
Size-based Scheduling to Improve Web PerformanceMOR HARCHOL-BALTER, BIANCA SCHROEDER, NIKHIL BANSAL, andMUKESH AGRAWALCarnegie Mellon UniversityIs it possible to reduce the expected response time of every request at a web server, simply bychanging the order in which we schedule the requests? That is the question we ask in this paper.This paper proposes a method for improving the performance of web servers servicing staticHTTP requests. The idea is to give preference to requests for small �les or requests with shortremaining �le size, in accordance with the SRPT (Shortest Remaining Processing Time) schedulingpolicy.The implementation is at the kernel level and involves controlling the order in which socketbu�ers are drained into the network. Experiments are executed both in a LAN and a WANenvironment. We use the Linux operating system and the Apache and Flash web servers.Results indicate that SRPT-based scheduling of connections yields signi�cant reductions indelay at the web server. These result in a substantial reduction in mean response time and meanslowdown for both the LAN and WAN environments. Signi�cantly, and counter to intuition,the requests for large �les are only negligibly penalized or not at all penalized as a result ofSRPT-based scheduling.Categories and Subject Descriptors: C.5.5 [Computer System Implementation]: Servers;D.4.1 [Operating Systems]: Process Management|scheduling; D.4.8 [Operating Systems]:Performance|Queueing theoryGeneral Terms: Performance, Algorithms, Design, Experimentation, MeasurementAdditional Key Words and Phrases: Conservation law, networking, scheduling, SRPT, SJF, sys-tem performance and design, web servers1. INTRODUCTIONA client accessing a busy web server can expect a long wait. This paper considershow we might reduce this wait for the case of static requests, of the form \Get mea �le." Evidence suggests that while the number of dynamic requests are grow-ing, the majority of the requests at most web servers are still static [Manley andSeltzer 1997], [Krishnamurthy and Rexford 2001] (p.8), [Feldmann], [Arlitt et al.1999]. Serving static requests quickly is the focus of many companies e.g., AkamaiTechnologies, and much ongoing research.This research is funded by Cisco Systems and Spinnaker Networks via a grant from the PittsburghDigital Greenhouse 00-1, by NSF-ITR 99-167 ANI-0081396, and by NSF Career Grant CCR-0133077.Author's address: School of Computer Science, Carnegie Mellon University, 5000 Forbes Ave.,Pittsburgh, PA 15213; email: harchol@cs.cmu.edu.Permission to make digital/hard copy of all or part of this material without fee for personalor classroom use provided that the copies are not made or distributed for pro�t or commercialadvantage, the ACM copyright/server notice, the title of the publication, and its date appear, andnotice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,to post on servers, or to redistribute to lists requires prior speci�c permission and/or a fee.c
 2003 ACM 0000-0000/2003/0000-0001 $5.00ACM Transactions on Computer Systems, Vol. 21, No. 2, May 2003, Pages 1{27.

2 � Mor Harchol-Balter et al.In this paper we are concerned with response time which is de�ned to be the timefrom when the client sends out the SYN-packet requesting to open a connectionuntil the client receives the last byte of the �le requested.Our idea is simple. Traditionally, requests at a web server are time-shared: theweb server proportions its resources fairly among those requests ready to receiveservice. We call this scheduling policy FAIR scheduling. We propose, instead,unfair scheduling, in which priority is given to requests for short �les, or thoserequests with short remaining �le size, in accordance with the well-known schedul-ing algorithm preemptive Shortest-Remaining-Processing-Time-�rst (SRPT). It iswell-known from queueing theory that SRPT scheduling minimizes queueing time,[Schrage and Miller 1966]. Allowing short requests to preempt long requests is de-sirable because forcing long requests to wait behind short requests results in muchlower mean response time than the situation where short requests must wait behindlong requests. Our expectation is that using SRPT scheduling of requests at theserver will reduce the queueing time at the server, and therefore the total responsetime.Despite the obvious advantages of SRPT scheduling with respect to mean re-sponse time, applications have shied away from using this policy for two reasons:First SRPT requires knowing the time to service the request. Our experimentsshow that the time to service a request is well-approximated by the size of the�le requested, which is well-known to the server. We found a linear relationshipbetween the service time of the request and its �le size, modulo a small overhead.Second, there is the fear that SRPT \starves" requests for large �les [Bender et al.1998], [Stallings 2001] (p. 410), [Silberschatz et al. 2002] (p. 162). A primary goalof this paper is to investigate whether this fear is valid in the case of web serversserving typical web workloads.It is not immediately clear what SRPT means in the context of a web server. Aweb server is not a single-resource system. To understand which of the web server'sresources need to be scheduled, we need to understand which resource in a webserver experiences high load �rst, i.e., which is the bottleneck resource. The threecontenders are: the CPU; the disk to memory bandwidth; and the server's limitedfraction of its ISP's bandwidth. On a site consisting primarily of static content,a common performance bottleneck is the limited bandwidth which the server hasbought from its ISP [Microsoft 2001; Cockcroft 1996; Maggs 2001]. Even a fairlymodest server can completely saturate a T3 connection or 100Mbps Fast Ethernetconnection. Also, buying more bandwidth from the ISP is typically relatively morecostly than upgrading other system components like memory or CPU.In this paper, we model the limited bandwidth that the server has purchasedfrom its ISP by placing a limitation on the server's uplink, as shown in Figure 1.In all our experiments (using both a 10Mbps and 100 Mbps uplink, and 256 MB ofRAM, and running various trace-based workloads) the bandwidth on the server'suplink is always the bottleneck resource. The system load is therefore de�ned interms of the load on the server's uplink, which we refer to as the uplink load. Forexample, if the web server has a 100 Mbps uplink and the average amount of datarequested by the clients is 80 Mbps, then the uplink load is 0.8. Although in thispaper we assume that the bottleneck resource is the limited bandwidth that theACM Transactions on Computer Systems, Vol. 21, No. 2, May 2003.

Size-based Scheduling to Improve Web Performance � 3server has purchased from its ISP, the main ideas can also be adapted for alternativebottleneck resources.
ISP
router SERVER

Client

Client

Client

rest of
Internet

of ISP’s bandwidth
Server buys limited fraction

ISP’s connection to Internet

SERVER’s
PERFORMANCE
BOTTLENECK(a)

Client

Client

Client

WAN

SERVERswitch

EMU

WAN
EMU

EMU
WAN

Server’s Uplink
We limit the bandwidth
on the server’s uplink
to represent the limitation
on server’s portion of
ISP’s bandwidth.

SERVER’S
PERFORMANCE
BOTTLENECK(b)Fig. 1. (a) Server's bottleneck is the limited fraction of bandwidth that it has purchased fromits ISP. (b) How our implementation setup models this bottleneck by limiting the server's uplinkbandwidth.The focus in the rest of the paper is on how to schedule the server's uplinkbandwidth, and the performance e�ects of this scheduling. To schedule the server'suplink bandwidth, we need to apply the SRPT algorithm at the level of the network.Our approach is to control the order in which the server's socket bu�ers are drained.Recall that for each (non-persistent) request a connection is established betweenthe client and the web server. Corresponding to each connection, there is a socketbu�er on the web server end into which the web server writes the contents of therequested �le. Traditionally, the di�erent socket bu�ers are drained in Round-RobinOrder, with equal turns being given to each eligible connection, where an eligibleconnection is one that has packets waiting to be sent and for which TCP congestioncontrol allows packets to be sent. Thus each eligible connection receives a fair shareof the bandwidth of the server's uplink. We instead propose to give priority to thosesockets corresponding to connections requesting small �les or where the remainingdata required by the request is small. Throughout, we use the Linux OS.The goal of this paper is to compare FAIR scheduling with SRPT scheduling.These are de�ned as follows:FAIR scheduling: This uses standard Linux (fair-share draining of socket bu�ers)with an unmodi�ed web server.ACM Transactions on Computer Systems, Vol. 21, No. 2, May 2003.

4 � Mor Harchol-Balter et al.SRPT scheduling: This uses modi�ed Linux (SRPT-based draining of socketbu�ers) with the web server modi�ed only to update socket priorities.We experiment with two di�erent web servers: the common Apache server [Apache2001], and the Flash web server [Pai et al. 1999], which is known for speed. Sinceresults are quite similar, we primarily show here only the results for the case ofApache, and leave the Flash results for the associated technical report [HarcholBal-ter et al. 2000]. Our clients make requests according to a web trace, which speci�esboth the time the request is made and the size of the �le requested. Experimentsare also repeated using requests generated by a web workload generator.Experiments are executed �rst in a LAN, so as to isolate the reduction in queueingtime at the server. Response time in a LAN is dominated by queueing delay at theserver and TCP e�ects. Experiments are next repeated in aWAN environment. TheWAN allows us to incorporate the e�ects of propagation delay, network loss, andcongestion in understanding more fully the client experience. WAN experimentsare executed both using a WAN emulator and by using geographically-dispersedclient machines.Synopsis of results obtained for a LAN:|SRPT-based scheduling decreases mean response time in a LAN by a factor of 3{ 8 for uplink loads greater than 0:5.|SRPT-based scheduling helps requests for small �les a lot, while negligibly pe-nalizing requests for large �les. Under an uplink load of 0:8, 80% of the requestsimprove by a factor of 10 under SRPT-based scheduling. Only the request forthe largest �le su�ers an increase in mean response time under SRPT-basedscheduling (by a factor of only 1.2).|There is no negative e�ect on network throughput or CPU utilization from usingSRPT as compared with FAIR.Synopsis of results obtained for a WAN:|While propagation delay and loss diminish the improvement of SRPT over FAIR,loss has a much greater e�ect.|For an RTT of 100ms, under an uplink load of 0:9, SRPT's improvement overFAIR is still a factor of 2.|Network loss diminishes the improvement of SRPT over FAIR further. Underhigh network loss (10%), SRPT's improvement over FAIR is only 25% under anuplink load of 0:9.|Unfairness to requests for large �les remains negligible or non-existent underWAN conditions.Section 2 describes our implementation of SRPT scheduling. Section 3 describesthe LAN experimental setup and the LAN results. Section 4 describes the WANexperimental setup and the WAN results. Section 5 provides an in depth look atwhy SRPT scheduling improves over FAIR scheduling. Section 6 describes previouswork. Finally in Section 7, we elaborate on broader applications of SRPT-basedscheduling, including its application to other resources, and to non-static requests.We also discuss SRPT applied to web server farms and Internet routers.ACM Transactions on Computer Systems, Vol. 21, No. 2, May 2003.

Size-based Scheduling to Improve Web Performance � 52. IMPLEMENTATION OF SRPTIn Section 2.1 we explain how socket draining works in standard Linux, and wedescribe how to achieve priority queueing in Linux (versions 2.2 and above). Sec-tion 2.2 describes the implementation end at the web server and also deals withthe algorithmic issues such as how to choose good priority classes and the settingand updating of priorities. Furthermore we consider the problem that for small �lerequests, a large portion of the time to service the request is spent before the sizeof the requested �le is even known, and we �nd a solution for this problem.2.1 Achieving priority queueing in LinuxFigure 2(a) shows data
ow in standard Linux.
Network
Wire

Single Priority Queue Ethernet Card
TCP

processing
IP

processing

TCP
processing

IP
processing

TCP
processing

IP
processing

FAIRLY
TAKING
TURNS

,

Socket 1

Socket 2

Socket 3

FEED(a) Standard Linux { FAIR
Socket 1

Socket 2

Socket 3

TCP
proc.

IP
proc.

TCP
proc.

IP
proc.

TCP
proc.

IP
proc.

1st Priority Queue

2nd Priority Queue

Ethernet Card

Network
Wire

first!

second.

feed

feed(b) Modi�ed Linux { SRPTFig. 2. (a) Data
ow in standard Linux. The important thing to observe is that there is asingle priority queue into which all ready connections drain fairly. (b) Linux with priorityqueueing. There are several priority queues, and queue i is serviced only if all of queues 0through i� 1 are empty.There is a socket bu�er corresponding to each connection. Data streaming intoeach socket bu�er is encapsulated into packets which obtain TCP headers and IPheaders. Throughout this processing, the packet streams corresponding to eachconnection are kept separate. Finally, there is a single1 \priority queue" (transmitqueue), into which all streams feed. All eligible streams (eligible via TCP congestion1The queue actually consists of 3 priority queues, a.k.a. bands. By default, however, all packetsare queued to the same band. ACM Transactions on Computer Systems, Vol. 21, No. 2, May 2003.

6 � Mor Harchol-Balter et al.control) take equal turns draining into the priority queue. Although the Linux kerneldoes not explicitly enforce fairness, we �nd that under conditions where clients areotherwise equal, TCP governs the
ows so that they share fairly on short timescales. This single \priority queue," can get as long as 100 packets. Packets leavingthis queue drain into a short Ethernet card queue and out to the network.To implement SRPT we need more priority levels. To do this, we �rst buildthe Linux kernel with support for the user/kernel Netlink Socket, QOS and FairQueueing, and the Prio Pseudoscheduler. Then we use the tc [Almesberger 1999]user space tool to switch the Ethernet card queue from the default 3-band queue tothe 16-band prio queue. Further information about the support for di�erentiatedservices and various queueing policies in Linux can be found in [Radhakrishnan1999; Almesberger 1999; Almesberger et al. 1999].Figure 2(b) shows the
ow of data in Linux after the above modi�cation: Theprocessing is the same until the packets reach the priority queue. Instead of asingle priority queue (transmit queue), there are 16 priority queues. These arecalled bands and they range in number from 0 to 15, where band 15 has lowestpriority and band 0 has highest priority. All the connections of priority i feed fairlyinto the ith priority queue. The priority queues then feed in a prioritized fashioninto the Ethernet Card queue. Priority queue i is only allowed to
ow if priorityqueues 0 through i� 1 are all empty.A note on experimenting with the above implementation of priority queueing:Consider an experiment where each connection is assigned to one of two priorities.We have found that when the number of simultaneous connections is very low, thebandwidth is not actually split such that the �rst priority connections get 100% ofthe bandwidth and the second priority connections get 0% of the bandwidth. Thereason is that with very few connections, the �rst priority connections are unableto fully utilize the link, and thus the second priority connections get a turn to run.However, when the number of simultaneous connections is higher (e.g., above 10),this is not a problem, and the �rst priority connections get 100% of the bandwidth.In all the experiments in this paper, we have hundreds of simultaneous connectionsand the above implementation of priority queueing works perfectly.2.2 Modi�cations to web server and algorithmic issues in approximating SRPTThe modi�ed Linux kernel provides a mechanism for prioritized queueing. Inour implementation, the Apache web server uses this mechanisms to implementthe SRPT-based scheduling policy. Speci�cally, after determining the size of therequested �le, Apache sets the priority of the corresponding socket by callingsetsockopt. As Apache sends the �le, the remaining size of the requested �ledecreases. When the remaining size falls below the threshold for the current prior-ity class, Apache updates the socket priority with another call to setsockopt.2.2.1 Implementation Design Choices. Our implementation places the respon-sibility for prioritizing connections on the web server code. There are two potentialproblems with this approach. These are the overhead of the system calls to modifypriorities, and the need to modify server code.The issue of system call overhead is mitigated by the limited number of setsockoptcalls which must be made. Typically only one call is made per connection. Even inACM Transactions on Computer Systems, Vol. 21, No. 2, May 2003.

Size-based Scheduling to Improve Web Performance � 7the worst case, we make only as many setsockopt calls as there are priority classes(6 in our experiments) per connection.A clean way to handle the changing of priorities totally within the kernel wouldbe to enhance the sendfile system call to set priorities based on the remaining �lesize. We do not pursue this approach here as neither our version of Apache (1.3.14)nor Flash uses sendfile.2.2.2 Size cuto�s. SRPT assumes in�nite precision in ranking the remainingprocessing requirements of requests. In practice, we are limited to only 16 prioritybands.Based on experimentation, we have come up with some rules-of-thumb for par-titioning the requests into priority classes which apply to the heavy-tailed webworkloads. The reader not familiar with heavy-tailed workloads will bene�t by �rstreading Section 5.Denoting the cuto�s by x1 < x2 < : : : < xn:|The lowest size cuto� x1 should be such that about 50% of requests have sizesmaller than x1. These requests comprise so little total load in a heavy-tailedworkload that there's no point in separating them.|The highest cuto� xn needs to be low enough that the largest (approx.) .5%{ 1% of the requests have size > xn. This is necessary to prevent the largestrequests from starving.|The middle cuto�s are far less important. A logarithmic spacing works well.In the experiments throughout this paper, we use only 6 priority classes to ap-proximate SRPT. Using more improved performance only slightly.2.2.3 Priority to SYNACKs. At this point one subtle problem remains: Forrequests for small �les, a large portion of time to service the request is spent duringthe connection setup phase, before the size of the requested �le is even known. Thepackets sent during the connection startup might therefore end up waiting in longqueues, making connection startup very costly. For requests for small �les, a longstartup time is especially detrimental to response time. It is therefore importantthat the SYNACK be isolated from other traÆc. Linux sends SYNACKs, to priorityband 0. It is important when assigning priority bands to requests that we:(1) Never assign any sockets to priority band 0.(2) Make all priority band assignments to bands of lower priority than band 0, sothat SYNACKs always have highest priority.Observe that giving highest priority to the SYNACKs doesn't negatively im-pact the performance of requests since the SYNACKs themselves make up only anegligible fraction of the total uplink load.Giving priority to SYNACKs is important in SRPT because without it the ben-e�t that SRPT gives to small �le requests is not noticeable. Later in the paper(Section 5.1) we consider whether the FAIR policy might also bene�t by givingpriority to SYNACKs, but �nd the improvement to FAIR to be less signi�cant.Assigning highest priority to SYNACKs has the negative e�ect of increasing thesystem's vulnerability to SYN-
ooding attacks and severe overload. One possibleACM Transactions on Computer Systems, Vol. 21, No. 2, May 2003.

8 � Mor Harchol-Balter et al.solution to this problem is to take advantage of the fact that SYNACKs have theirown priority band under SRPT and to monitor the rate of arrivals into this priorityband. If the rate suddenly increases, indicating a potential SYN-
ooding attack,we could drop the priority of SYNACKs, thus returning to a system closer to FAIR.2.2.4 The �nal algorithm. Our SRPT-like algorithm is thus as follows:(1) When a request arrives, it is given a socket with priority 0 (highest priority).This allows SYNACKs to travel quickly as explained in Section 2.2.3.(2) After the size of the �le requested is determined (by looking at the URL of the�le), the priority of the corresponding socket is reset based on the size of therequested �le, as shown in the table below.Priority Size (Kbytes)0 (highest) -1 � 1K2 1K - 2K3 2K - 5K4 5K-20K5 20K - 50K6 (lowest) > 50K(3) As the remaining size of the requested �le diminishes, the priority of the socketis dynamically updated to re
ect the remaining size.3. LAN SETUP AND RESULTSIn Section 3.1 we describe the experimental setup and workload for the LAN ex-periments. Section 3.2 compares SRPT versus FAIR with respect to mean responsetime, in a LAN environment. Section 3.3 again compares SRPT versus FAIR in aLAN environment, but this time with respect to their performance on requests forlarge �les. Finally Section 3.4 illustrates a simpli�cation of the SRPT idea whichinvolves only two priorities and yet still yields quite good performance.3.1 LAN experimental setup3.1.1 Machine Con�guration. Our experimental setup involves six machinesconnected by a 10/100 Ethernet switch. Each machine has an Intel Pentium III700 MHz processor and 256 MB RAM, and runs Linux 2.2.16. One of the machinesis designated as the server and runs Apache 1.3.14. The other �ve machines act asweb clients and generate requests as described below. Below we show results forboth the case where the server uplink bandwidth is 10 Mbps and the case wherethe server uplink bandwidth is 100 Mbps. For the case of the 10 Mbps bandwidth,at any moment in time there may be a couple hundred simultaneous connectionsat the server. For the case of 100 Mbps bandwidth the number of simultaneousconnections is in the thousands.3.1.2 Open versus closed systems. To properly evaluate the performance of aserver we need to understand how clients generate requests which drive the webserver. The process by which clients generate requests is typically modeled eitheras an open system or as a closed system, as shown in Figure 3.ACM Transactions on Computer Systems, Vol. 21, No. 2, May 2003.

Size-based Scheduling to Improve Web Performance � 9In an open system each user is assumed to visit the web site just once. The userrequests a �le from the web site, waits to receive the �le, and then leaves. A requestcompletion does not trigger a new request. A new request is only triggered by anew user arrival.In a closed system model, it is assumed that there is some �xed number of users.These users sit at the same web site forever. Each user repeats these 2 steps,inde�nitely: (i) request a �le, (ii) receive the �le. In a closed system, a new requestis only triggered by the completion of a previous request.When using a trace to generate requests under an open system model, the re-quests are generated at the times indicated by the trace, where interarrival timeshave been scaled to create the appropriate test load. When using a trace to gener-ate requests under a closed system model, the arrival times of requests in the traceare ignored.
Get responseGenerate request Leave

Partly−open system

Arrive

Generate request

Get response

Repeat this
k times Leave

Each user visits web site, makes k repetitions of

generating request and waiting for response, then leaves.

Each user has this behavior:

Open System

Closed System
Fixed number of users (N) sit at same web site forever.

Each user has this behavior:

Get response

Generate request

User visits web site just once.

Fig. 3. Three models for how the requests to a web server are generated. In all cases, everyindividual request averages into the mean response time.Neither the open system model nor the closed system model is entirely realistic.Throughout this paper we use the open system model. We also present results,however, for a di�erent model which we call the partly-open model, which capturesproperties of both the open and closed models. Under the partly-open model, eachuser is assumed to visit a web site, make k requests for �les at the web site, andthen leave the web site. The k requests are made consecutively, with each requestACM Transactions on Computer Systems, Vol. 21, No. 2, May 2003.

10 � Mor Harchol-Balter et al.completion triggering the next request. We �nd that the results of the partly-openmodel are largely similar to those for an open model, see Figure 7.In all the �gures below, unless otherwise stated, we assume an open system model.3.1.3 Trace-based workload. Throughout the paper we use a trace-based work-load consisting of 1-day from the 1998World Soccer Cup, obtained from the InternetTraÆc Archive [ITA 2002]. The trace contains 4.5 million HTTP requests, virtuallyall of which are static. In our experiments, we use the trace to specify the time theclient makes the request and the size in bytes of the �le requested.The entire 1 day trace contains requests for approximately 5000 di�erent �les.Given the mean �le size of 5K, it is clear why all �les �t within main memory andwhy the disk is not a bottleneck. Each experiment was run using a busy hour of thetrace (10:00 a.m. to 11:00 a.m.). This hour consisted of about 1 million requests.Some additional statistics about our trace workload: The minimum size �le re-quested is a 41 byte �le. The maximum size �le requested is about 2 MB. Thedistribution of the �le sizes requested �ts a heavy-tailed truncated Pareto distribu-tion (with �-parameter � 1:2). The largest < 3% of the requested �les make up> 50% of the total load, exhibiting a strong heavy-tailed property. 50% of �les havesize less than 1K bytes. 90% of �les have size less than 9.3K bytes. The distributionof requested �le sizes is shown in Figure 4.

102 104 1060

0.2

0.4

0.6

0.8

1
Inverse Cumulative Distribution Function

File size (bytes)

P
ro

ba
bi

lit
y

Fig. 4. Inverse Cumulative Distribution Function, �F (x), for the trace-based workload. �F (x) =Prfsize of the �le requested > xgWe also repeated all experiments using a web workload generator, Surge [Barfordand Crovella 1998] to generate the requests at the client machines. The Surgeworkload is created to be statistically representative of the �le sizes at a web site,the sizes of �les requested from a web site, the popularity of �les requested, andmore. We modi�ed Surge simply to make it an open system. We have included inthe associated technical report [HarcholBalter et al. 2000] the same set of results forthe Surge workload. The Surge workload had a higher mean size of �le requested(7K, rather than 5K), however in all other respects was statistically very similar toour trace-based workload. Not surprisingly, the factor improvement of SRPT overFAIR is very similar under the Surge and trace-based workloads. To be precise, allACM Transactions on Computer Systems, Vol. 21, No. 2, May 2003.

Size-based Scheduling to Improve Web Performance � 11the response times for both FAIR and for SRPT are 50% higher under the Surgeworkload, and therefore the factor improvement is the same.
0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Uplink Load

R
es

po
ns

e
T

im
e

(s
ec

)

FAIR
SRPT

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Uplink Load

R
es

po
ns

e
T

im
e

(s
ec

)

FAIR
SRPT

(a) Open system model (b) Partly-open system modelFig. 5. Mean response time under SRPT versus FAIR as a function of uplink load,under trace-based workload, in LAN environment with uplink bandwidth 10 Mbps.(a) Assumes open system model (b) Assumes partly-open system model with k = 5request-iteration cycles per user.3.1.4 Generating requests at client machines. In our experiments, we use sclient[Banga and Druschel 1999] for creating connections at the client machines. Theoriginal version of sclient makes requests for a certain �le in periodic intervals.We modify sclient to read in traces and make the requests according to the arrivaltimes and �le names given in the trace. As in sclient, we assume a new connectionfor each request (no persistent connections).2To create a particular uplink load, say 0.8, we simply scale the interarrival timesin the trace's request sequence until the average number of bits requested per secondis 8Mb/sec. We validate the uplink load both analytically and via measurement.3.1.5 Performance Metrics. For each experiment, we evaluate the following per-formance metrics:|Mean response time. The response time of a request is the time from when theclient submits the request until the client receives the last byte of the requested�le.|Mean slowdown. The slowdown metric attempts to capture the idea that clientsare willing to tolerate long response times for requests for large �les and yet2The e�ect of persistent connections on comparing FAIR and SRPT has been shown to be minimal.Under persistent connections, rather than using a new connection for each request, each connectionopened by a client is reused for k requests, thus reducing the connection startup overhead of theTCP 3-way-handshake. Under a WAN setting with 100ms delay and 2.5% loss, both FAIR andSRPT bene�t by a factor of 2 under persistent connections with k = 5. This e�ect is largely dueto the savings in RTTs. Under a LAN setting, persistent connections are 50% more bene�cial toFAIR as compared with SRPT because SRPT's 3-way-handshake time is already shorter, sinceSRPT gives priority to SYNACKs, and RTTs are not an issue.ACM Transactions on Computer Systems, Vol. 21, No. 2, May 2003.

12 � Mor Harchol-Balter et al.expect short response times for small �le requests. The slowdown of a request istherefore its response time divided by the time it would require if it were the solerequest in the system. Slowdown is also commonly known as normalized responsetime or stretch factor and has been widely used [Bender et al. 1998; Roberts andMassoulie 1998; Downey 1997; Harchol-Balter and Downey 1997].|Mean response time as a function of the size of the �le requested. This metricindicates whether requests for large �les are being treated unfairly under SRPTas compared with FAIR-share scheduling.3.2 Mean improvements of SRPT under LANBefore presenting the results of our experiments, we make some important com-ments.|In all of our experiments the server's uplink bandwidth was the bottleneck re-source. CPU utilization during our experiments remained below 5% for all the10 Mbps experiments and below 80% for the 100 Mbps experiments, even foruplink load 0:95.|The measured throughput and bandwidth utilization under the experiments withSRPT scheduling is identical to that under the same experiments with FAIRscheduling. The same exact set of requests complete under SRPT schedulingand under FAIR scheduling.|There is no additional CPU overhead involved in SRPT scheduling as comparedwith FAIR scheduling. Recall that the overhead due to updating priorities ofsockets is insigni�cant, given the small number of priority classes that we use.Figure 5 shows the mean response time under SRPT scheduling as compared withthe traditional FAIR scheduling as a function of uplink load. Figure 5(a) assumesthat requests are generated according to an open model and Figure 5(b) assumes apartly-open system model, where each user generates k = 5 requests. Results arevery similar in (a) and (b). For lower uplink loads the mean response times aresimilar under FAIR and SRPT. However for uplink loads > 0:5, the mean responsetime is a factor of 3 { 8 lower under SRPT scheduling.The performance results are even more dramatic for mean slowdown. Figure 6shows the mean slowdown under SRPT scheduling as compared with the traditionalFAIR scheduling as a function of load. For lower loads the slowdowns are the sameunder the two scheduling policies. For uplink load 0.5, the mean slowdown improvesby a factor of 4 under SRPT over FAIR. Under an uplink load of 0:9, mean slowdownimproves by a factor of 16.Looking at the partly-open system model more closely we observe that meanresponse times are almost identical, regardless of the value of k. Figure 7 showsthe performance of FAIR under a range of k values: k = 1, k = 5, and k = 50. Itturns out that SRPT is even less sensitive to the choice of k.33Having experimented with many k values, we �nd the following subtle trend as we increase k:When we initially increase k, we �nd that response times drop a bit. The reason is that bysynchronizing the times at which requests are generated, so that they are generated only whena previous request completes, we do a better job of evening the burstiness in the number ofconnections at the server. As k increases further, however, the partly-open system starts to lookACM Transactions on Computer Systems, Vol. 21, No. 2, May 2003.

Size-based Scheduling to Improve Web Performance � 13Throughout we show results for the open system model, however we have veri�edthat all these results are almost identical under the partly-open system model withk = 5.

0.2 0.4 0.6 0.8 1
0

50

100

150

200

250
Mean slowdown vs. load

Uplink Load

M
ea

n
sl

ow
do

w
n

FAIR
SRPT

Fig. 6. Mean slowdown under SRPT versus FAIR as a function of uplink load, under trace-basedworkload, in LAN environment with uplink bandwidth 10 Mbps. This slowdown plot correspondsto the experiment in Figure 5(a) and looks identical for the experiment shown in Figure 5(b).We conclude this section by once again considering the improvement of SRPTover FAIR, but this time in the case of a 100 Mbps uplink. Results are shown inFigure 8 under the Flash web server. We see that SRPT performs 5 times betterthan FAIR for an uplink load of 0:8, (i.e., 80 Mbps requested through a 100Mbpsuplink). This is comparable to the factor improvement achieved in the case of the10Mbps uplink under the Apache server, Figure 5(a).

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Uplink Load

R
es

po
ns

e
T

im
e

(s
ec

)

FAIR k=50
FAIR k=0
FAIR k=5

Fig. 7. Performance of FAIR shown for a partly-open system model, using trace-based workloadin a LAN with uplink bandwidth 10 Mbps, where k = 1, k = 5, and k = 50.like a closed system with zero think time. This has the e�ect of creating a near-one uplink loadat all times, which causes response times to go up.ACM Transactions on Computer Systems, Vol. 21, No. 2, May 2003.

14 � Mor Harchol-Balter et al.The signi�cant improvements of SRPT over FAIR observed in this section areeasily explained. The time-sharing behavior of FAIR causes small requests to bedelayed in part by requests for large �les, whereas SRPT allows requests for small�les to jump ahead of requests for large �les. Since most requests are for small�les, most requests see an order of magnitude improvement under SRPT. Anotherway to think of this is that SRPT is an opportunistic algorithm which schedulesrequests so as to minimize the number of outstanding requests in the system (italways works on those requests with the least remaining work to be done). Byminimizing the number of outstanding requests in the system, Little's Law [Little1961] tells us that SRPT also minimizes the mean response time.

0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25
Mean response time vs. load

Uplink Load

R
es

po
ns

e
tim

e
(s

ec
)

FAIR
SRPT

Fig. 8. Mean response time under SRPT versus FAIR as a function of uplink load, under trace-based workload, in LAN environment with server uplink bandwidth 100Mb/sec.3.3 Performance of requests for large �les under SRPT in LANThe important question is whether the signi�cant improvements in mean responsetime come at the price of signi�cant unfairness to large requests. We answer thisquestion for both the open system model and the partly-open system model. We�rst look at the case of 10 Mbps uplink and then at the case of 100 Mbps uplink.Figure 9 shows the mean response time as a function of the size of the requested�le, in the case where the uplink load is 0:6, 0:8, and 0:9 and the bandwidth onthe server's uplink is 10 Mbps. In the left column of Figure 9, the sizes of the �lesrequested have been grouped into 60 bins, and the mean response time for each binis shown in the graph. The 60 bins are determined so that each bin spans an interval[x; 1:2x]. Note that the last bin actually contains only requests for the very biggest�le. Observe that requests for small �les perform far better under SRPT schedulingas compared with FAIR scheduling, while requests for large �les, those > 1 MB,perform only negligibly worse under SRPT as compared with FAIR scheduling. Forexample, under uplink load of 0:8 (see Figure 9(b)) SRPT scheduling improves themean response times of requests for small �les by a factor of close to 10, while themean response time for the very largest size request only goes up by a factor of 1:2.ACM Transactions on Computer Systems, Vol. 21, No. 2, May 2003.

Size-based Scheduling to Improve Web Performance � 15

10
2

10
3

10
4

10
5

10
6

10
7

10
−2

10
−1

10
0

10
1

Size of file requested (bytes)

R
es

po
ns

e
tim

e
(s

ec
)

FAIR
SRPT

0 20 40 60 80 100
10

−3

10
−2

10
−1

10
0

10
1

Percentile of Job Sizes

R
es

po
ns

e
tim

e
(s

ec
)

FAIR
SRPT

(a) uplink load = 0.6
10

2
10

3
10

4
10

5
10

6
10

7
10

−2

10
−1

10
0

10
1

10
2

Size of file requested (bytes)

R
es

po
ns

e
tim

e
(s

ec
)

FAIR
SRPT

0 20 40 60 80 100
10

−2

10
−1

10
0

10
1

Percentile of Job Sizes

R
es

po
ns

e
tim

e
(s

ec
)

FAIR
SRPT

(b) uplink load = 0.8
10

2
10

3
10

4
10

5
10

6
10

7
10

−2

10
−1

10
0

10
1

10
2

Size of file requested (bytes)

R
es

po
ns

e
tim

e
(s

ec
)

FAIR
SRPT

0 20 40 60 80 100
10

−2

10
−1

10
0

10
1

Percentile of Job Sizes

R
es

po
ns

e
tim

e
(s

ec
)

FAIR
SRPT

(c) uplink load = 0.9Fig. 9. Mean response time as a function of the size of the requested �le under trace-based workload, shown for a range of uplink loads (corresponds to Figure 5(a)).The left column shows the mean response time as a function of the size of the �lerequested. The right column shows the mean response time as a function of thepercentile of the requested �le size distribution.ACM Transactions on Computer Systems, Vol. 21, No. 2, May 2003.

16 � Mor Harchol-Balter et al.Note that the above plots give equal emphasis to small and large �les. As requestsfor small �les are much more frequent, these plots are not a good measure of theimprovement o�ered by SRPT. To fairly assess the improvement, the right columnof Figure 9, presents the mean response time as a function of the percentile ofthe requested �le size distribution, in increments of half of one percent (i.e. 200percentile buckets). From this graph, it is clear that at least 99:5% of the requestsbene�t under SRPT scheduling. In fact, requests for the smallest 80% of �les bene�tby a factor of 10, and all requests outside of the top 1% bene�t by a factor of > 5.For lower uplink loads, the di�erence in mean response time between SRPT andFAIR scheduling decreases, and the unfairness to requests for large �les becomespractically nonexistent. For higher uplink loads, the di�erence in mean responsetime between SRPT and FAIR scheduling becomes greater, and the unfairness torequests for large �les also increases. Even for the highest uplink load tested though(.95), there are only 500 requests (out of the 1 million requests) which completelater under SRPT as compared with FAIR. These requests are so large however,that the e�ect on their slowdown is negligible.Results for the partly-open system model are similar to those in Figure 9, withslightly more penalty to the requests for large �les, but still hardly noticeablepenalty. For the case of k = 5, with uplink load � = 0:8, the mean response timefor the largest 1% of requested �les is still lower under SRPT (1.09 seconds underSRPT as compared with 1.12 seconds under FAIR). The request for the very largest�le has a mean response time of 9.5 seconds under SRPT versus 8.0 seconds underFAIR.For the 100 Mb/sec experiments all requests, large and small, preferred SRPTscheduling in expectation under all uplink loads tested.3.4 SRPT with only two prioritiesOur SRPT algorithm is only a rough approximation of true SRPT since we use only6 priority classes. An interesting question is how much bene�t one could get withonly 2 priority classes. That is, each request would simply being of high priority orlow priority.To explore the performance of SRPT with only two priority classes, we de�nehigh-priority requests as those corresponding to the smallest 50% of �les and low-priority requests as those corresponding to the largest 50% of �les. The cuto� �lesize falls at 1K. We �nd that this simple algorithm results in a factor of 2:5 im-provement in mean response time and a factor of 5 improvement in mean slowdownover FAIR. We also �nd that all requests, of either priority, have lower expectedresponse times under SRPT than under FAIR using this simple algorithm.4. WAN SETUP AND EXPERIMENTAL RESULTSTo understand the e�ect of network congestion, loss, and propagation delay incomparing SRPT and FAIR, we also conduct WAN experiments. We perform twotypes of WAN experiments: (i) experiments using our LAN setup together with aWAN emulator (Section 4.1) and (ii) experiments using physically geographically-dispersed client machines (Section 4.2). Throughout this section we use an uplinkbandwidth of 10 Mbps.ACM Transactions on Computer Systems, Vol. 21, No. 2, May 2003.

Size-based Scheduling to Improve Web Performance � 174.1 WAN emulator experimentsThe two most frequently used tools for WAN emulation are probably NISTnet[NISTNet 2002] and Dummynet [Rizzo 1997].NISTnet is a separate package available for Linux which can drop, delay orbandwidth-limit incoming packets. Dummynet applies delays and drops to bothincoming and outgoing packets, hence allowing the user to create symmetric lossesand delays. Since Dummynet is currently available for FreeBSD only we implementDummynet functionality in form of a separate module for the Linux kernel. Moreprecisely, we changed the ip rcv() and the ip output() function in the TCP-IPstack to intercept in- and out-going packets to create losses and delays.In order to delay packets, we use the timeout() facility to schedule transmissionof delayed packets. We recompile the kernel with HZ=1000 to get a �ner-grainedmillisecond timer resolution.In order to drop packets we use an independent, uniform random loss model (asin Dummynet) which can be con�gured to a speci�ed probability.The experimental setup for our experiments is identical to that used for the LANexperiments (see Section 3.1) except that the WAN emulator functionality is nowincluded in each client machine.
0 20 40 60 80 100

0

0.1

0.2

0.3

RTT (msec)

R
es

po
ns

e
T

im
e

(s
ec

)

FAIR
SRPT

0 20 40 60 80 100
0

0.2

0.4

0.6

RTT (msec)

R
es

po
ns

e
T

im
e

(s
ec

)

FAIR
SRPT

(a) uplink load = 0:7 (b) uplink load = 0:9.Fig. 10. E�ect on SRPT and FAIR of increasing RTT from 0 ms to 100 ms.Figure 10 shows the e�ect of increasing the round-trip propagation delay (RTT)from 0 ms to 100 ms for FAIR and SRPT in the case of uplink load 0:7 and uplinkload 0:9. Adding WAN delays increases response times by a constant additivefactor on the order of a few RTTs for both FAIR and SRPT. The e�ect is thatthe relative improvement of SRPT over FAIR drops. Under uplink load � = 0:9,SRPT's improvement over FAIR drops from a factor of 4 when the RTT is 0 msto a factor of 2 when the RTT is 100 ms. Under uplink load � = 0:7, the factorimprovement of SRPT over FAIR drops from a factor of 2 to only 15%.With respect to unfairness, we �nd that any unfairness to requests for large �lesdecreases as the RTT is increased. The reason is obvious { any existing unfairnessto requests for large �les is mitigated by the additive increase in delay imposed onboth FAIR and SRPT. ACM Transactions on Computer Systems, Vol. 21, No. 2, May 2003.

18 � Mor Harchol-Balter et al.
0 2 4 6 8

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
R

es
po

ns
e

T
im

e
(s

ec
)

Loss Rate (%)

FAIR
SRPT

0 2 4 6 8
0

0.5

1

1.5

2

2.5

loss rate (%)

R
es

po
ns

e
T

im
e

(s
ec

)

FAIR
SRPT

(a) uplink load = 0:7 (b) uplink load = 0:9.Fig. 11. E�ect on SRPT and FAIR of increasing loss from 0% to 10%.
0 2 4 6 8

0

0.5

1

1.5

2

Loss Rate (%)

R
es

po
ns

e
T

im
e

(s
ec

)

FAIR − 100 ms RTT
SRPT − 100 ms RTT
FAIR − 20 ms RTT
SRPT − 20 ms RTT

0 2 4 6 8
0

0.5

1

1.5

2

2.5

3

loss rate (%)

R
es

po
ns

e
T

im
e

(s
ec

)

FAIR − 100ms RTT
FAIR − 20ms RTT
SRPT − 100ms RTT
SRPT − 20ms RTT

(a) uplink load = 0:7 (b) uplink load = 0:9.Fig. 12. E�ect on SRPT and FAIR of increasing loss and delay.Figure 11 assumes that the RTT is 0 ms and shows the e�ect of increasing thenetwork loss from 0% to 10% under both FAIR and SRPT. Increasing loss has amore pronounced e�ect than increasing the RTT. We observe that the responsetimes don't grow linearly in the loss rate. This is to be expected since TCPsthroughput is inversely proportional to the square root of the loss. Under uplinkload � = 0:9, SRPT's improvement over FAIR drops from a factor of 4 when lossis 0% to a factor of 25% when loss is 10%. Under uplink load � = 0:7, loss beyond2% virtually eliminates any improvement of SRPT over FAIR.With respect to unfairness, we �nd that loss slightly increases the unfairnessto the request for the largest �le under SRPT. The request for the largest �leperforms 1.1 times worse under 3% loss, but 1.5 times worse under loss rates upto 10%. Nevertheless, even in a highly lossy environment, the mean response timeof requests for �les in the top 1%-tile is still higher under FAIR as compared toSRPT.Finally Figure 12 combines loss and delay. Since the e�ect of loss dwarfs thee�ect of propagation delay, the results are similar to those in Figure 11 with lossonly.ACM Transactions on Computer Systems, Vol. 21, No. 2, May 2003.

Size-based Scheduling to Improve Web Performance � 194.2 Geographically-dispersed WAN experimentsWe now repeat the WAN experiments using physically geographically-dispersedclient machines. The experimental setup is again the same as that used for theLAN (see Section 3.1) except that this time the client machines are located atvarying distances from the server. The table below shows the location of eachclient machine, indicated by its RTT from the server machine.4Location Avg. RTTIBM, New York 20msUniv. Berkeley 55msUK 90-100msUniv. Virginia 25msUniv. Michigan 20msBoston Univ. 22msUnfortunately, we were only able to get accounts for Internet2 machines (schoolsand some research labs). The limitation in exploring only an Internet2 network isthat loss and congestion may be unrealistically low.Figure 13 shows the mean response time as a function of uplink load for each ofthe six hosts. The improvement in mean response time of SRPT over FAIR is afactor of 8{20 for high uplink load (0.9) and only about 1.1 for lower uplink load(0.5).Figures 14(a) and 14(b) show the mean response time of a request as functionof the percentile the size of the requested �le, at an uplink load of 0.8, for thehosts at IBM and UK respectively. It turns out that all requests have higher meanresponse time under FAIR, as compared with SRPT. For the largest �le, the meanresponse time is almost the same under SRPT and FAIR. The reason for the lackof unfairness is the same as that pointed out in the WAN emulation experimentsfor the case of signi�cant RTT, but near-zero loss.We next compare the numbers in Figure 13 with those obtained using the WANemulation. For the case of uplink load 0:5, 0:7, and 0:8, the values of response timein Figure 13 are comparable with those obtained using the WAN emulator withpropagation delay, but near-zero loss (compare with Figure 10).Observe that the response times under uplink load 0:9 in Figure 13 are muchhigher than those for the WAN emulator for the case of FAIR but not for SRPT.The reason is that the WAN environment creates some variance in the uplink load.Thus an average uplink load of 0:9 translates to
uctuations ranging from 0:75to 1:05, which means that there are moments of transient overload.5 Transientoverload a�ects FAIR far worse than SRPT because the buildup in number ofrequests at the server during overload is so much greater under FAIR than underSRPT. Transient overload even occasionally results in a full SYN queue under FAIRin our experiments. This means that incoming SYNs may be dropped, resulting in4The measured bandwidth available at these client sites ranged from 1 Mbps, at Boston University,to 8 Mbps, at IBM. Experiments were instrumented such that the bandwidth at the client sitewould not be a bottleneck.5When we say that there is a transient load of 1.05, we mean that during some 1-second intervalsthere may be 10.5 Mbits of data requested where the uplink bandwidth is only 10 Mbps.ACM Transactions on Computer Systems, Vol. 21, No. 2, May 2003.

20 � Mor Harchol-Balter et al.
IBM Berkeley UK Virginia Michigan Boston

0

0.5

1

1.5

2

2.5

3

3.5

R
es

po
ns

e
T

im
e

(s
ec

)

Load=0.9

FAIR
SRPT

IBM Berkeley UK Virginia Michigan Boston
0

0.1

0.2

0.3

0.4

0.5

0.6
Load=0.8

R
es

po
ns

e
T

im
e

(s
ec

)

FAIR
SRPT

(a) uplink load 0.9 (b) uplink load 0.8
IBM Berkeley UK Virginia Michigan Boston

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

R
es

po
ns

e
T

im
e

(s
ec

)

Load=0.7

FAIR
SRPT

IBM Berkeley UK Virginia Michigan Boston
0

0.05

0.1

0.15

0.2

0.25

0.3

R
es

po
ns

e
T

im
e

(s
ec

)

Load=0.5

FAIR
SRPT

(c) uplink load 0.7 (d) uplink load 0.5Fig. 13. Mean response time under SRPT versus FAIR in a WAN under uplinkload (a) 0.9, (b) 0.8, (c) 0.7, and (d) 0.5.

0 20 40 60 80 100
10−2

10
−1

10
0

10
1

R
es

po
ns

e
T

im
e

(s
ec

)

Percentile of Job Size

FAIR
SRPT

0 20 40 60 80 100
10

−1

10
0

101

R
es

po
ns

e
T

im
e

(s
ec

)

Percentile of Job Size

FAIR
SRPT

(a) IBM clients (b) UK clientsFig. 14. Response time as a percentile of the size of the requested �le under SRPTscheduling versus traditional FAIR scheduling at uplink load 0.8, measured for (a)the IBM host and (b) the UK host.ACM Transactions on Computer Systems, Vol. 21, No. 2, May 2003.

Size-based Scheduling to Improve Web Performance � 21a timeout and retransmit. In the LAN environment where uplink load can be bettercontrolled, we never experience SYN drops in our experiments (although SYN dropsmight occur in alternative setups where the CPU is the bottleneck resource).The trends shown in Figures 13 and 14 are in agreement with the WAN emulatorexperiments. To summarize: (i) The improvement of SRPT over FAIR is higher athigher uplink loads; (ii) The improvement of SRPT over FAIR is diminished for faraway clients; (iii) The unfairness to requests for large �les under SRPT becomesnon-existent as propagation delay is increased.5. WHY DOES SRPT WORK?In this section we look in more detail at where SRPT's performance gains comefrom and we explain why there is no starvation of requests for large �les.5.1 Where do mean gains come from?The high-level argument has been given before: SRPT is an opportunistic algorithmwhich schedules requests so as to minimize the number of outstanding requests inthe system (it always works on those requests with the least remaining work to bedone). By minimizing the number of outstanding requests in the system, Little'sLaw tells us that SRPT also minimizes the mean response time: Little's Law [Little1961] states that the mean number of requests in the system equals the productof the average arrival rate and the mean response time. In fact our measurementsshow that when the load is 0:7 the number of open connections is 3 times higherunder FAIR than under SRPT. At load 0:9, this number jumps to 5 times higher.This corresponds to the improvement in mean response time of SRPT over FAIR.Mathematically, the improvement of SRPT over FAIR scheduling with respect tomean response time has been derived for an M/G/1 queue in [Bansal and Harchol-Balter 2001].At an implementation level, while our implementation of SRPT, described inSection 2.1 is not an exact implementation of the SRPT algorithm, it still has thedesirable properties of the SRPT algorithm: requests for small �les (or those withsmall remaining time) are separated from requests for large �les and have priorityover requests for large �les. Note that our implementation does not interact illegallywith the TCP protocol in any way: scheduling is only applied to those connectionswhich are ready to send via TCP's congestion control algorithm.The above discussion shows that one reason that SRPT improves over FAIRwith respect to mean response times is because it allows small �le requests to avoidtime-sharing with large �le requests. We now explore two other potential reasonsfor the improvement of SRPT over FAIR and eliminate both.One potential reason for the improvement of SRPT over FAIR might be thatFAIR causes the SYN queue to over
ow (because of the rapid buildup in numberof connections) while SRPT does not. Recall that if the web server's SYN queue�lls up, new connection requests will experience expensive timeouts (on the orderof 3 seconds). Our measurements show that the SYN queue is in fact signi�cantlyfuller under FAIR than under SRPT for high uplink loads, as expected, since SRPTminimizes the number of outstanding requests. However, in all of our experimentsexcept one WAN experiment, the SYN queue never �lls up under FAIR or SRPT.Yet another potential reason for SRPT's performance gains over FAIR is that byACM Transactions on Computer Systems, Vol. 21, No. 2, May 2003.

22 � Mor Harchol-Balter et al.having multiple priority queues SRPT is essentially getting to use more bu�ering,as compared with the single transmit queue of FAIR (see Figure 2). It is possiblethat there could be an advantage to having more bu�ering inside the kernel, sinceunder high uplink loads we have observed some packet loss (5%) within the kernelat the transmit queue under FAIR, but not under SRPT. To see whether SRPTis obtaining an unfair advantage, we experimented with increasing the length limitfor the transmit queue under FAIR from 100 to 500, and then to 700, entirelyeliminating the losses. This helped just a little | reducing mean response timefrom about 400ms to 350ms under FAIR. Still, performance was nowhere near thatof SRPT.5.2 Why are requests for large �les not hurt?It has been suspected by many that SRPT is a very unfair scheduling policy forrequests for large �les. The above results have shown that this suspicion is falsefor web workloads. It is easy to see why SRPT should provide huge performancebene�ts for the requests for small �les, which get priority over all other requests.In this section we describe brie
y why the requests for large �les also bene�t underSRPT, in the case of workloads with a heavy-tailed property.In general a heavy-tailed distribution is one for whichPrfX > xg � x��;where 0 < � < 2. A set of �le sizes following a heavy-tailed distribution has somedistinctive properties:(1) In�nite variance (and if � � 1, in�nite mean). (In practice, variance is notreally in�nite, but simply very high, since there is a �nite maximum requested�le size).(2) The property that a tiny fraction (usually < 1%) of the very longest requestscomprise over half of the total uplink load. We refer to this important propertyas the heavy-tailed property.The lower the parameter �, the more variable the distribution, and the more pro-nounced is the heavy-tailed property, i.e. the smaller the fraction of requests forlarge �les that comprise half the uplink load.The sizes of requested �les have been shown to often follow a heavy-tailed distri-bution [Crovella and Bestavros 1997; Crovella et al. 1998]. Our traces have strongheavy-tailed properties. (In our trace the largest < 3% of the requests make up> 50% of the total uplink load.)Consider a workload where the sizes of the �les requested exhibit the heavy-tailedproperty. Now consider a request for a �le in the 99%-tile of the requested �le sizedistribution. This request will actually do much better under SRPT schedulingthan under FAIR scheduling. The reason is that, under SRPT, this request onlycompetes against 50% of the uplink load (the remaining 50% of the uplink load ismade up of requests for the top 1%-tile of �les) whereas it competes against 100%of the uplink load under FAIR scheduling. The same argument could be made fora requested �le in the 99:5%-tile of the �le size distribution.However, it is not obvious what happens to a request in the 100%-tile of therequested �le size distribution (i.e. the largest possible �le). It turns out that,ACM Transactions on Computer Systems, Vol. 21, No. 2, May 2003.

Size-based Scheduling to Improve Web Performance � 23provided the uplink load is not too close to 1, the request in the 100%-tile willquickly see an idle period, during which it can run. As soon as the request gets achance to run, it will quickly become a request in the 99:5%-tile, at which time itwill clearly prefer SRPT. For a mathematical formalization of the above argument,in the case of an M/G/1 queue, we refer the reader to [Bansal and Harchol-Balter2001].Despite our understanding of the above theoretical result, we were neverthelessstill surprised to �nd that results in practice matched those in theory { i.e., therewas little if any unfairness to large requests. It is understandable that in practicethere should be more unfairness to requests for large �les since requests for large�les pay some additional penalty for moving between priority queues.6. PREVIOUS WORKThere has been much literature devoted to improving the response time of web re-quests. Some of this literature focuses on reducing network latency, e.g. by cachingrequests ([Gwertzman and Seltzer 1994], [Braun and Cla�y 1994], [Bestavros et al.1995]) or improving the HTTP protocol ([Padmanabhan and Mogul 1995]). Otherliterature works on reducing the delays at a server, e.g. by building more eÆ-cient HTTP servers ([Apache 2001], [Pai et al. 1999]) or improving the server's OS([Druschel and Banga 1996], [Banga et al. 1998], [Kaashoek et al. 1996], [Mogul1995]).In the remainder of this section we discuss only work on priority-based or size-based scheduling of requests. We �rst discuss related implementation work and thendiscuss relevant theoretical results.Almeida et al. [1998] use both a user-level approach and a kernel-level imple-mentation to prioritizing HTTP requests at a web server. The user-level approachin [Almeida et al. 1998] involves modifying the Apache web server to include ascheduler process which determines the order in which requests are fed to the webserver. This modi�cation is all in the application level and therefore does not haveany control over what the OS does when servicing the requests. The kernel-levelapproach in [Almeida et al. 1998] simply involves setting the priority of the processwhich handles a request in accordance with the priority of the request. Observethat setting the priority of a process only allows very coarse-grained control overthe scheduling of the process, as pointed out in the paper. The user-level andkernel-level approaches in this paper are good starting points, but the results showthat more �ne-grained implementation work is needed. For example, in their exper-iments, the high-priority requests only bene�t by 20% and the low priority requestssu�er by up to 200%.Another attempt at priority scheduling of HTTP requests which deals speci�callywith SRPT scheduling at web servers is that of Crovella et al. [1999]. This imple-mentation does not involve any modi�cation of the kernel. The authors experimentwith connection scheduling at the application level only. They design a specializedWeb server which allows them to control the order in which read() and write()calls are made, but does not allow any control over the low-level scheduling whichoccurs inside the kernel, below the application layer (e.g., control over the order inwhich socket bu�ers are drained). Via the experimental Web server, the authorsACM Transactions on Computer Systems, Vol. 21, No. 2, May 2003.

24 � Mor Harchol-Balter et al.are able to improve mean response time by a factor of up to 4, for some rangesof uplink load, but the improvement comes at a price: a drop in throughput by afactor of almost 2. The explanation, which the authors o�er repeatedly, is thatscheduling at the application level does not provide �ne enough control over theorder in which packets enter the network. In order to obtain enough control overscheduling, the authors are forced to limit the throughput of requests. This is notbe a problem in our paper. Since the scheduling is done at the kernel, we have ab-solute control over packets entering the network. Our performance improvementsare greater than those in [Crovella et al. 1999] and do not come at the cost of anydecrease in throughput.The papers above o�er coarser-grained implementations for priority schedulingof connections. Very recently, many operating system enhancements have appearedthat allow for �ner-grained implementations of priority scheduling [Radhakrishnan1999; Almesberger 1999; Almesberger et al. 1999].Several papers have considered the idea of SRPT scheduling in theory.Bender et al. [1998] consider size-based scheduling in web servers. The authorsreject the idea of using SRPT scheduling because they prove that SRPT will causelarge �les to have an arbitrarily high max slowdown. However, that paper assumesa worst-case adversarial arrival sequence of web requests. The paper goes on topropose other algorithms, including a theoretical algorithm which does well withrespect to max slowdown and mean slowdown.Roberts and Massoulie [1998] consider bandwidth sharing on a link. They suggestthat SRPT scheduling may be bene�cial in the case of heavy-tailed (Pareto)
owsizes.Lastly, Bansal and Harchol-Balter [2001] investigate SRPT scheduling analyti-cally for an M/G/1/SRPT queue (Poisson arrivals and general service times). Wediscussed these theoretical results in Section 5.7. CONCLUSION AND FUTURE WORKThis paper demonstrates that the delay at a busy server can be greatly reduced bySRPT-based scheduling of the bandwidth that the server has purchased from itsISP. We show further that the reduction in server delay often results in a reductionin the client-perceived response time.In a LAN setting, our SRPT-based scheduling algorithm reduces mean responsetime signi�cantly over the standard FAIR scheduling algorithm. In a WAN set-ting the improvement is still signi�cant for very high uplink loads, but is far lesssigni�cant at moderate uplink loads.Surprisingly, this improvement comes at no cost to requests for large �les, whichare hardly penalized, or not at all penalized. Furthermore these gains are achievedunder no loss in byte throughput or request throughput.Our current setup involves only static requests. In future work we plan to expandour technology to schedule cgi-scripts and other non-static requests. Determiningthe processing requirement of non-static requests is an important open problem, butcompanies are making excellent progress on predicting the run times of dynamicrequests. We propose additionally to deduce the run time of a dynamic request asit runs. The request is initially assigned high priority, but its priority will decreaseACM Transactions on Computer Systems, Vol. 21, No. 2, May 2003.

Size-based Scheduling to Improve Web Performance � 25as it runs.Our current setup considers the bottleneck resource at the server to be the server'slimited bandwidth purchased from its ISP, and thus we do SRPT-based schedulingof that resource. In a di�erent application (e.g. processing of cgi-scripts) wheresome other resource was the bottleneck (e.g., CPU), it might be desirable to im-plement SRPT-based scheduling of that resource.Our current work also does not consider some practical aspects of implementingSRPT, such as vulnerability to denial of service attacks and other security issues.Although we evaluate SRPT and FAIR across many uplink loads, we do not inthis paper consider the case of overload. This is an extremely diÆcult problemboth analytically and especially experimentally. Our preliminary results show thatin the case of transient overload SRPT outperforms FAIR across a long list ofmetrics, including mean response time, throughput, server losses, etc.Our SRPT solution can also be applied to server farms. Again the bottleneckresource would be the limited bandwidth that the web site has purchased from itsISP. SRPT-based scheduling could then be applied to the router at the joint uplinkto the ISP or at the individual servers.ACKNOWLEDGMENTSWe would like to thank Mark Crovella for many productive discussions on the topicof scheduling in web servers and Linux
ow control. Greg Kesden, Jan Harkes,and Srini Seshan also provided us with helpful information about Linux internals.We would also like to thank Alexey Kuznetsov, Steven Ives and Tim Can�eldfor helping us with the initial Linux Di�serv experimentation. Lastly, we thankour many readers who gave us feedback on this paper including Ion Stoica, M.Satyanarayanan and Srini Seshan.REFERENCESAlmeida, J., Dabu, M., Manikutty, A., and Cao, P. 1998. Providing di�erentiated quality-of-service in Web hosting services. In Proceedings of the First Workshop on Internet ServerPerformance.Almesberger, W. 1999. Linux network traÆc control | implementation overview. White paperavailable at http://di�serv.sourceforge.net/.Almesberger, W., Salim, J. H., and Kuznetsov, A. 1999. Di�erentiated services on Linux.White paper available at http://lrcwww.ep
.ch/linux-di�serv/.Apache. 2001. Apache web server. http://httpd.apache.org.Arlitt, M., Friedrich, R., and Jin, T. 1999. Workload characterization of a web proxy in acable modem environment. ACM Performance Evaluation Review 27, 2 (August), 25 { 36.Banga, G. and Druschel, P. 1999. Measuring the capacity of a web server under realistic loads.World Wide Web 2, 1-2, 69{83.Banga, G., Druschel, P., and Mogul, J. 1998. Better operating system features for fasternetwork servers. ACM SIGMETRICS Performance Evaluation Review 26, 3, 23{30.Bansal, N. and Harchol-Balter, M. 2001. Analysis of SRPT scheduling: Investigating unfair-ness. In Proceedings of ACM SIGMETRICS '01. 279 { 290.Barford, P. and Crovella, M. E. 1998. Generating representative Web workloads for networkand server performance evaluation. In Proceedings of SIGMETRICS '98. 151{160.Bender, M., Chakrabarti, S., and Muthukrishnan, S. 1998. Flow and stretch metrics forscheduling continuous job streams. In Proceedings of the 9th Annual ACM-SIAM Symposiumon Discrete Algorithms. ACM Transactions on Computer Systems, Vol. 21, No. 2, May 2003.

26 � Mor Harchol-Balter et al.Bestavros, A., Carter, R. L., Crovella, M. E., Cunha, C. R., Heddaya, A., and Mirdad,S. A. 1995. Application-level document caching in the Internet. In Proceedings of the SecondInternational Workshop on Services in Distributed and Networked Environments (SDNE'95).Braun, H. and Claffy, K. 1994. Web traÆc characterization: an assessment of the impactof caching documents from NCSA's Web server. In Proceedings of the Second InternationalWWW Conference.Cockcroft, A. April 1996. Watching your web server. The Unix Insider athttp://www.unixinsider.com.Crovella, M. and Bestavros, A. 1997. Self-similarity in World Wide Web traÆc: Evidenceand possible causes. IEEE/ACM Transactions on Networking 5, 6 (December), 835{846.Crovella, M., Frangioso, R., and Harchol-Balter, M. 1999. Connection scheduling in webservers. In USENIX Symposium on Internet Technologies and Systems.Crovella, M., Taqqu, M. S., and Bestavros, A. 1998. Heavy-tailed probability distributionsin the World Wide Web. In A Practical Guide To Heavy Tails. Chapman & Hall, New York,3{26.Downey, A. B. 1997. A parallel workload model and its implications for processor allocation. InProceedings of High Performance Distributed Computing. 112{123.Druschel, P. and Banga, G. 1996. Lazy receiver processing (LRP): A network subsystemarchitecture for server systems. In Proceedings of OSDI '96. 261{275.Feldmann, A. Web performance characteristics. IETF plenary Nov.'99.http://www.research.att.com/�anja/feldmann/papers.html.Gwertzman, J. and Seltzer, M. 1994. The case for geographical push-caching. In Proceedingsof HotOS '94.Harchol-Balter, M. and Downey, A. 1997. Exploiting process lifetime distributions for dy-namic load balancing. ACM Transactions on Computer Systems 15, 3, 253{285.HarcholBalter, M., Schroeder, B., Bansal, N., and Agrawal, M. 2000. Implementation ofSRPT scheduling in web servers. Tech. Rep. CMU-CS-00-170.ITA. 2002. The internet traÆc archives. Available at http://town.hall.org/Archives/pub/ITA/.Kaashoek, M., Engler, D., Wallach, D., and Ganger, G. 1996. Server operating systems. InSIGOPS European Workshop '96. 141{148.Krishnamurthy, B. and Rexford, J. 2001. Web Protocols and Practice: HTTP/1.1, NetworkingProtocols, Caching, and TraÆc Measurement. Addison-Wesley.Little, J. 1961. A proof of the theorem L = �W . Operations Research 9, 383 { 387.Maggs, B. 2001. Personal communication with Vice President of Research, Akamai Technologies,Bruce Maggs.Manley, S. and Seltzer, M. 1997. Web facts and fantasy. In Proceedings of the 1997 USITS.Microsoft. 2001. The arts and science of Web server tuning with internet informa-tion services 5.0. Microsoft TechNet - Insights and Answers for IT Professionals: Athttp://www.microsoft.com/technet/.Mogul, J. C. 1995. Network behavior of a busy Web server and its clients. Tech. Rep. 95/5,Digital Western Research Laboratory. October.NISTNet. 2002. National institute of standards and technology.http://snad.ncsl.nist.gov/itg/nistnet/.Padmanabhan, V. N. and Mogul, J. 1995. Improving HTTP latency. Computer Networks andISDN Systems 28, 25{35.Pai, V. S., Druschel, P., and Zwaenepoel, W. 1999. Flash: An eÆcient and portable Webserver. In Proceedings of USENIX 1999.Radhakrishnan, S. 1999. Linux { advanced networking overview version 1. Available athttp://qos.ittc.ukans.edu/howto/.Rizzo, L. 1997. Dummynet: a simple approach to the evaluation of network protocols. ACMComputer Communication Review 27, 1.Roberts, J. and Massoulie, L. 1998. Bandwidth sharing and admission control for elastic traÆc.In ITC Specialist Seminar.ACM Transactions on Computer Systems, Vol. 21, No. 2, May 2003.

Size-based Scheduling to Improve Web Performance � 27Schrage, L. E. and Miller, L. W. 1966. The queue M/G/1 with the shortest remainingprocessing time discipline. Operations Research 14, 670{684.Silberschatz, A., Galvin, P., and Gagne, G. 2002. Operating System Concepts, Sixth Edition.John Wiley & Sons.Stallings, W. 2001. Operating Systems, Fourth Edition. Prentice Hall.Received February 2002; revised September 2002; accepted December 2002

ACM Transactions on Computer Systems, Vol. 21, No. 2, May 2003.

