar results for the Quickly varying trace and the Large variations trace [nlanr
1995].

In summary, depending on the trace, Reactive can perform poorly even for low setup
times (see Figure 9(a)). We expect similar behavior under the Predictive policies as
well. Thus, AutoScale-- can be very beneficial even for more moderate setup times.
Note that AlwaysOn and Opt are not affected by setup times.

ACM Transactions on Computer Systems, Vol. 30, No. 4, Article 14, Publication date: November 2012.

AutoScale: Dynamic, Robust Capacity Management for Multi-Tier Data Center 14:13

Fig. 10. Effect of lower idle power for (a) Big spike trace [nlanr 1995] and (b) Dual phase trace [nlanr 1995].

3.8. Lower Idle Power

The idle power for the servers in our testbed is about 140W (with C-states enabled), as
mentioned in Section 2.1. However, with advances in processor technology, it is very
likely that the server idle power will drop. This claim is also supported by recent liter-
ature [Gandhi et al. 2011b; Meisner et al. 2009, 2011]. The drop in server idle power
should greatly benefit the static capacity management policy, AlwaysOn, by lowering
its Pavg, since a lot of servers are idle under AlwaysOn. However, for the dynamic
capacity management policies, we only expect Pavg to drop slightly, since servers are
rarely idle under such policies. To explore the effects of lower server idle power, we
contrast the performance of AutoScale-- with that of AlwaysOn. We achieve lower idle
power by tweaking our experimental testbed along the same lines as discussed at the
end of Section 2.1.

Figures 10(a) and 10(b) show our experimental results for Pavg for the Big spike
trace [nlanr 1995] and the Dual phase trace [nlanr 1995] respectively, under AlwaysOn
and AutoScale--. We see that the Pavg value for AlwaysOn drops almost linearly
with the server idle power. This is to be expected since the number of servers idle
under AlwaysOn for a given trace is constant, and thus, a drop in server idle power
lowers the power consumption of these idle servers proportionately. The Pavg value for
AutoScale-- also drops with the idle power, but this drop is negligible. It is interesting
to note that the Pavg value for AlwaysOn drops below that of AutoScale-- only when
the idle power is extremely low (less than 15W). We found similar results for the other
traces as well. Note that we are being particularly conservative in assuming that
while the server idle power drops, the power consumed by the servers when they are
in setup remains the same. This assumption hurts the Pavg value for AutoScale--.
The T95 value is not affected by the server idle power and is thus not shown.

In summary, while lower server idle power favors AlwaysOn, the power savings
under AutoScale-- continue to be greater than those under AlwaysOn, unless the idle
power is extremely low.

4. RESULTS: ROBUSTNESS

Thus far, in our traces, we have only varied the request rate over time. However, in re-
ality there are many other ways in which load can change. For example, if new features
or security checks are added to the application, the request size might increase. We
mimic such effects by increasing the number of key-value lookups associated with each
request. As a second example, if any abnormalities occur in the system, such as inter-
nal service disruptions, slow networks, or maintenance cycles, servers may respond

ACM Transactions on Computer Systems, Vol. 30, No. 4, Article 14, Publication date: November 2012.

14:14 A. Gandhi et al.

Fig. 11. A single server can no longer handle 60
req/s when the request size increases.

Fig. 12. For a single server, setting nsrv = p = 10
works well for all request sizes.

more slowly, and requests may accumulate at the servers. We mimic such effects by
slowing down the frequency of the application servers. All the dynamic capacity man-
agement policies described thus far, with the exception of Opt, use the request rate
to scale capacity. However, using the request rate to determine the required capacity
is somewhat fragile. If the request size increases, or if servers become slower, due to
any of the reasons mentioned above, then the number of servers needed to maintain
acceptable response times ought to be increased. In both cases, however, no additional
capacity will be provisioned if the policies only look at request rate to scale up capacity.

4.1. Why Request Rate Is not a Good Feedback Signal

In order to assess the limitations of using request rate as a feedback signal for scaling
capacity, we ran AutoScale-- on the Dual phase trace with a 2x request size (meaning
that our request size is now 240ms as opposed to the 120ms size we have used thus
far). Since AutoScale-- does not detect an increase in request size, and thus doesn’t
provision for this, its T95 shoots up (T95 = 51, 601ms). This is also true for the Reactive
and Predictive policies, as can be seen in Tables V and VI for the case of increased
request size and in Table VII for the case of slower servers.

Figure 11 shows measured 95%ile response time at a single server versus request
rate for different request sizes. It is clear that while each server can handle 60 req/s
without violating the T95 SLA for a 1x request size, the T95 shoots up for the 2x and
4x request sizes. An obvious way to solve this problem is to determine the request
size. However, it is not easy to determine the request size since the size is usually not
known ahead of time. Trying to derive the request size by monitoring the response
times doesn’t help either since response times are usually affected by queueing delays.
Thus, we need to come up with a better feedback signal than request rate or request
size.

4.2. A Better Feedback Signal that’s Still not Quite Right

We propose using the number of requests in the system, nsys, as the feedback signal for
scaling up capacity rather than the request rate. We assert that nsys more faithfully
captures the dynamic state of the system than the request rate. If the system is under-
provisioned either because the request rate is too high or because the request size is
too big or because the servers have slowed down, nsys will tend to increase. If the sys-
tem is over-provisioned, nsys will tend to decrease below some expected level. Further,
calculating nsys is fairly straightforward; many modern systems (including our Apache
load balancer) already track this value, and it is instantaneously available.

ACM Transactions on Computer Systems, Vol. 30, No. 4, Article 14, Publication date: November 2012.

AutoScale: Dynamic, Robust Capacity Management for Multi-Tier Data Center 14:15

Fig. 13. Our proposed policy overshoots while scaling
up capacity, resulting in high Pavg and Navg.

Fig. 14. A doubling of request rate can lead to a
tripling of number of requests at a single server.

Figure 12 shows the measured 95%ile response time at a single server versus the
number of requests at a single server, nsrv, for different request sizes. Note that nsrv =
nsys in the case of a single-server system. Surprisingly, the 95%ile response time values
do not shoot up for the 2x and 4x request sizes for a given nsrv value. In fact, setting
nsrv = 10, as in Section 3.5, provides acceptable T95 values for all request sizes (note
that T95 values for the 2x and 4x request sizes are higher than 500ms, which is to
be expected as the work associated with each request is naturally higher). This is
because an increase in the request size (or a decrease in the server speed) increases
the rate at which “work” comes into each server. This increase in work is reflected
in the consequent increase in nsrv. By limiting nsrv using p, the packing factor (the
maximum number of requests that a server can serve concurrently and meet its SLA),
we can limit the rate at which work comes in to each server, thereby adjusting the
required capacity to ensure that we meet the T95 SLA. Based on these observations,
we set p = 10 for the 2x and 4x request sizes. Thus, p is agnostic to request sizes for
our system, and only needs to be computed once. The insensitivity of p to request sizes
is to be expected since p represents the degree of parallelism for a server, and thus
depends on the specifications of a server (number of cores, hyperthreading, etc), and
not on the request size.

Based on our observations from Figure 12, we propose a plausible solution for dy-
namic capacity management based on looking at the total number of requests in the
system, nsys, as opposed to looking at the request rate. The idea is to provision capacity
to ensure that the number of requests at a server is nsrv = 10. In particular, the pro-
posed policy is exactly the same as AutoScale--, except that it estimates the required
capacity as kreqd = �nsys/10�, where nsys is the total number of requests in the system
at that time. In our implementation, we sample nsys every 20 seconds, and thus, the
proposed policy re-scales capacity, if needed, every 20 seconds. Note that the proposed
policy uses the same method to scale down capacity as AutoScale--, viz., using a time-
out of 120s along with the index-packing routing.

Figure 13 shows how our proposed policy behaves for the 1x request size. We see
that our proposed policy successfully meets the T95 SLA, but it clearly overshoots in
terms of scaling up capacity when the request rate goes up. Thus, the proposed policy
results in high power and resource consumption. One might think that this overshoot
can be avoided by packing more requests at each server, thus allowing nsrv to be higher
than 10. However, note that the T95 in Figure 13 is already quite close to the 500ms
SLA, and increasing the number of requests packed at a server beyond 10 can result
in SLA violations.

ACM Transactions on Computer Systems, Vol. 30, No. 4, Article 14, Publication date: November 2012.

14:16 A. Gandhi et al.

Figure 14 explains the overshoot in terms of scaling up capacity for our proposed
policy. We see that when the request rate into a single server, rsrv, doubles from 60
req/s to 120 req/s, nsrv more than doubles from 10 to 32. Thus, our proposed policy
scales up capacity by a factor of 3, whereas ideally capacity should only be scaled up
by a factor of 2. Clearly our proposed policy does not work so well, even in the case
where the request size is just 1x.

We now introduce our AutoScale policy, which solves our problems of scaling up
capacity.

4.3. AutoScale: Incorporating the Right Feedback Signal

We now describe the AutoScale policy and show that it not only handles the case
where request rate changes, but also handles cases where the request size changes (see
Tables V and VI) or where the server efficiency changes (see Table VII).

AutoScale differs from the capacity management policies described thus far in that
it uses the number of requests in the system, nsys, as the feedback signal rather than
request rate. However, AutoScale does not simply scale up the capacity linearly with
an increase in nsys, as was the case with our proposed policy. This is because nsys grows
super-linearly during the time that the system is under-provisioned, as is well known
in queueing theory. Instead, AutoScale tries to infer the amount of work in the system
by monitoring nsys. The amount of work in the system is proportional to both the
request rate and the request size (the request size in turn depends also on the server
efficiency), and thus, we try to infer the product of request rate and request size, which
we call system load, ρsys. Formally,

ρsys =
request rate into × average

the data center (R) request size,

where the average 1x request size is 120ms. Fortunately, there is an easy relationship
(which we describe soon) between the number of requests in the system, nsys, and
the system load, ρsys, obviating the need to ever measure load or request rate or the
request size. Once we have ρsys, it is easy to get to the required capacity, kreqd, since
ρsys represents the amount of work in the system and is hence proportional to kreqd.
We now explain the translation process from nsys to ρsys and then from ρsys to kreqd. We
refer to this entire translation algorithm as the capacity inference algorithm. The full
translation from nsys to kreqd will be given in Eq. (4). A full listing of all the variables
used in this section is provided in Table IV for convenience.

The Capacity Inference Algorithm. In order to understand the relationship be-
tween nsys and ρsys, we first derive the relationship between the number of requests
at a single server, nsrv, and the load at a single server, ρsrv. Formally, the load at a
server is defined as

ρsrv =
request rate into × average

a single server (rsrv) request size,
(1)

where the average 1x request size is 120ms and rsrv is the request rate into a single
server. If the request rate to a server, rsrv, is made as high as possible without violating
the SLA, then the resulting ρsrv from Eq. (1) is referred to as the reference load, ρref .
For our system, recall that the maximum request rate into a single server without
violating the SLA is rsrv = 60 req/s (see Figure 2). Thus,

ρref = 60 × 0.12 ≈ 7, (2)

ACM Transactions on Computer Systems, Vol. 30, No. 4, Article 14, Publication date: November 2012.

AutoScale: Dynamic, Robust Capacity Management for Multi-Tier Data Center 14:17

Table IV. Description of Variables

Variable Description

rsrv Request rate into a single server
R Request rate into the data center
nsys Number of requests in the system
nsrv Number of requests at a server
p Packing factor (maximum nsrv without violating SLA)
ρsys System load
ρsrv Load at a server
ρref Reference load (for a single server)
kreqd Required capacity (number of servers)
kcurr Current capacity

Fig. 15. Load at a server as a function of the number of requests at a server for various request sizes.
Surprisingly, the graph is invariant to changes in request size.

meaning that a single server can handle a load of at most 7 without violating the SLA,
assuming a 1x request size of 120ms.

Returning to the discussion of how ρsrv and nsrv are related, we expect that ρsrv should
increase with nsrv. Figure 15(a) shows our experimental results for ρsrv as a function of
nsrv. Note that ρsrv = ρref = 7 corresponds to nsrv = p = 10, where p is the packing factor.
We obtain Figure 15(a) by converting rsrv in Figure 14 to ρsrv using Eq. (1). Observe
that when ρsrv doubles from 7 to 14, we see that nsrv more than triples from 10 to 32,
as was the case in Figure 14.

We’ll now estimate ρsys, the system load, using the relationship between nsrv and ρsrv.
To estimate ρsys, we first approximate nsrv as nsys

kcurr
, where kcurr is the current number of

on servers. We then use nsrv in Figure 15(a) to estimate the corresponding ρsrv. Finally,
we have ρsys = kcurr × ρsrv. In summary, given the number of requests in the system,
nsys, we can derive the system load, ρsys, as follows:

nsys
÷kcurr−−−→ nsrv

Fig. 15(a)−−−−−→ ρsrv
×kcurr−−−→ ρsys. (3)

Surprisingly, the relationship between the number of requests at a server, nsrv, and
the load at a server, ρsrv, does not change when request size changes. Figure 15(b)
shows our experimental results for the relationship between nsrv and ρsrv for different
request sizes. We see that the plot is invariant to changes in request size. Thus, while
calculating ρsys = kcurr × ρsrv, we don’t have to worry about the request size and we

ACM Transactions on Computer Systems, Vol. 30, No. 4, Article 14, Publication date: November 2012.

14:18 A. Gandhi et al.

can simply use Figure 15(a) to estimate ρsys from nsys irrespective of the request size.
Likewise, we find that the relationship between nsrv and ρsrv does not change when the
server speed changes. This is because a decrease in server speed is the same as an
increase in request size for our system.

The reason why the relationship between nsrv and ρsrv is agnostic to request size
is because ρsrv, by definition (see Eq. (1)), takes the request size into account. If the
request size doubles, then the request rate into a server needs to drop by a factor
of 2 in order to maintain the same ρsrv. These changes result in exactly the same
amount of work entering the system per unit time, and thus, nsrv does not change.
The insensitivity of the relationship between nsrv and ρsrv to changes in request size
is consistent with queueing-theoretic analysis [Kleinrock 1975]. Interestingly, this
insensitivity, coupled with the fact that the packing factor, p, is a constant for our
system (p = 10, see Section 4.2), results in the reference load, ρref , being a constant for
our system, since ρref = ρsrv for the case when nsrv = p = 10 (see Figure 15(a)). Thus,
we only need to compute ρref once for our system.

Now that we have ρsys from Eq. (3), we can translate this to the required capacity,
kreqd, using ρref . Since ρsys corresponds to the total system load, while ρref corresponds
to the load that a single server can handle, we deduce that the required capacity is:

kreqd =
⌈

ρsys

ρref

⌉
.

In summary, we can get from nsys to kreqd by first translating nsys to ρsys, which leads us
to kreqd, as follows:

nsys
÷kcurr−−−→ nsrv

Fig. 15(a)−−−−−→ ρsrv
×kcurr−−−→ ρsys

÷ρref−−−→ kreqd. (4)

For example, if nsys = 320 and kcurr = 10, then we get nsrv = 32, and from Figure 15(a),
ρsrv = 14, irrespective of request size. The load for the system, ρsys, is then given by
kcurr × ρsrv = 140, and since ρref = 7, the required capacity is kreqd = �kcurr × ρsrv

ρref
� = 20.

Consequently, AutoScale turns on 10 additional servers. In our implementation, we
reevaluate kreqd every 20s to avoid excessive changes in the number of servers.

The insensitivity to request size of the relationship between nsrv and ρsrv from
Figure 15(b) allows us to use Eq. (4) to compute the desired capacity, kreqd, in response
to any form of load change. Further, as previously noted, p and ρref are constants for
our system, and only need to be computed once. These properties make AutoScale a
very robust capacity management policy.

Performance of AutoScale. Tables V and VI summarize results for the case where
the number of key-value lookups per request (or the request size) increases by a factor
of 2 and 4 respectively. Because request sizes are dramatically larger, and because the
number of servers in our testbed is limited, we compensate for the increase in request
size by scaling down the request rate by the same factor. Thus, in Table V, request
sizes are a factor of two larger than in Table III, but the request rate is half that of
Table III. The T95 values are expected to increase as compared with Table III because
each request now takes longer to complete (since it does more key-value lookups).

Looking at AutoScale in Table V, we see that T95 increases to around 700ms, while
in Table VI, it increases to around 1200ms. This is to be expected. By contrast, for
all other dynamic capacity management policies, the T95 values exceed one minute,
both in Tables V and VI. Again, this is because these policies react only to changes in
the request rate, and thus end up typically under-provisioning. We do not show the
results for AutoScale-- in Tables V and VI, but its performance is just as bad as the
other dynamic capacity management policies that react only to changes in the request

ACM Transactions on Computer Systems, Vol. 30, No. 4, Article 14, Publication date: November 2012.

AutoScale: Dynamic, Robust Capacity Management for Multi-Tier Data Center 14:19

Table V. Comparison of All Policies for 2x Request Size.2
������������
Trace

Policy AlwaysOn Reactive
Predictive Predictive

Opt AutoScale
MWA LR

Slowly varying
[ita 1998]

T95 478ms > 1 min > 1 min > 1 min 531ms 701ms
Pavg 2,127W 541W 597W 728W 667W 923W
Navg 14.0 3.2 2.7 3.8 4.0 5.4

Dual phase
[nlanr 1995]

T95 424ms > 1 min > 1 min > 1 min 532ms 726ms
Pavg 2,190W 603W 678W 1,306W 996W 1,324W
Navg 14.0 3.0 2.6 6.6 5.8 7.3

Table VI. Comparison of All Policies for 4x Request Size.2
������������
Trace

Policy AlwaysOn Reactive
Predictive Predictive

Opt AutoScale
MWA LR

Slowly varying
[ita 1998]

T95 759ms > 1 min > 1 min > 1 min 915ms 1,155ms
Pavg 2,095W 280W 315W 391W 630W 977W
Navg 14.0 1.9 1.7 2.1 4.0 5.7

Dual phase
[nlanr 1995]

T95 733ms > 1 min > 1 min > 1 min 920ms 1,217ms
Pavg 2,165W 340W 389W 656W 985W 1,304W
Navg 14.0 1.7 1.8 3.2 5.9 7.2

rate. AlwaysOn knows the peak load ahead of time, and thus, always keeps Navg = 14
servers on. As expected, the T95 values for AlwaysOn are quite good, but Pavg and Navg
are very high. Comparing AutoScale and Opt, we see that Opt’s power consumption
and server usage is again only about 30% less than that of AutoScale.

Figure 16 shows the server behavior under AutoScale for the Dual phase trace for
request sizes of 1x, 2x and 4x. Clearly, AutoScale is successful at handling the changes
in load due to both, changes in request rate and changes in request size.

Table VII illustrates another way in which load can change. Here, we return to
the 1x request size, but this time all servers have been slowed down to a frequency of
1.6 GHz as compared with the default frequency of 2.26 GHz. By slowing down the
frequency of the servers, T95 naturally increases. We find that for all the dynamic
capacity management policies, except for AutoScale, the T95 shoots up. The reason is
that these other dynamic capacity management policies provision capacity based on
the request rate. Since the request rate has not changed as compared to Table III,
they typically end up under-provisioning, now that servers are slower. The T95 for
AlwaysOn does not shoot up because even in Table III, it is greatly over-provisioning
by provisioning for the peak load at all times. Since the AutoScale policy is robust to
all changes in load, it provisions correctly, resulting in acceptable T95 values. Pavg and
Navg values for AutoScale continue to be much lower than that of AlwaysOn, similar
to Table III.

2For a given arrival trace, when request size is scaled up, the size of the application tier should ideally be
scaled up as well so as to accommodate the increased load. However, since our application tier is limited
to 28 servers, we follow up an increase in request size with a proportionate decrease in request rate for the
arrival trace. Thus, the peak load (request rate times request size) is the same before and after the request
size increase, and our 28 server application tier suffices for the experiment. In particular, AlwaysOn, which
knows the peak load ahead of time, is able to handle peak load by keeping 14 servers on even as the request
size increases.

ACM Transactions on Computer Systems, Vol. 30, No. 4, Article 14, Publication date: November 2012.

14:20 A. Gandhi et al.

Fig. 16. Robustness of AutoScale to changes in request size. The request size is 1x (or 120ms) in (a), 2x (or
240ms) in (b), and 4x (or 480ms) in (c).

Table VII. Comparison of All Policies for Lower CPU Frequency
������������
Trace

Policy AlwaysOn Reactive
Predictive Predictive

Opt AutoScale
MWA LR

Slowly varying
[ita 1998]

T95 572ms > 1 min > 1 min 3,339ms 524ms 760ms
Pavg 2,132W 903W 945W 863W 638W 1,123W
Navg 14.0 5.7 5.9 4.8 4.0 7.2

Dual phase
[nlanr 1995]

T95 362ms 24,401ms 23,412ms 2,527ms 485ms 564ms
Pavg 2,147W 1,210W 1,240W 2,058W 1,027W 1,756W
Navg 14.0 6.3 7.4 12.2 5.9 10.8

Tables V, VI, and VII clearly indicate the superior robustness of AutoScale which
uses nsys to respond to changes in load, allowing AutoScale to respond to all forms of
changes in load.

4.4. Alternative Feedback Signal Choices

AutoScale employs the number of requests in the system, nsys, as opposed to request
rate, as the feedback signal for provisioning capacity. An alternative feedback sig-
nal that we could have employed in AutoScale is T95, the performance metric. Using
the performance metric as a feedback signal is a popular choice in control-theoretic
approaches [Leite et al. 2010; Li and Nahrstedt 1999; Lu et al. 2006; Nathuji et al.
2010]. While using T95 as the feedback signal might allow AutoScale to achieve the
same robustness properties as provided by nsys, we would first have to come up with
an analogous capacity inference algorithm for the T95 feedback signal. As discussed
in Section 4.2, using an inaccurate capacity inference algorithm can result in poor ca-
pacity management. For single-tier systems, one can use simple empirical models or
analytical approximations to derive the capacity inference algorithm, as was the case
in Li and Nahrstedt [1999], Lu et al. [2006], and Chen et al. [2005]. However, for multi-
tier systems, coming up with a capacity inference algorithm can be quite difficult, as
noted in Nathuji et al. [2010]. Further, performance metrics such as T95 depend not
only on the system load, ρsys, but also on the request size, as is well known in queueing
theory [Kleinrock 1975]. Thus, the capacity inference algorithm for the T95 feedback
signal will not be invariant to the request size.

Other choices for the feedback signal that have been used in prior work include
system-level metrics such as CPU utilization [Gandhi et al. 2002; Horvath and
Skadron 2008; Li and Nahrstedt 1999], memory utilization [Gandhi et al. 2002],

ACM Transactions on Computer Systems, Vol. 30, No. 4, Article 14, Publication date: November 2012.

AutoScale: Dynamic, Robust Capacity Management for Multi-Tier Data Center 14:21

network bandwidth [Li and Nahrstedt 1999], etc. A major drawback of employing these
feedback signals, as mentioned in Horvath and Skadron [2008], is that utilization and
bandwidth values saturate at 100%, and thus, the degree of under-provisioning can-
not be determined via these signals alone. This makes it difficult to derive a capacity
inference algorithm for these feedback signals.

5. LIMITATIONS OF OUR WORK

Our evaluation thus far has demonstrated the potential benefits of using AutoScale.
However, there are some limitations to our work, which we discuss in this section.

(1) The design of AutoScale includes a few key parameters: twait (see Table II), p
(derived in Figure 6), ρref (derived in Eq. (2)), and the ρsrv vs. nsrv relationship
(derived in Figure 15(a)). In order to deploy AutoScale on a given cluster, these
parameters need to be determined. Fortunately, all of these parameters only need
to be determined once for a given cluster. This is because these parameters depend
on the specifications of the system, such as the server type, the setup time, and
the application, which do not change at runtime. Request rate, request size, and
server speed, can all change at runtime, but these do not affect the value of these
key parameters (see Section 4 for more details).

(2) In Section 4, we considered a few different forms of changes in load, such as
changes in request size and changes in server speed, as well as changes in request
rate. However, in production environments, load can change in many additional
ways. For example, consider a scenario where some of the servers slow down due
to software updates, while other servers are being backed up, and the rest of the
servers are experiencing network delays. Evaluating AutoScale under all such sce-
narios is beyond the scope of this article.

(3) Our experimental evaluation is limited to a multi-tier testbed consisting of 38
servers, serving a web site with a key-value workload. Our testbed comprises an
Apache load balancer, a homogenous application tier running php, and a mem-
cached tier with a persistent back-end database. There are a variety of other
application testbeds that we could have considered, ranging from single-tier state-
less applications to complex multi-tier applications that are deployed in the in-
dustry today. The key feature that AutoScale depends on is having some servers
that are stateless, and can thus be turned off or repurposed to save power/cost.
Fortunately, many applications have this feature. For example, Facebook [2011],
Amazon [DeCandia et al. 2007] and Windows Live Messenger [Chen et al. 2008],
all use stateless servers as part of their platform. Thus, even though we have a
very specific testbed, it is representative of many real-world applications.

6. PRIOR WORK

Dynamic capacity management can be divided into two types: reactive (a.k.a. control-
theoretic) approaches and predictive approaches. Reactive approaches, for example,
Leite et al. [2010], Nathuji et al. [2010], Fan et al. [2007], Wang and Chen [2008],
Wood et al. [2007], and Elnozahy et al. [2002], all involve reacting to the current
request rate (or the current response time, or current CPU utilization, or current
power, etc.) by turning servers on or off. When the setup time is high (260s), these
can be inadequate for meeting response time goals because the effect of the increased
capacity only happens 260 seconds later.

Predictive approaches, for example, Krioukov et al. [2010], Qin and Wang [2007],
Castellanos et al. [2005], and Horvath and Skadron [2008], aim to predict what the

ACM Transactions on Computer Systems, Vol. 30, No. 4, Article 14, Publication date: November 2012.

14:22 A. Gandhi et al.

request rate will be 260 seconds from now, so that they can start turning on servers
now if needed. Predictive or combined approaches work well when workload is periodic
or seasonal, for example, Chen et al. [2005, 2008], Bobroff et al. [2007], Urgaonkar
et al. [2005], Gmach et al. [2008], Urgaonkar and Chandra [2005], and Gandhi et al.
[2011a]. However when traffic is bursty and future arrivals are unknown, it is clearly
hard to predict what will happen 260 seconds into the future.

We now discuss in detail the relevant prior work in predictive approaches and reac-
tive approaches.

Predictive Approaches. Krioukov et al. [2010] use various predictive policies, such
as Last Arrival, MWA, Exponentially Weighted Average and LR, to predict the future
request rate (to account for setup time), and then accordingly add or remove servers
from a heterogenous pool. The authors evaluate their dynamic provisioning policies by
simulating a multi-tier web application. The authors find that MWA and LR work best
for the traces they consider (Wikipedia.org traffic), providing significant power savings
over AlwaysOn. However, the AlwaysOn version used by the authors does not know
the peak request rate ahead of time (in fact, in many experiments they set AlwaysOn
to provision for twice the historically observed peak), and is thus not as powerful an
adversary as the version we employ.

Chen et al. [2008] use auto-regression techniques to predict the request rate for a
seasonal arrival pattern, and then accordingly turn servers on and off using a simple
threshold policy. The authors evaluate their dynamic provisioning policies via simu-
lation for a single-tier application. The authors find that their dynamic provisioning
policy performs well for periodic request rate patterns that repeat, say, on a daily ba-
sis. The authors evaluate their policies via simulation in a single-tier setting. While
the setup in Chen et al. [2008] is very different (seasonal arrival patterns) from our
own, there is one similarity to AutoScale in their approach: like AutoScale, the authors
in Chen et al. [2008] use the index-based routing (see Section 3.5). However, the policy
in Chen et al. [2008] does not have any of the robustness properties of AutoScale, nor
the twait timeout idea.

Reactive and mixed approaches. Hoffmann et al. [2011] consider a single-tier sys-
tem with unpredictable load fluctuations. The authors employ a reactive approach
using the quality of service (for example, the bitrate or image quality) as the feedback
signal to create a robust system. However, the workload considered by the authors
allows for a loss in quality of service, thus obviating the need to scale capacity during
load fluctuations. In our system, we do not have any leeway on the quality of ser-
vice since we have a strict T95 SLA. Thus, during load fluctuations, AutoScale must
dynamically scale capacity to maintain the required SLA.

Horvath and Skadron [2008] employ a reactive feedback mechanism, similar to the
Reactive policy in this article, coupled with a non-linear regression based predictive
approach to provision capacity for a multi-tier web application. In particular, the au-
thors monitor server CPU utilization and job response times, and react by adding or
removing servers based on the difference between observed response time and target
response time. The authors evaluate their reactive approach via implementation in a
multi-tier setting.

In Urgaonkar and Chandra [2005] and Gandhi et al. [2011a], the authors assume
a different setup from our own, whereby request rate is divided into two components,
a long-term trend which is predictable, and short-term variations which are unpre-
dictable. The authors use predictive approaches to provision servers for long-term
trends (over a few hours) in request rates and then use a reactive controller, similar to
the Reactive used in this article, to react to short-term variations in request rate.

ACM Transactions on Computer Systems, Vol. 30, No. 4, Article 14, Publication date: November 2012.

AutoScale: Dynamic, Robust Capacity Management for Multi-Tier Data Center 14:23

While these hybrid approaches can leverage the advantages of both predictive and
reactive approaches, they are not robust to changes in request size or server efficiency
(see Section 4). In fact, none of the prior work has considered changes in request size
or server efficiency for multi-tier applications.

There is also a long list of papers that look at dynamic capacity management
in the case of negligible setup times (see, e.g., Li and Nahrstedt [1999], Lu et al.
[2006], Gandhi et al. [2002], Chase et al. [2001], and Lim et al. [2011]). However,
our focus in this article is on dynamic capacity management in the face of setup
times.

7. CONCLUSION AND FUTURE WORK

This article considers dynamic capacity management policies for data centers facing
bursty and unpredictable load so as to save power/resources without violating response
time SLAs. The difficulty in dynamic capacity management is the large setup time
associated with getting servers back on. Existing reactive approaches that simply scale
capacity based on the current request rate are too rash to turn servers off, especially
when request rate is bursty. Given the huge setup time needed to turn servers back on,
response times suffer greatly when request rate suddenly rises. Predictive approaches
that work well when request rate is periodic or seasonal, perform very poorly in our
case where traffic is unpredictable. Furthermore, as we show in Section 3.3, leaving a
fixed buffer of extra capacity is also not the right solution.

AutoScale takes a fundamentally different approach to dynamic capacity manage-
ment than has been taken in the past. First, AutoScale does not try to predict the
future request rate. Instead, AutoScale introduces a smart policy to automatically
provision spare capacity, which can absorb unpredictable changes in request rate. We
make the case that to successfully meet response time SLAs, it suffices to simply
manage existing capacity carefully and not give away spare capacity recklessly (see
Table III). Existing reactive approaches can be easily modified to be more conservative
in giving away spare capacity so as to inherit AutoScale’s ability to absorb unpre-
dictable changes in request rate. Second, AutoScale is able to handle unpredictable
changes not just in the request rate but also unpredictable changes in the request size
(see Tables V and VI) and the server efficiency (see Table VII). AutoScale does this by
provisioning capacity using not the request rate, but rather the number of requests in
the system, which it is able to translate into the correct capacity via a novel, non-trivial
algorithm. As illustrated via our experimental results in Tables III to VII, AutoScale
outclasses existing optimized predictive and reactive policies in terms of consistently
meeting response time SLAs. While AutoScale’s 95%ile response time numbers are
usually less than one second, the 95%ile response times of existing predictive and re-
active policies often exceed one full minute!

Not only does AutoScale allow us to save power while meeting response time SLAs,
but it also allows us to save on rental costs when leasing resources (physical or virtual)
from cloud service providers by reducing the amount of resources needed to success-
fully meet response time SLAs.

While one might think that AutoScale will become less valuable as setup times de-
crease (due to, for example, sleep states or virtual machines), or as server idle power
decreases (due to, for example, advances in processor technology), we find that this is
not the case. AutoScale can significantly lower response times and power consumption
when compared to existing policies even for low setup times (see Figure 9) and rea-
sonably low idle power (see Figure 10). In fact, even when the setup time is only 20s,
AutoScale can lower 95%ile response times by a factor of 3.

ACM Transactions on Computer Systems, Vol. 30, No. 4, Article 14, Publication date: November 2012.

14:24 A. Gandhi et al.

REFERENCES
AMAZON INC. 2008. Amazon Elastic Compute Cloud (Amazon EC2).
ARMBRUST, M., FOX, A., GRIFFITH, R., JOSEPH, A. D., KATZ, R. H., KONWINSKI, A., LEE, G.,

PATTERSON, D. A., RABKIN, A., STOICA, I., AND ZAHARIA, M. 2009. Above the clouds: A Berkeley
view of cloud computing. Tech. rep. UCB/EECS-2009-28, EECS Department, University of California,
Berkeley.

BARROSO, L. A. AND HÖLZLE, U. 2007. The case for energy-proportional computing. Computer 40, 12,
33–37.

BOBROFF, N., KOCHUT, A., AND BEATY, K. 2007. Dynamic placement of virtual machines for managing
SLA violations. In Proceedings of the 10th IFIP/IEEE International Symposium on Integrated Network
Management (IM’07). 119–128.

BODÍK, P., GRIFFITH, R., SUTTON, C., FOX, A., JORDAN, M., AND PATTERSON, D. 2009. Statistical ma-
chine learning makes automatic control practical for internet datacenters. In Proceedings of the 2009
Conference on Hot Topics in Cloud Computing (HotCloud’09).

CASTELLANOS, M., CASATI, F., SHAN, M.-C., AND DAYAL, U. 2005. iBOM: A platform for intelligent busi-
ness operation management. In Proceedings of the 21st International Conference on Data Engineering
(ICDE’05). 1084–1095.

CHASE, J. S., ANDERSON, D. C., THAKAR, P. N., AND VAHDAT, A. M. 2001. Managing energy and server re-
sources in hosting centers. In Proceedings of the 18th ACM Symposium on Operating Systems Principles
(SOSP’01). 103–116.

CHEN, G., HE, W., LIU, J., NATH, S., RIGAS, L., XIAO, L., AND ZHAO, F. 2008. Energy-aware server
provisioning and load dispatching for connection-intensive internet services. In Proceedings of the 5th
USENIX Symposium on Networked Systems Design and Implementation (NSDI’08). 337–350.

CHEN, Y., DAS, A., QIN, W., SIVASUBRAMANIAM, A., WANG, Q., AND GAUTAM, N. 2005. Managing server
energy and operational costs in hosting centers. In Proceedings of the ACM SIGMETRICS International
Conference on Measurement and Modeling of Computer Systems (SIGMETRICS’05). 303–314.

DECANDIA, G., HASTORUN, D., JAMPANI, M., KAKULAPATI, G., LAKSHMAN, A., PILCHIN, A., SIVASUB-
RAMANIAN, S., VOSSHALL, P., AND VOGELS, W. 2007. Dynamo: Amazon’s highly available key-value
store. In Proceedings of 21st ACM SIGOPS Symposium on Operating Systems Principles (SOSP’07).
205–220.

ELNOZAHY, E., KISTLER, M., AND RAJAMONY, R. 2002. Energy-efficient server clusters. In Proceedings of
the 2nd Workshop on Power-Aware Computing Systems (WPACS’02). 179–196.

FACEBOOK. 2011. Personal communication with Facebook.
FAN, X., WEBER, W.-D., AND BARROSO, L. A. 2007. Power provisioning for a warehouse-sized computer. In

Proceedings of the 34th Annual International Symposium on Computer Architecture (ISCA’07). 13–23.
GANDHI, A., CHEN, Y., GMACH, D., ARLITT, M., AND MARWAH, M. 2011a. Minimizing data center SLA vio-

lations and power consumption via hybrid resource provisioning. In Proceedings of the 2nd International
Green Computing Conference (IGCC’11).

GANDHI, A., HARCHOL-BALTER, M., AND KOZUCH, M. A. 2011b. The case for sleep states in servers. In
Proceedings of the 4th Workshop on Power-Aware Computing and Systems (HotPower’11).

GANDHI, N., TILBURY, D., DIAO, Y., HELLERSTEIN, J., AND PAREKH, S. 2002. MIMO control of an Apache
web server: Modeling and controller design. In Proceedings of the 2002 American Control Conference
(ACC’02 Series, vol. 6). 4922–4927.

GMACH, D., KROMPASS, S., SCHOLZ, A., WIMMER, M., AND KEMPER, A. 2008. Adaptive quality of service
management for enterprise services. ACM Trans. Web 2, 1, 1–46.

GRUNWALD, D., MORREY III, C. B., LEVIS, P., NEUFELD, M., AND FARKAS, K. I. 2000. Policies for dynamic
clock scheduling. In Proceedings of the 4th Conference on Symposium of Operating System Design and
Implementation (OSDI’00).

HOFFMANN, H., SIDIROGLOU, S., CARBIN, M., MISAILOVIC, S., AGARWAL, A., AND RINARD, M. 2011.
Dynamic knobs for responsive power-aware computing. In Proceedings of the 16th International Con-
ference on Architectural Support for Programming Languages and Operating Systems (ASPLOS’11).
199–212.

HORVATH, T. AND SKADRON, K. 2008. Multi-mode energy management for multi-tier server clusters. In
Proceedings of the 17th International Conference on Parallel Architectures and Compilation Techniques
(PACT’08). 270–279.

ITA. 1998. The Internet Traffic Archives: WorldCup98. http://ita.ee.lbl.gov/html/contrib/WorldCup.html.

ACM Transactions on Computer Systems, Vol. 30, No. 4, Article 14, Publication date: November 2012.

AutoScale: Dynamic, Robust Capacity Management for Multi-Tier Data Center 14:25

IYER, S. AND DRUSCHEL, P. 2001. Anticipatory scheduling: A disk scheduling framework to overcome de-
ceptive idleness in synchronous I/O. In Proceedings of the 18th ACM Symposium on Operating Systems
Principles (SOSP’01). 117–130.

KIM, J. AND ROSING, T. S. 2006. Power-aware resource management techniques for low-power embedded
systems. In Handbook of Real-Time and Embedded Systems. Taylor-Francis Group LLC.

KIVITY, A. 2007. KVM: The Linux virtual machine monitor. In Proceedings of the 2007 Ottawa Linux
Symposium (OLS’07). 225–230.

KLEINROCK, L. 1975. Queueing Systems, Volume I: Theory. Wiley-Interscience.
KRIOUKOV, A., MOHAN, P., ALSPAUGH, S., KEYS, L., CULLER, D., AND KATZ, R. 2010. NapSAC: Design

and implementation of a power-proportional web cluster. In Proceedings of the 1st ACM SIGCOMM
Workshop on Green Networking (Green Networking’10). 15–22.

LEITE, J. C., KUSIC, D. M., AND MOSSÉ, D. 2010. Stochastic approximation control of power and tardiness
in a three-tier web-hosting cluster. In Proceeding of the 7th International Conference on Autonomic
Computing (ICAC’10). 41–50.

LI, B. AND NAHRSTEDT, K. 1999. A control-based middleware framework for quality of service adaptations.
IEEE J. Sel. Areas Commun. 17, 1632–1650.

LIM, S.-H., SHARMA, B., TAK, B. C., AND DAS, C. R. 2011. A dynamic energy management scheme for
multi-tier data centers. In Proceedings of the IEEE International Symposium on Performance Analysis
of Systems and Software (ISPASS’11). 257–266.

LU, C., LU, Y., ABDELZAHER, T., STANKOVIC, J., AND SON, S. 2006. Feedback control architecture and
design methodology for service delay guarantees in web servers. IEEE Trans. Paral. Distrib. Syst. 17, 9,
1014–1027.

LU, Y.-H., CHUNG, E.-Y., ŠIMUNIĆ, T., BENINI, L., AND DE MICHELI, G. 2000. Quantitative comparison
of power management algorithms. In Proceedings of the Conference on Design, Automation and Test in
Europe (DATE’00). 20–26.

MEISNER, D., GOLD, B. T., AND WENISCH, T. F. 2009. PowerNap: Eliminating server idle power. In Pro-
ceeding of the 14th International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS’09). 205–216.

MEISNER, D., SADLER, C. M., BARROSO, L. A., WEBER, W.-D., AND WENISCH, T. F. 2011. Power manage-
ment of online data-intensive services. In Proceedings of the 38th Annual International Symposium on
Computer Architecture (ISCA’11). 319–330.

MOSBERGER, D. AND JIN, T. 1998. httperf—A tool for measuring web server performance. ACM Sigmetrics:
Perf. Eval. Rev. 26, 3, 31–37.

NATHUJI, R., KANSAL, A., AND GHAFFARKHAH, A. 2010. Q-clouds: Managing performance interference
effects for QoS-aware clouds. In Proceedings of the 5th European Conference on Computer Systems,
(EuroSys’10). 237–250.

NEWMAN, M. E. J. 2005. Power laws, Pareto distributions and Zipf ’s law. Contemp. Phys. 46, 323–351.
NLANR. 1995. National Laboratory for Applied Network Research. Anonymized access logs.

ftp://ftp.ircache.net/Traces/.
PERING, T., BURD, T., AND BRODERSEN, R. 1998. The simulation and evaluation of dynamic voltage scal-

ing algorithms. In Proceedings of the International Symposium on Low Power Electronics and Design
(ISLPED’98). 76–81.

QIN, W., AND WANG, Q. 2007. Modeling and control design for performance management of web servers via
an IPV approach. IEEE Trans. Control Syst. Tech. 15, 2, 259–275.

SAP. 2011. SAP application trace from anonymous source.
SNYDER, B. 2010. Server virtualization has stalled, despite the hype.

http://www.infoworld.com/print/146901.
URGAONKAR, B. AND CHANDRA, A. 2005. Dynamic provisioning of multi-tier internet applications. In Pro-

ceedings of the 2nd International Conference on Automatic Computing (ICAC’05). 217–228.
URGAONKAR, B., PACIFICI, G., SHENOY, P., SPREITZER, M., AND TANTAWI, A. 2005. An analytical

model for multi-tier internet services and its applications. In Proceedings of the 2005 ACM SIGMET-
RICS International Conference on Measurement and Modeling of Computer Systems (SIGMETRICS’05).
291–302.

VERMA, A., DASGUPTA, G., NAYAK, T. K., DE, P., AND KOTHARI, R. 2009. Server workload analysis for
power minimization using consolidation. In Proceedings of the 2009 Conference on USENIX Annual
Technical Conference (USENIX’09).

ACM Transactions on Computer Systems, Vol. 30, No. 4, Article 14, Publication date: November 2012.

14:26 A. Gandhi et al.

WANG, X. AND CHEN, M. 2008. Cluster-level feedback power control for performance optimization. In
Proceeding of the 14th IEEE International Symposium on High-Performance Computer Architecture
(HPCA’08). 101–110.

WOOD, T., SHENOY, P. J., VENKATARAMANI, A., AND YOUSIF, M. S. 2007. Black-box and gray-box strate-
gies for virtual machine migration. In Proceedings of the 4th USENIX Conference on Networked Systems
Design and Implementation (NSDI’07). 229–242.

Received April 2012; revised August 2012; accepted September 2012

ACM Transactions on Computer Systems, Vol. 30, No. 4, Article 14, Publication date: November 2012.

