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Abstract

This paper provides a detailed implementation study of the behavior of web servers serving

static requests, where the load fluctuates over time (transient overload). Various external factors

are considered including WAN delays and losses, and different client behavior models. We find

that performance can be dramatically improved via a kernel-level modification to the web server

to change the scheduling policy at the server from the standard FAIR (processor-sharing) schedul-

ing to SRPT (Shortest-Remaining-Processing-Time) scheduling. We find that SRPT scheduling

induces no penalties. In particular, throughput is not sacrificed and requests for long files expe-

rience only negligibly higher response times under SRPT than they did under the original FAIR

scheduling.

1 Introduction

Most well-managed web servers perform well most of the time. Occasionally, however, every popular

web server experiences transient overload. Overload is defined as the point when the demand on at

least one of the web server’s resources exceeds the capacity of that resource. While a well designed

web server should not be persistently overloaded, transient periods of overload are often inevitable,

since the traffic increase at the server that leads to the transient period of overload is difficult to

predict. As an example, the amount of traffic received by a web site might rise because of an

unexpected increase of the site’s popularity, e.g. after being featured on national television or in
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a major newspaper. Another situation that could lead to transient periods of overload is under-

provisioning for sales-boosting holidays. Although an online retailer knows to expect more web site

hits during those days, it is difficult to predict exactly the associated increase in traffic volume.

An overloaded web server typically displays signs of its affliction within a few seconds. Work

enters the web server at a greater rate than the web server can complete it. This causes the number

of connections at the web server to build up. Very quickly, the web server reaches the limit on the

number of connections that it can handle. From the client perspective, the client’s request for a

connection will either never be accepted or will get through only after several trials. Even when the

client’s request for a connection does get accepted, the time to service that request may be very long

because the request has to timeshare with all the other requests at the server.

The solution most commonly suggested to avoid overload is admission control [18,24,34,61,62,64]:

the web server or a front-end monitors the load and the capacity of the server and, if necessary,

rejects incoming requests, in order to ensure satisfactory service to those requests being accepted to

the server. The decision of when and which request to reject is based on sophisticated algorithms, e.g.

leveraging application-level knowledge in the admission decision, applying techniques from control

theory, or by combining admission control with QoS. Nevertheless, in the end it comes down to

denying some customers service.

In this paper we suggest a different solution to server overload, that provides stable server perfor-

mance, without dropping requests. Our solution is based on connection scheduling. Traditional web

servers fairly proportion their resources among all requests (referred to as FAIR scheduling in the

remainder of the paper). By contrast we propose unfair scheduling: instead of giving a fair share to

each request, we give priority to requests for small files, in accordance with an approximation of the

well-known scheduling algorithm preemptive Shortest-Remaining-Processing-Time-first (SRPT).

SRPT scheduling is not new. The SRPT algorithm makes sense in any context where the service

requirement of jobs is known a priori. In such a context, the SRPT algorithm can be thought of as a

greedy strategy to minimize the number of jobs in the system by always working on the job that is

closest to completion. SRPT is provably the optimal scheduling policy for minimizing mean response

times [57]. SRPT has been proposed for web systems serving static content before [31,54], where it

was observed that the service demand of a request is proportional to the size of the file requested

(hence known a priori). However, SRPT has never been proposed in the context of overload, and has
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typically only been evaluated under simulation [28, 47] or using application-level scheduling, which

does not always provide sufficient scheduling control (see [21]).

Using SRPT under lower load situations is vindicated because of analytical work proving that

SRPT does not hurt requests for long files, despite favoring requests for short files [10,65].

What is new in this work is that we propose using SRPT as a solution for coping with transient

overload. Overload is a regime where SRPT has never been evaluated (not analytically nor via

simulation). There is a strong belief that long requests will starve under SRPT [13], [60] (p. 410), [59]

(p. 162).

This paper makes two contributions:

First, we provide a detailed performance study of a web server under overload, showing just how

bad overload can be. We experiment with both persistent overload ( the request rate exceeds the

server capacity during the entire experiment) and transient overload ( alternate periods of overload

and low load where the overall mean load is below 1). Load will be defined formally in the next

section. We find that within a very short period, even low amounts of overload cause the server to

experience instability, dropping requests from its SYN queue, while the client experiences very high

response times (response time is defined as the time from when the client submits the request until

receiving the last byte of the request). We evaluate a full range of complex environmental conditions,

summarized in Table 2, including: the effect of WAN delay and loss, the effect of user aborts, the

effect of persistent connections, the effect of SYN cookies, the effect of the RTO TCP timer, the

effect of the packet length, and the effect of the SYN queue and ACK queue length limits.

Second, the paper proposes SRPT-like scheduling as a means to combat overload. We show that

contrary to intuition, SRPT scheduling at the web server under transient overload does not unduly

harm requests for large files as compared with traditional FAIR scheduling used in web servers.

Furthermore SRPT scheduling significantly improves mean response times overall by up to an order

of magnitude. Lastly, even the mean time until the first byte is improved by close to an order of

magnitude under SRPT as compared with FAIR. Our implementation results are corroborated via

theoretical approximations which match the trends we observe. Our evaluation of SRPT involves a

kernel-level implementation whereby we control the order in which the socket buffers at the server

are drained into the network.

The outline of this paper is as follows: In Section 2 we describe the experimental setup, including
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the workload, the bottleneck resource, and how overload is generated. Section 3 explains our imple-

mentation of SRPT. Section 4 studies exactly what happens in a traditional (FAIR) web server under

persistent overload and contrasts that with the performance of the modified (SRPT) web server. Sec-

tion 5 compares the performance of the FAIR server and the SRPT server under transient overload.

Section 6 analyzes where exactly SRPT’s performance gains come from. Section 7 discusses relevant

previous work, and Section 8 concludes.

2 Experimental Setup

2.1 Trace-based workload

In this paper we focus on servicing static requests, of the form “Get me a file.” While web sites are

increasingly generating dynamic content, studies from 1997-2001 [25,37,41] suggest that the request

stream at web sites is still dominated by static requests. Even logs as recent as 2004 from proxy

servers suggest that 67-73% of requests are for static content [32].

Serving static requests quickly is the focus of many companies e.g., Akamai Technologies, and

much ongoing research. In the context of overload, static requests are especially important, since

popular web sites often convert their dynamic content into static content when the web site is

overloaded [40].

The workload in our experiments is based on a 1-day trace from the Soccer World Cup 19981

obtained from the Internet Traffic Archive [30]. The trace contains 4.5 million mostly static HTTP

requests. In our experiments, our clients generate requests according to an arrival process based on

the interarrival times in the trace as explained in Section 2.3. The trace is also used to specify the

request size in bytes. Results for experiments with other logs are given in the Appendix.

Some statistics about our trace workload follow: The mean file size requested is 5K bytes. The

minimum size file requested is a 41 byte file. The maximum size file requested is a 2.02 MB file.

The distribution of the file sizes requested has been analyzed in earlier work [4] and found to be

heavy-tailed: while the body of the distribution can be reasonably well modeled by a log-normal

1The original trace contains 3 months of data. We choose a period of this trace that creates a load close to 1 in

our experimental setup, to minimize the scaling necessary to achieve the different load levels we experiment with (see

Section 2.3 on scaling). The period of the trace we choose exhibits the same statistical characteristics as the entire

trace.
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distribution, the tail is best fit by a Pareto distribution with an α-parameter less than 1.5. We find

that the largest < 3% of the requests make up > 50% of the total load (in terms of total number

of bytes), exhibiting a strong heavy-tailed property. 50% of files have size less than 1K bytes, and

90% of files have size less than 9.3K bytes. Figure 1 shows the full complementary cumulative

distribution of requested file sizes.
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Figure 1: Complementary Cumulative Distribution Function, F̄ (x), for the trace-based workload.

F̄ (x) = Pr{size of the file requested > x}

2.2 Load and the bottleneck resource

To understand the performance of a web server under overload, we need to understand which resource

in a web server experiences overload first, i.e., which is the bottleneck resource. The three contenders

are: the CPU; the disk to memory bandwidth; and the server’s limited fraction of its ISP’s bandwidth.

On a site consisting primarily of static content, a common performance bottleneck is the limited

bandwidth that the server has bought from its ISP [6, 19, 33]. Even a fairly modest server can

completely saturate a T3 connection or 100Mbps Fast Ethernet connection. Also, buying more

bandwidth is typically relatively more costly than upgrading memory or CPU. In fact, most web

sites buy sufficient memory so that all their files fit within memory (keeping disk utilization low) [6].

For static workloads, CPU load is typically not an issue.

We model the limited bandwidth that the server has purchased from its ISP by placing a limitation

on the server’s uplink, as shown in Figure 2. In all our experiments the bandwidth on the server’s

uplink is the bottleneck resource. System load is therefore defined in terms of the load on the

server’s uplink. For example, if the web server has a 100 Mbps uplink and the average amount of
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data requested by the clients is 80 Mbps, then the system load ρ is 0.8. Although in this paper we

assume that the bottleneck resource is the limited bandwidth that the server has purchased from its

ISP, the main ideas can also be adapted for alternative bottleneck resources.
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of ISP’s bandwidth 
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Figure 2: (a) Server’s bottleneck is the limited fraction of bandwidth that it has purchased from

its ISP. (b) How our implementation setup models this bottleneck by limiting the server’s uplink

bandwidth.

2.3 Defining persistent and transient overload

In our experiments we consider two types of overload, persistent overload and transient overload.

Persistent overload is used to describe a situation where the server is run under a fixed load ρ > 1

during the whole experiment. The motivation behind experiments with persistent overload is mainly

to gain insight into what happens under overload. The overloaded state is unlikely to persist for too

long in practice, due to system upgrades. Nevertheless, due to the burstiness of web traffic, even

in the case of regular upgrades a popular web server is still likely to experience transient periods of

overload.

We consider two different types of transient overload: In the first type, called alternating overload,

the load alternates between overload and low load, where the length of the overload period is equal

to the length of the low load period (see Figure 3(left)). In the second, called intermittent overload,

the load is almost always low, but there are occasional “spikes” of overload, evenly spaced (see

Figure 3(right)). In all cases the overall mean system load is less than 1.

Throughout, since the bandwidth on the uplink is the bottleneck resource, we define load to be

the ratio of the bandwidth requested and the maximum bandwidth available on the uplink. To obtain

a particular load we scale the interarrival times in the trace as follows: We first measure the system

load (i.e. the bandwidth utilization) in an experiment using the original (unscaled) interarrival times
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Figure 3: Two different types of transient overload, alternating (left) and intermittent (right). Ex-

perimentally, the load will never look as constant as above, since arrival times and request sizes come

from a trace.

Workload Type Duration low load Duration overload Avg. low load Avg. overload Avg. load

(seconds) (seconds)

W1 Alternating 25 25 ρ = 0.2 ρ = 1.2 0.7

W2 Alternating 10 10 ρ = 0.2 ρ = 1.2 0.7

W3 Alternating 50 50 ρ = 0.2 ρ = 1.6 0.9

W4 Alternating 25 25 ρ = 0.4 ρ = 1.4 0.9

W5 Alternating 10 10 ρ = 0.4 ρ = 1.4 0.9

W6 Alternating 40 40 ρ = 0.1 ρ = 1.7 0.9

W7 Intermittent 63 6 ρ = 0.4 ρ = 5 0.8

W8 Intermittent 63 10 ρ = 0.45 ρ = 3 0.8

W9 Intermittent 20 3 ρ = 0.735 ρ = 2 0.9

W10 Intermittent 13.3 2 ρ = 0.735 ρ = 2 0.9

Table 1: Definition of trace-based workloads

from the trace. In order to achieve a system load that is x times higher than the original load,

we divide all interarrival times by x. Scaling the interarrival times (while keeping the sequence of

requested web objects constant) models a general increase in traffic at the web server, e.g. due to

sudden popularity or due to holiday shopping. Note that this type of overload is different from the

case where a sudden rise in the popularity of one single object at a site causes overload. In this

paper we are addressing only overload conditions that are caused by an increase in the arrival rate at

the server, while the distribution of the documents requested remains the same (or similar) to that

before overload.

We run all experiments in this paper for several different alternating and intermittent workloads,

which are defined in Table 1. All our results are based on 30 minute experiments although we show

only shorter fragments in the figures for better readability.
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2.4 Why generating overload is difficult

Experimenting with persistent overload is inherently more difficult than running experiments where

the load is high but remains below 1. The main issue in experimenting with overload is that running

the server under overload is very taxing on client machines. While both the client machines and

the server must allocate resources (such as TCP control blocks or file descriptors) for all accepted

requests, the client machines must additionally allocate resources for all connections that the server

has repeatedly refused (due to a full SYN-queue).

Requests to a web server may be generated either using an “open” system, a “closed” system,

or some hybrid combination of the two, see e.g. [31]. To obtain overload, an open or partly-open

system is necessary [7]. Existing web workload generators include Surge [11] and Sclient [7]. Surge

mimics a closed system with several users, where each user makes a request and after receiving the

response waits for a certain think time before it makes the next request. Note that in a closed system

it is not possible to create overload, since a new request will be made only if another request finishes

(see Figure 4(right)). By contrast, an open system allows one to create any amount of overload by

simply generating a rate of requests where the sum of the sizes of the files requested exceeds the

server uplink bandwidth.

Get responseGenerate request Leave

Each user has this behavior:

Open System
User visits web site just once. 

Get response

Generate request

Closed System

Each user has this behavior:
at the same web site forever.
Fixed number of users (N) sit 

   Figure 4: Two models for how the requests to a web server are generated. In creating overload, one

must use an open system model.

Since none of the existing web workload generators support all the features we want to experiment

with (open system, persistent connections, user abort and reload, etc.) we choose to implement our

own trace-based web workload generator based on the libwww library [63]. Libwww is a client side

web API based on select(). One obstacle in using libwww in building a web workload generator is

that it does not support multiple parallel connections to the same host. We modify libwww in the

following way to perform our experiments with persistent connections: Whenever our application
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passes a URL to our modified libwww, it first checks whether there is a socket open to this destination

that is (a) idle and (b) that has not reached the limit on the maximum number of times that we want

to reuse a connection. If it doesn’t find such a socket it establishes a new connection. We validate

our workload generator by running experiments involving only the features supported by Sclient,

and we find that Sclient and our new workload generator yield the same results. We also verify

that the workload generator never becomes the bottleneck in the experiments, by checking that all

requests are actually made at the desired times.

2.5 Machine Configuration

Our experimental setup involves six machines connected by a 10/100 Ethernet switch. Each machine

has an Intel Pentium III 700 MHz processor and 256 MB RAM, and runs Linux 2.2.16. One of the

machines is designated as the server and runs Apache 1.3.14. The other five machines act as web

clients and generate HTTP 1.1 requests as described in Section 2.1. The switch and the network

cards of the six machines are forced into 10Mbps mode to make it easier to create overload at the

bottleneck device.2

On the server machine we increased the size of the SYN and the ACK-queue to 512 as is common

practice for high performance web servers We also increased the upper limit on the number of Apache

processes from 150 to 350.3

Furthermore, we have instrumented the kernel of the server to provide detailed information on

the internal state of the server. This includes the length of the SYN and ACK-queues, the number

of packets dropped inside the kernel, and number of incoming SYNs that are dropped. We also log

the number of active sockets at the server, which includes all TCP connections that have resources

in the form of buffers allocated to them, except for those in the ACK-queue. Essentially, this means

sockets being serviced by an Apache process, and sockets in the FIN-WAIT state.

Below we provide a brief tutorial of the processing of requests and sources of delays within a

Linux-based web server.

A connection begins with a client sending a SYN. When the server receives the SYN it allocates

2Experiments were also performed under 100 Mbps mode, but not in overload since that puts too much strain on

the client machines, see Section 2.4.
3Our FAIR server performed best with the above values: SYNQ = ACKQ = 512, and #Apache Processes = 350.

The SRPT server is not affected at all by these limits, since SYNQ occupancy is always very low under SRPT.
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an entry in the SYN-queue and sends back a SYN-ACK. After the client ACKs the server’s SYN-

ACK, the server moves the connection record to its ACK-queue, also known as the Listen queue.

The connection waits in the ACK-queue until an Apache process becomes idle and processes it. Each

Apache process can handle at most one request at a time. When an Apache process finishes handling

a connection, the connection sits in the FIN-WAIT states until an ACK and FIN are received from

the client.

There are standard limits on the length of the SYN-queue (128), the length of the ACK-queue

(128), and the number of Apache processes (150). These limits are often increased for high-

performance web servers.

The limits above impose many sources of delays. If the server receives a SYN while the SYN-

queue is full, it discards the SYN forcing the client to wait for a timeout and then retransmit the

SYN. Similarly, if the server receives the ACK for a SYN-ACK while the ACK-queue is full, the

ACK is dropped and must be retransmitted. The timeouts are long (typically 3 seconds) since at

this time the client doesn’t have an estimate for the retransmission timer (RTO) for its connection

to the server. Lastly, if no Apache process is available to handle a connection, the connection must

wait in the ACK-queue.

3 Implementing an SRPT web server

In this section we describe our implementation of SRPT in an Apache web server running on Linux.

3.1 Achieving priority queueing in Linux

TCP
processing

IP
processing

TCP
processing

IP
processing

TCP
processing

IP
processing

Network
Wire

Single Priority Queue Ethernet Card

Socket 1

Socket 2

Socket 3 (transmit queue)

FEED FAIRLY

Socket 1

Socket 2

Socket 3

TCP
proc.

IP
proc.

TCP
proc.

IP
proc.

TCP
proc.

IP
proc.

1st Priority Queue

2nd Priority Queue

Ethernet Card

Network
Wire

first!

second.

feed

feed

(a) Standard Linux - FAIR (b) Modified Linux - SRPT

Figure 5: Data flow in standard Linux (left) and in Linux with priority queueing (right).

Figure 5(a) shows the data flow in standard Linux. We will refer to the unmodified Apache server
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running on this (unmodified) standard Linux as FAIR scheduling throughout.

There is a socket buffer corresponding to each connection. Data streaming into each socket buffer

is then processed by TCP and IP. Throughout this processing, the packet stream corresponding to

each connection is kept separate from every other connection. Finally, there is a single4 “priority

queue”, into which all streams feed. Importantly, all streams get equal turns draining into the priority

queue, subject to TCP windowing constraints. This single “priority queue,” can get as long as 100

packets. Packets leaving this queue drain into a short Ethernet card queue and out to the network.

To implement SRPT we need more priority levels. We build the Linux kernel with support for the

user/kernel Netlink Socket, QOS and Fair Queueing, and the Prio Pseudoscheduler. These kernel

options allow us to switch the device queue from the default 3-band queue to a 16-band priority

queue through the tc [2] user space tool.

Figure 5 (b) shows the flow of data in Linux after our kernel modifications. Again, the data is

passed from the socket buffers through TCP and IP processing, during which the packet streams

corresponding to each connection are kept separate. There are 16 priority queues (Figure 5 shows

only 2). All the connections of priority i feed fairly into the ith priority queue. The priority queues

then feed in a prioritized fashion into the Ethernet Card queue. The important point here is that

priority queue i is only allowed to drain if priority queues 0 through i − 1 are all empty. Note that

since scheduling occurs after TCP/IP processing it does not interfere with TCP or IP.

3.2 Modifications to Apache

In order to approximate SRPT using the priority queues, for each request, we first have to initialize

its socket to a priority corresponding to the requested file’s size. The idea is to have sockets corre-

sponding to smaller files drain into the higher priority queues. We later need to update the priority

in agreement with the remaining size of the file. Both are done via the setsockopt() system call

within the web server code.

The only remaining problem is that SRPT assumes infinite precision in ranking the remaining

processing requirements of requests. In practice, we are limited to 16 priority bands.

It turns out that the way in which request sizes are partitioned among these priority levels is

4The queue actually consists of 3 priority queues, a.k.a. bands. By default, however, all packets are queued to the

same band.
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somewhat important with respect to the server performance. We have experimentally derived some

good guidelines that apply to the heavy-tailed web workloads. Denoting the cutoffs by x1 < x2 <

. . . < xn:

• The lowest size cutoff x1 should be such that about 50% of requests have size smaller than

x1. Intuitively, the smallest 50% of requests comprise so little total load in a heavy-tailed

distribution that there’s no point in separating them further.

• The highest cutoff, xn, needs to be low enough that the largest (approx.) 0.5% – 1% of the

requests have size > xn. This is necessary to prevent the largest requests from starving.

• The middle cutoffs are far less important. A logarithmic spacing works well.

In the experiments throughout this paper, we use only 5 priority classes (cutoffs: 1KB, 2KB, 5KB,

and 50KB) to approximate SRPT. Using more classes improved performance only slightly. While in

our experiments we have hardcoded these size cutoffs in the Apache source code, they could be made

accessible to the system administrator via a handle in the Apache configuration file. The system

administrator or an automated mechanism could optimize the cutoffs if the file size distribution at

a web site changes.

A potential problem with our approach is the overhead of the setsockopt system call used to

modify priorities. However, this overhead is mitigated by the low system call overhead in Linux and

the limited number of system calls: since there are only 5 priority classes the priority changes at

most 4 times, and only for the very largest of the file requests.

4 Experimental Results – Persistent overload

In this section we study exactly what happens in a standard (FAIR) web server during persistent

overload and contrast that with the performance of our modified (SRPT) server. We run the web

server under persistent overload of 1.2, i.e., the average amount of data requested by the clients per

second exceeds the bandwidth on the uplink by a factor of 1.2. We analyze our observations from

two different angles, the server’s view and the client’s view.

We start with the server’s view. One indication for the health of a server is the buildup in the

number of connections at the server, shown in Figure 6(left). In FAIR, the number of connections
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Figure 6: Results for a persistent overload of 1.2 shown from the perspective of the server. (Left

graph): Buildup in connections at the server; (Right graph): Number of incoming SYN packets

dropped by the server.
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Figure 7: Results for a persistent overload of 1.2 shown from the perspective of the client. (Left

graph): Mean response time; (Right graph): Time until first byte is received.

grows rapidly, until after around 50 seconds the number of connections reaches 350 – the maximum

number of Apache processes. At this time all the Apache processes are busy, and consequently the

SYN and the ACK queues fill up. After around 70 seconds the first incoming SYNs are dropped and

the rate of SYN drops increases steadily and rapidly from that point on, as shown in (Figure 6(right)).

By contrast, in the SRPT server the number of connections grows at a much slower rate. The reason

is that the SRPT server queues up only requests for large files. Observe, that for an overload of 1.2

and an uplink capacity of 10 Mbps, each second the server is unable to complete 2 Mbit worth of

requests on average. It turns out that largest requests compromising load between 1 and 1.2 have

a mean size of about 1 Mbyte. Thus the SRPT server accumulates only one quarter of one request

per second. After 200 seconds, it thus makes sense that the number of accumulated requests under

SRPT is only 50, as shown in Figure 6(left). In fact our experiments show that the SRPT server

does not start dropping requests until approximately the half hour mark.
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Another server-oriented metric that we consider is byte throughput. We find that the byte through-

put is the same under FAIR and SRPT . Despite the differences in the way FAIR and SRPT schedule

requests, they both manage to keep the link fully utilized.

Next we describe the clients’ experience in terms of mean response time and the mean time until

the first byte of a request is received. In computing these metrics for persistent overload, we consider

only those requests that finished before the final request arrived (subsequently, load will drop).

Figure 7(left) shows that for the FAIR server response times grow rapidly over time. After only 40

seconds (long before the SYN-queue fills up) the mean response time is 5 sec, already intolerable.

By contrast, under SRPT the response times are significantly lower and hardly grow over time.

Figure 7(right) shows that the mean time until the first byte is received follows a trend very similar

to that of the mean response time. We will therefore in the remainder of this paper use only the

response time metric.

To understand the difference in response times between SRPT and FAIR under persistent overload

we need to examine the effect of those requests that don’t complete on the requests that do complete

(and factor into the mean response time). Under FAIR, many of the requests that don’t end up

completing still steal a fair share of bandwidth from the other requests. Hence, they cause the

response times of even requests for short files to increase. By contrast, under SRPT, all of the

requests for the largest files (those that increase load from 1.0 to 1.2) do not receive any bandwidth

under persistent overload: requests for small files are completely isolated from those for large files

under SRPT. Thus, response times of the completing requests do not increase over time, even after

tens of minutes.

To summarize the above observations, we see that after less than 100 seconds of very modest

overload the FAIR server starts to drop incoming requests and the response times reach values that

are not tolerable by users. The SRPT server significantly extends the time until SYNs are dropped

and improves the client experience notably. We emphasize that the above experiments assumed

very modest overload (as in the high load portion of workload W1 of Table 1). Some of the other

workloads in Table 1 have more severe high loads. For example under a persistent high load of 1.4,

we find that SYNs are dropped after only 18 seconds of persistent overload under FAIR, whereas

SRPT avoids SYN drops for nearly half an hour of persistent overload. Response time growth is also

much more dramatic under a persistent overload of 1.4.
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5 Experimental Results – Transient overload

In this section we evaluate the performance of the standard (FAIR) web server and our modified

(SRPT) server for transient overload. To level the playing field between SRPT and FAIR, we

purposely choose to start by evaluating in detail the performance for the transient workload W1

from Table 1 (see Section 5.1). Workload W1 has the property that the duration and intensity of

overload are modest (high load is only 1.2 for a duration of only 25 seconds), so that the SYN queue

does not fill up under FAIR. Thus FAIR does not suffer the expensive timeouts under workload W1

due to a SYN drop, which appear under some of the other workloads. Our study considers all factors

described in Table 2. In Section 5.2, we consider the other transient workloads in Table 1.

5.1 Results for workload W1

(A) The simple baseline case

In this section we study the simple baseline case described in Table 2, row (A). We first consider

how the health of the server is affected during the low load and overload periods. We observe,

as in the case of persistent overload, that the number of connections grows at a much faster rate

under FAIR than under SRPT. While under SRPT the number of connections never exceeds 50,

it frequently exceeds 200 under FAIR. However, neither server reaches the maximum SYN-queue

capacity (since the overload period is short) and therefore no SYNs are dropped.

Figure 8(a) and (b) shows the response times over time of all jobs (averaged over 1 sec intervals)

under FAIR and SRPT. These plots show just 200 sec out of a 30-minute experiment. The overload

periods are shaded light gray while the low load periods are shaded dark gray. Observe that under

FAIR the mean response times go up to more than 3 seconds during the overload period5, while

under SRPT they hardly ever exceed 0.5 sec.

Figure 8(c) shows the complementary cumulative distribution of the response times. Note that

there is an order of magnitude separation between the curve for FAIR and SRPT. The mean response

time taken over the entire length of the experiment is 1.1 sec under FAIR as compared to only 138

5Note that this is not quite as bad as for persistent overload, because a job arriving into the overload period in

transient overload at worst has to wait until the low load period to receive service, so its expected response time is

lower than under persistent overload.
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Setup Factor Specific case shown in the left and middle

columns of Figure 9 and Figure 10.

Range of values studied.

Shown in rightmost column of

Figure 9 and Figure 10.

(A) Baseline Case RTT=0, Loss=0%, No Persistent Conn., RTO=3

sec, packet length=1500, No SYN cookies,

SYNQ=ACKQ=512, #ApacheProcesses=350

(B) WAN Delays baseline + 100 ms RTT RTT=0-150 ms

(C) Loss baseline + 5% loss Loss=0-15%

(D) WAN delay & loss baseline + 100 ms RTT+ 5% loss RTT=0-150 ms, Loss =0-15%

(E) Persistent Connec-

tions

baseline + 5 req. per conn. 0-10 requests/conn.

(F) Initial RTO value baseline + RTO 0.5 sec RTO = 0.5sec-3sec

(G) SYN Cookies baseline (SYN Cookies OFF) SYN cookies=ON/OFF

(H) User Abort/Reload baseline + user aborts: User aborts after 10 sec

and retries up to 3 times

Abort after 3-15 sec with up

to 2, 4, 6, or 8 retries

(I) Packet length baseline + 536 bytes packet length Packet length = 536-1500

bytes

(J) Realistic Scenario RTT=100 ms, Loss=5%, 5 req. per conn.,

RTO=3 sec, pkt. len.=1500, No SYN cookies,

SYNQ=ACKQ=512, #ApacheProcs=350, User

aborts after 7 sec and retries up to 3 times

Table 2: Columns 1 and 2 list the various factors. Column 3 specifies one value for each factor.

This value corresponds to Figure 9(left, middle) and to Figure 10(left, middle). Column 4 provides

a range of values for each factor. The range is evaluated in Figure 9(right) and in Figure 10(right).
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ms under SRPT. Furthermore, the variability in response times measured by the squared coefficient

of variation is 6.39 under FAIR compared to 1.08 under SRPT. Another interesting observation is

that the FAIR curve has bumps at regular intervals. These bumps are due to TCP’s exponential

backoff in the case of packet loss during connection setup. Given that we have a virtually loss-free

LAN setup and the SYN-queue never fills up, one might wonder where these packets are dropped.

Our measurements inside the kernel show that the timeouts are due to reply packets of the server

being dropped inside the server’s kernel. We will study the impact of this effect in greater detail in

Section 6.

The big improvements in mean response time are not too surprising given the opportunistic

nature of SRPT: schedule to minimize the number of connections. A more interesting question is

what price large requests have to pay to achieve good mean performance.

This question is answered in Figure 8(d) which shows the mean response times as a function of

the request size. We see that surprisingly even the big requests hardly do worse under SRPT. The

very biggest request has a mean response time of 19.4 sec under SRPT compared to 17.8 sec under

FAIR. If we look at the biggest 1 percent of all requests we find that their average response time is

2.8 sec under SRPT compared to 2.9 sec under FAIR, so these requests perform better on average

under SRPT. We will explain this counter-intuitive result in Section 6.

(B) WAN delays

The two most frequently used tools for WAN emulation are probably NistNet [49] and Dummynet

[56]. NistNet is a separate package available for Linux that can drop, delay or bandwidth-limit

incoming packets. Dummynet applies delays and drops to both incoming and outgoing packets, hence

allowing the user to create symmetric losses and delays. Since Dummynet is currently available for

FreeBSD only, we implement Dummynet functionality in the form of a separate module for the Linux

kernel. More precisely, we change the ip rcv() and the ip output() function in the Linux TCP-IP

stack to intercept in- and out-going packets to create losses and delays.

In order to delay packets, we use the add timer() facility to schedule the transmission of delayed

packets. We recompile the kernel with HZ=1000 to get a finer-grained millisecond timer resolution.

In order to drop packets, we use an independent, uniform random loss model (as in Dummynet)

which can be configured to a specified probability.
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Figure 8: Detailed performance under alternating workload W1 under the baseline case (setup (A))

of Table 2: (a) Mean response time under FAIR; (b) Mean response time under SRPT; (c) The

complementary cumulative distribution of response times under FAIR and SRPT; (d) Response times

as a function of the request size, showing requests for large files do not suffer.

We experiment with delays between 0 and 150 msec and drop probabilities between 0 and 15%.

This range of values was chosen to cover values used in related work [48] and values reported in actual

live Internet measurements [55]. For example, for the month of October 2004 the Internet Traffic

Report [55] reported maximum round-trip-times of 140 msec and maximum loss rates of 3.5%.

Figure 9(B)(left, middle) shows the effect of adding WAN delay (setup (B) in Table 2). This

assumes a baseline setup, with an RTT (round-trip-time) delay of 100 msec. While FAIR’s mean

response time is hardly affected, since it is large compared to the additional delay, the mean response

time of SRPT more than doubles.

Figure 9(B)(right) shows the mean response times for a range of RTTs from 0 to 150 msec.

Observe that adding WAN delays increases response times by a constant additive factor on the order

of a few RTTs. SRPT improves upon FAIR by at least a factor of 2.5 for all RTTs considered.

In the above experiments we assumed that all clients experience the same WAN delays. We also

experimented with a heterogeneous environment, where each of the five client machines emulates
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(B) FAIR - Delays (B) SRPT - Delays (B) Comparison
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(C) FAIR - Losses (C) SRPT - Losses (C) Comparison
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(D) FAIR - Delays and Losses (D) SRPT - Delays and Losses (D) Comparison
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Figure 9: Each row above compares SRPT and FAIR under workload W1 for one of the first four

setups from Table 2. The left and middle columns show the response times over time for the specific

values given in Table 2, column 3. The right column evaluates the range of values given in column

4 of Table 2.

19



(E) FAIR - Persistent (E) SRPT - Persistent (E) Comparison

0 50 100 150 200
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Time (sec)

Re
sp

on
se

 T
im

e 
(s

ec
)

Low Load
Overload

0 50 100 150 200
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Time (sec)

Re
sp

on
se

 T
im

e 
(s

ec
)

Low Load
Overload

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

Reuse of Connection

Re
sp

 T
im

e 
(s

ec
)

FAIR
SRPT

(F) FAIR - Initial RTO (F) SRPT - Initial RTO (F) Comparison
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(H) FAIR - User Abort/Reload (H) SRPT - User Abort/Reload (H) Comparison
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Figure 10: Each row above compares SRPT and FAIR under workload W1 for one of setups (E),

(F), (H), and (I). from Table 2. The left and middle columns show the response times over time for

the specific values given in Table 2, column 3. The right column evaluates the range of values given

in column 4 of Table 2.
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a different WAN delay ranging from 0 ms to 150 ms, where 150 ms represents our notion of the

maximum end-to-end network delay. We find that the mean response time for a client with a given

WAN delay equals that in an experiment where all clients emulate the same delay.

While one might think that in a heterogeneous environment, high delay clients might interfere

with low delay clients, depriving them of the full benefits of SRPT scheduling, this is not the case for

two reasons: First, under overload the time a connection stays alive at the server is mostly dominated

by server delays, rather than by WAN delays; second, and most importantly, a slow connection will

not “block” a fast connection: data for different connections is kept completely separate until after

TCP/IP processing when it enters one of the priority queues shared by all connections (recall Fig-

ure 5). The data packets of a slow connection will therefore make it to the priority queues only after

receiving the corresponding TCP ACKs (i.e. when the data is ready to be sent), and can therefore

not slow down the fast connections (which will receive their ACKs at a fast rate). Thus the difference

between SRPT and FAIR is minimized when all clients have WAN delay of 150 ms, and even here,

the improvement factor of SRPT over FAIR is 2.5.

(C) Network losses

Figure 9(C)(left, middle) shows the mean response times over time for the setup in Table 2 row

(C): a loss rate of 5%. In this case, for both FAIR and SRPT, the response times increase notably

compared to the baseline case. FAIR’s overall response time increases by almost a factor of 2 from

1.1 seconds to 1.9 seconds. SRPT’s response time increases from less than 140 ms in the baseline

case to around 930 ms.

Figure 9(C)(right) shows the mean response times for loss rates ranging from 0 to 15%. Note that

the response times don’t grow linearly with the loss rate. This is expected since TCPs throughput

is inversely proportional to the square root of the loss [50].

Introducing frequent losses can increase FAIR’s response times to more than 6 seconds and

SRPT’s response time to more than 4 seconds (as in the case of 15% loss). Even in this case SRPT

still improves upon FAIR by about a factor of 1.5.

(D) Combination of Delays and Losses
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Finally, we look at the combination of losses and delays. Figure 9(D)(left, middle) shows the re-

sults for the setup in Table 2 row (D): an RTT of 100 ms with a loss rate of 5%. Here SRPT improves

upon FAIR by a factor of 2. Figure 9(D) (right) shows the response times for various combinations

of loss rates and delays. We observe that the negative effect of a given RTT is accentuated under

high loss rates. The reason is that higher RTTs make loss recovery more expensive since timeouts

depend on the (estimated) RTT.

(E) Persistent Connections

Next we explore how the response times change if multiple requests are permitted to use a single

serial, persistent connection ( [44]) for several requests. Figure 10(E)(left, middle) shows the results

for the setup in Table 2, row (E): where every connection is reused 5 times. Figure 10(E)(right) shows

the response time as a function of the number of requests per connection, ranging from 0 to 10. We

see that using persistent connections greatly improves the response times of FAIR. For example,

reusing a connection five times reduces the response time by a factor of 2. SRPT on the other

hand is hardly affected by using persistent connections. To see why FAIR benefits more than SRPT

observe that reusing an existing connection avoids the connection setup overhead; this overhead is

bigger under FAIR, mainly because it suffers from drops inside the kernel.6 SRPT doesn’t see this

improvement since it experiences hardly any packet loss in the kernel.

Nevertheless, we observe that SRPT still improves upon FAIR by a factor of 3, even if up to 10

requests can use the same connection.

(F) Initial TCP RTO value

We observed previously that packets that are lost in the connection setup phase incur very long

delays, which we attributed to the conservative initial RTO value of 3 seconds. We now ask how much

of the total delay a client experiences in the FAIR server is due to the high initial RTO. To answer

this question, we change the RTO value in Linux’s TCP implementation. Figure 10(F)(left, middle)

shows the results for the setup in Table 2, row (F): an RTO of 500ms. Figure 10(F)(right) explores

the range from 500 ms up to the standard 3 seconds. Lowering the initial RTO can reduce FAIR’s

6These drops occur when attempting to feed packets into an already full transmit queue (see Figure 5).
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mean response time from originally 1.1 seconds (for the standard RTO of 3 seconds) to 0.65 seconds

(for an initial RTO of 1 second). Reducing the initial RTO below 1 second introduces too much

overhead due to spurious retransmissions, and therefore doesn’t improve performance any further.

SRPT’s response times don’t improve for lower initial RTOs since SRPT has little loss in the kernel.

Nevertheless, for all initial RTO values considered, SRPT always improves upon FAIR by a factor

of at least 4.

Having observed that the mean response times of a (standard) FAIR server can be significantly

reduced by reducing TCP’s initial RTO, we are not suggesting to change this value in current TCP

implementations, since there are reasons for why it is set conservatively [52].

(G) SYN cookies

Recall that one of the problems under overload is the dropping of incoming packets due to a

full SYN-queue. This leads us to the idea of using SYN cookies [14] in overload experiments. SYN

cookies were originally developed to avoid denial of service attacks, however they have the added

side-effect of eliminating the SYN-queue. (When using SYN cookies the server makes the SYN-ACK

contents purely a function of the SYN contents. This way the SYN contents can be recomputed upon

receipts of the next ACK, thereby avoiding the need for maintaining a SYN-queue.) Our hope is

that by getting rid of the SYN-queue we will also eliminate the problems involving a full SYN-queue.

It turns out that the use of SYN cookies hardly affects the response times under workload W1

since in workload W1 the SYN-queue never fills up. In other transient workloads which exhibit SYN

drops due to a full SYN-queue, the response times do improve, but only slightly by 2–5%. The reason

is that now instead of the incoming SYN being dropped, it is the ACK for the SYN-ACK that is

dropped due to a full ACK-queue.

Since SRPT does not lose incoming SYNs, its performance is not affected by using SYN cookies.

(H) User abort/reload

So far we have assumed that a user patiently waits until all the bytes for a request have been

received. In practice, users abort requests after a while and hit the reload button of their browser.

We model this behavior by repeatedly aborting a connection if it hasn’t finished after a certain
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number of seconds and then opening a new connection.

Figure 10(H)(left,middle) shows the response times in the case where a user waits for at most

10 seconds before hitting reload, and retrying this procedure up to 6 times before giving up. Fig-

ure 10(H)(right) shows mean response times if connections are aborted after 3 to 15 seconds and for

either 2 or 6 retries.

We observe that taking user behavior into account can, depending on the parameters, sometimes

increase and sometimes decrease response times. If users are impatient and abort connections quickly

and retry only very few times, the response times can decrease by up to 10%. This is because there is

now a (low) upper bound on the maximum response times and also the work at the server is reduced

since clients might give up before the server has even invested any resources in the request. However,

this reduced mean response time does not necessarily mean greater average user satisfaction, since

some number of requests never complete. For example, if users abort a connection after 3 seconds

and retry at most 2 times, more than 5 percent of the requests under FAIR never complete for

workload W1.

If users are willing to wait for longer periods of time and retry more often, response times

significantly increase. The reason is that response times are long both for those users that go

through many retries, but also for other users, since frequent aborts and reloads increase the work

at the server. For example, if users retry up to 6 times and abort a connection only after 15 seconds

the response times under FAIR almost double compared to the baseline case that doesn’t take user

behavior into account. On the other hand the number of incomplete requests is very small in this

case – under 0.02%.

For all choices of parameters for user behavior, the response times under SRPT improve upon

those under FAIR by at least a factor of 8. Also the number of incomplete requests is always smaller

under SRPT, by as much as a factor of 7. The reason is that SRPT is smarter than FAIR. Because

SRPT favors small requests, the small requests (the majority) have no reason to abort. Only the

few big requests are harmed under SRPT. Nevertheless, even requests for the longest file suffer no

more incompletes under SRPT than under FAIR.

(I) Packet Length

Next we explore the effect of the maximum packet length (MSS). Two different packet lengths are
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Figure 11: Comparison of FAIR (left) and SRPT (right) for the realistic setup (J) for workload W1.

commonly observed in the Internet [26]: 1500 bytes, since this is the MTU (maximum transmission

unit) for Ethernet, and 536 bytes, which is used by some TCP implementations that don’t perform

MTU discovery [39].

Figure 10 (I)(left,middle) shows the results for setup (I) in Table 2, where the packet length is

changed from the 1500 bytes in the baseline case to 536 bytes. As expected, the mean response time

increases, since for a smaller packet length more RTTs are necessary to complete the same transfer.

FAIR’s response time increases by almost 50% to 1.6 seconds and SRPT’s response time doubles to

260 msec.

Figure 10 (I)(right) shows the mean response times for different packet lengths ranging from 500

bytes to 1500 bytes. For all packet lengths considered, SRPT improves upon FAIR by at least a

factor of 6.

(J) A realistic scenario

So far, we have looked at several factors affecting web performance in isolation. Figure 11 shows

the results for an experiment that combines all the factors: We assume an RTT of 100 ms, a loss

rate of 5%, no SYN-cookies, and the use of persistent connections (5 requests per connection). We

leave the RTO at the standard 3 seconds and the MTU at 1500 bytes. We assume users abort after

7 seconds and retry up to 3 times.

We observe that the mean response time of both SRPT and FAIR increases notably compared

to the baseline case. It is now 1.48 seconds under FAIR and 764 msec under SRPT – a factor 2

improvement of SRPT over FAIR. Observe that both these numbers are still better than those in

experiment (D), where we combined only losses and delays and saw a response time of 2.5 seconds
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and 1.2 seconds, respectively. The reason is that the use of persistent connections alleviates the

negative effects of losses and delays during connection setup.

The largest 1% of requests (counting only those that complete) have a response time of 2.23

seconds under FAIR and 2.28 seconds under SRPT. Even the response time of the very biggest

request is higher under FAIR: 13.2 seconds under FAIR and only 12.8 seconds under SRPT. The

total number of incomplete requests (those aborted the full three times) is the same under FAIR and

SRPT – about 0.2%.

Observe that it makes sense that unfairness to large requests is more pronounced in the baseline

case because server delay dominates response time under the baseline case, in contrast to the realistic

case where external factors can dominate.

Under workload W1 there were no SYN drops, neither for the baseline nor the realistic setup.

5.2 Other transient workloads

Figure 12 gives the mean response times for all ten workloads from Table 1 for the baseline case

(Table 2 row (A)). While Figure 12 depicts mean response times over the entire duration of the

experiment, it is important to notice that peak response times are actually much higher. For exam-

ple, for workload W1, when considering the response times averaged over 1 second intervals as in

Figure 8(a) and (b), we witnessed response times three times higher than that shown in Figure 12

for workload W1. This underscores the need for SRPT scheduling.

The reason that we choose to show performance for the baseline case rather than the realistic

case is that this way the effects of the different workloads are not blurred by external factors. Also,

the starvation of large requests is by definition greater for the baseline case than the realistic case,

as explained above. In the discussion below, however, we will include the performance numbers for

both the baseline and the realistic case.

Mean response time

For the baseline case, the mean response time of SRPT improves upon that of FAIR by a factor of

2 – 8 across the ten different workloads. More specifically, FAIR ranges from 300ms – 7.2 seconds,

while SRPT ranges from 150ms – 1.2 seconds.

Under the realistic case (not shown), SRPT improves over FAIR by a factor of 1.4 – 4 across
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workloads W1, W2, W4, W5, W7, W8, W9, and W10. Note that we exclude workloads W3 and W6

throughout the discussion of the realistic scenario. This is because these two workloads have such a

long overload period, that under the realistic scenario, their behavior mimics persistent overload. To

see this, observe that, under the realistic scenario, which involves user aborts, there is an increased

load due to multiple aborts and retries, which are especially prevalent in W3 and W6 because of

their long overload period. This increased load causes the time-average load in these workloads to

rise from 0.9 to over 1.0. Hence the system is running in persistent overload.

For both the baseline and realistic case, the mean performance under each workload is affected by

(1) the mean system load and (2) the length of the overload and low load periods. Point (2) should

be clear from looking at Figure 12, where workloads W3 and W6, which have the longest periods of

overload, both stand out. Point (2) is also justified by considering workloads W1 and W2 which only

differ in the length of their overload periods, resulting in a factor 5 difference in their mean response

time, or workloads W4 and W5 which also differ only in the length of their overload period, again

resulting in a factor 2 difference in their mean response times. The length of the overload period and

the overall load also affect the number of SYN drops, and consequently the response times. While

about half the workloads have zero SYN drops under FAIR and SRPT, under both the baseline and

realistic setups, workload W3 which has 50 seconds of overload, results in 50% SYN drops under

FAIR (zero SYN drops under SRPT), and consequently very high mean response times. SYN drops

do not occur under SRPT under any of our workloads.
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Figure 12: Comparison of mean response times under FAIR and SRPT in the baseline case for the

workloads in Table 1. Peak response times are far worse than mean response times.
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Performance of large requests

Again, an obvious question to ask is whether this improvement in the mean response time comes at

the price of longer response times for the requests for large files. In particular, for the workloads

with higher mean system load and longer overload periods it might seem likely that SRPT leads to

a higher penalty for the long requests.

We find that these concerns are unfounded. The mean response times of only the biggest 1% of

all requests is never more than 10% higher under SRPT than FAIR for any workload in the baseline

case, and is often lower under SRPT, and this penalty is further substantially diminished under the

realistic scenario.

When considering the performance of large requests in the case of the realistic setup, it is impor-

tant to also look at the number of incomplete requests (incomplete requests are only a consequence

of user aborts). We observe that the lack of unfairness under SRPT in the realistic setup is not

a consequence of a large number of incomplete large requests. The overall fraction of incomplete

requests is only 0.2% for both FAIR and SRPT when load is 0.7 and ranges from 10 – 15% for both

FAIR and SRPT when load is 0.9 (again excluding workloads W3 and W6). Looking only at the

largest 1% of requests, the fraction of incomplete requests is much more variable, ranging from 3 –

25% under SRPT and 3 – 30% under FAIR, but is typically smaller under SRPT than under FAIR.

Finally, we observe that for both the baseline and the realistic setup, increasing the length of the

overload period or the mean system load does not result in more starvation. This also agrees with

the theoretical M/GI/1 results in [9].

6 Why does SRPT work?

In this section we will look in more detail at where SRPT’s performance gains come from and we

explain why there is no starvation of long jobs.

6.1 Where do mean gains come from?

Recall that we identified in Section 4 and Section 5 three reasons for the poor performance of a

standard (FAIR) server under overload:

1) High queueing delays at the server due to high number of connections sharing the bandwidth,
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see Figure 6 and Figure 7.

2) Drops of SYNs because of full SYN queue,

3) Loss of packets inside the kernel.

SRPT alleviates all these problems. It reduces queueing delays by scheduling connections more

efficiently. It has a lower number of dropped SYNs since it takes longer for the SYN-queue to

fill. Finally and less obviously, an SRPT server also sees less loss inside the kernel. The reason is

that subdividing the transmit queue into separate shorter queues allows SRPT to isolate the short

requests, which are most requests. These short requests go to a queue which is drained more quickly,

and thus experience no loss in their transmit queue.

The question we address in this section is how much of SRPT’s performance gain can be attributed

to solving each of the above three problems.

We begin by looking at how much of the performance improvements under SRPT stem from

alleviating the SYN drop problem. In workload W1, used throughout the paper, no incoming SYNs

were dropped. Hence SRPT’s improvement was not due to alleviating SYN drops. Workload W4

did exhibit SYN drops (1% in the baseline case and 20% in the realistic case). We eliminate the

SYN drop advantage by increasing the length of the SYN-queue to the point where SYN drops are

eliminated. This only improves FAIR by under 5% for the baseline case and 30% for the realistic

case – not enough to alone account for SRPT’s big improvement over FAIR.

The remaining question is how much of SRPT’s benefits are due to reducing problem 1 (queueing

delays) versus problem 3 (packet drops inside the kernel). Observe that problem 3 is mainly a

problem because of the high initial RTO. We can mitigate the effect of problem 3 by dropping the

initial RTO to, say, 500 ms. The result is shown in Figure 10(F). Observe that even when problem

3 is removed, the improvement of SRPT over FAIR is still a factor of 77.

We therefore conclude that problem 1 is the main reason why SRPT improves upon FAIR. By

timesharing among many requests, the FAIR scheduling policy ends up slowing down all the requests.

7Problem 3 may seem to be a design flaw in Linux, that could be solved by either adding a feedback mechanism

when writing to the transmit queue or by increasing the length of the transmit queue. However, this will increase the

queueing delays that a packet might experience. Our experiments show that increasing the transmit queue up to a

point slightly decreases response time, but beyond that actually hurts response time.
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6.2 Why are long requests not hurt?

In this section we give some intuition for why, in the case of web workloads, SRPT does not unfairly

penalize large requests.

To understand what happens under transient overload, first consider the overload period. Under

FAIR, all jobs suffer during the overload period. Under SRPT all jobs of size < x complete and all

other jobs receive no service, where x is defined such that the load comprised of jobs of size < x

equals 1. While it is true that jobs of size > x receive no service under SRPT during the overload

period, they also receive negligibly-little service under FAIR during the overload period because the

number of connections with which they must share under FAIR increases so quickly (see Figure 6).

Next consider the low load period. At start of low load, there are many more jobs present under

FAIR; only large jobs are present under SRPT. These large jobs have received zero service under

SRPT and negligibly-little service under FAIR until now. Thus the large jobs actually finish at about

the same time under SRPT and FAIR.

The above effects are accentuated under heavy-tailed request sizes for two reasons: (1) Under

heavy-tailed workloads, a very small fraction of requests make up half the load, and therefore, the

fraction of large jobs (> x) receiving no service during overload under SRPT is very small. (2) The

little service that the large jobs receive during overload under FAIR is even less significant because

the large jobs are so large that, proportionately, the service appears small.

6.3 Theoretical validation

As a final step in understanding the performance of FAIR vs. SRPT, we consider an M/GI/1 queue

with alternating periods of overload and low load and derive an approximation on the expected

response time as a function of request size for this model under FAIR and SRPT. The derivation

is too involved to include herein, but the interested reader should look at [9] for full details. We

choose to evaluate our results when the service requirement distribution, G, is a Bounded-Pareto

distribution with α-parameter of 1.1, as has been shown to be representative of web workloads [11].

Although the M/GI/1 queue is at best a rough approximation to our implementation setup, we

nevertheless find the same trends in analysis as we have witnessed in this paper. In particular we

find that the buildup in the number of requests is much greater under FAIR than under SRPT, and

consequently response times are also far higher under FAIR than under SRPT. Likewise we find that
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the server “recuperates” more slowly when load is dropped under FAIR than under SRPT. Also

similarly to our experiments, we find that in analysis the very largest requests see approximately the

same mean response time under SRPT as compared with FAIR.

7 Related Work

Our work is new in two different ways: it is the first to apply connection scheduling to improve

performance of web servers under overload; and it is the first to provide an evaluation of the effect

of external factors (Table 2) on the performance of an overloaded web server.

Below we describe the related work, grouped into three different categories: (1) work on im-

proving the performance of (non-overloaded) web servers; since this work is numerous, we limit the

description to scheduling-related work. (2) work on improving the performance of web servers under

overload; (3) studies of web server performance and the effect of external factors.

Scheduling solutions – non-overloaded case

Below we summarize related work on scheduling in web servers. It is important to note that

none of this prior work deals with overloaded servers. Moreover, most previous work uses simulation

rather than a real implementation.

The only work that implements scheduling for web servers, rather than simulating or analytically

evaluating it, is our own work [21, 31] and recent work by Rawat et. al. [54]. In [21] we experiment

with connection scheduling at the application level. Our experimental web server improves mean

response times, but at the cost of a drop in throughput by a factor of almost 2. The problem is that

application level scheduling does not provide fine enough control over the order in which packets

enter the network. In [31] we implement connection scheduling at the kernel-level. This eliminates

the drop in throughput and offers much larger performance improvements than [21].

The authors in [54] extend the work in [31] by proposing and implementing a scheduling algorithm,

which takes, in addition to the size of the request, the distance of the client from the server into

account. They show that this new policy can improve the performance of large-sized files by 2.5 to

10%.

In addition to implementation work, there are simulation studies of scheduling algorithms for

web servers [28,47]. Gong and Williamson [28] identify two different types of unfairness: endogenous
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unfairness, that a job may suffer because of its own size, and exogenous unfairness, that a job suffers

as a consequence of the other jobs it sees when it arrives. They then proceed to evaluate SRPT

and other policies with respect to these types of unfairness. Murta and Corlassoli [47] develop and

simulate an extension to SRPT scheduling called FCF (Fastest Connection First). Similar to [54],

FCF considers WAN conditions in addition to request size when making scheduling decisions.

Finally, Friedman et. al. [27] suggest a new protocol called FSP (Fair Sojourn Protocol) for use

in web servers. They show through analysis and simulation that FSP always outperforms processor

sharing. Their simulation results suggest that FSP performs better than SRPT for large requests,

while the opposite is true for small requests. However, they are not able to quantify these effects

analytically.

Our work is different from all the above in that it focuses on the behavior of web servers under

overload and is the first to show that size-based scheduling can be applied to overloaded servers

without overly penalizing large requests.

Solutions for web servers under overload

There is a large body of work on systems to support high traffic web sites. Most of this work

focuses on improving performance by reducing the load on the overloaded devices in the system.

This is typically done in one of five ways: increasing the capacity of the system for example by

using server farms or multiprocessor machines [20, 22]; using caches either on the client or on the

server side [15, 17, 29]; designing more efficient software both at the OS level [8, 23, 36, 46] and the

application level [51], admission control [18, 34, 61, 62, 64] or deployment of content distribution

networks [35, 38, 43]. Other means of avoiding overload are content adaptation [1] and offloading

work to the client [3].

Our work differs significantly from all these approaches in that we do not attempt to reduce the

load on the overloaded device. Rather, our goal is to improve the performance of the system while

it is overloaded. To accomplish this goal, we employ SRPT scheduling.

Studies of factors affecting web server performance

While there exist relatively few studies on servers running under overload, there are many studies

of web server performance in general (not overloaded). These studies typically concentrate on the
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effect that network protocols/conditions have on web server performance. We list just a few below:

In [5] and [16] the authors find that the TCP RTO value has a large impact on server performance

under FreeBSD. This agrees with our study.

In [48] the authors study the effect of WAN conditions, and find that losses and delays can affect

response times. They use a different workload from ours (Surge workload) but have similar findings.

The benefits of persistent connections are evaluated by [44] and [12] in a LAN environment.

There are also several papers which study real web servers in action, rather than a controlled lab

setting, e.g., [45] and [58].

The work by Banga and Druschel [7] studies a web server under overload, but the only external

factor considered are WAN delays. Moreover, this work focuses only on the capacity of the web server,

i.e. the maximum sustainable throughput, and does not evaluate user experience or performance

under fluctuating load.

8 Conclusion

The purpose of this paper is to demonstrate the effectiveness of SRPT connection scheduling in

improving the performance of web servers during transient periods of overload.

We implement SRPT in an Apache web server running on Linux by scheduling the bandwidth on

the server’s uplink. This is done by modifying the order that socket buffers are drained within the

kernel. We find that SRPT significantly improves both server stability and client experience under

persistent as well as under transient overload conditions. Under persistent overload, the number

of connections at the FAIR server grows quickly compared with the buildup of connections under

SRPT, and consequently the FAIR server is also quick to reach the point where incoming SYNs are

dropped. As a result, the client experience in terms of mean response time and the time until the

first byte is received, is greatly improved under the SRPT server compared to the FAIR server. With

respect to transient overload, we find that SRPT improves mean response times by factors of 1.5

– 8 over the traditional FAIR scheduling, across ten different transient overload workloads. This is

significant since mean response times under FAIR can get quite high, and peak response time are

many-fold higher than mean response times.

Performance improvements are measured under a vast range of environmental factors including a

range of RTT’s, loss rates, RTO’s, persistent connections, user behaviors, packet sizes, and web server
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configurations. Results are consistent across different traces. Importantly, we find that requests for

large files are not penalized by SRPT scheduling under transient overload. In fact, for the largest

1% of requests, the response time under SRPT is very close to that under FAIR.

We conclude by noting the broader general applicability of this work. First, the approximation

of SRPT implemented in this paper actually covers an entire family of algorithms, rather than one

particular algorithm. The kernel-level implementation we have chosen is limited to a fixed number

of priority classes, where we pick the size cutoffs between the different priority classes so as to

approximate SRPT as closely as possible. Instead one could also use more conservative cutoffs and/or

fewer priority classes to achieve performance closer to a FAIR system, including better performance

for very large requests.

Second, while this paper focuses on static web workloads, where the bottleneck resource to be

scheduled is the bandwidth on the uplink, we believe that the basic principles will extend to many

other scenarios. We are currently investigating scheduling of web server backends serving dynamic

content involving accesses to a database backend. Here, our results (see [42]) show that for database

management systems (DBMS) with 2-phase locking, a transaction’s life is dominated by the time

spent waiting in the internal database lock queues. Thus, rather than scheduling bandwidth, as we

have in this paper, for applications with dynamic content, we instead apply prioritized scheduling

policies at the internal DBMS lock queues. However many of the same ideas from this paper apply.

The web is in a perpetual state of evolution with new techniques for improving performance being

developed every day. When proposing a new solution for reducing web server response times one

therefore needs to consider how this solution may interact with other existing or future techniques.

While we have evaluated the effect of many parameters on the effectiveness of our proposed solution,

we have not been able to evaluate all parameters. In particular, the effect of caches or CDNs, are

left for future work.

We believe that the scheduling ideas presented in this work are general enough to be used in

conjunction with other methods, or incorporated into systems other than web servers. We have

already witnessed in this paper how SRPT scheduling can be used in conjunction with persistent

connections. Likewise, it is likely that SRPT-like scheduling can be used in conjunction with caching

schemes at a proxy server, or can be used at an edge router. For example, Biersack et al. [53] have

recently proposed Least-Attained-Service (LAS) scheduling for routers, where LAS is a variant of
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SRPT scheduling that doesn’t require a priori knowledge of the service demand.

9 Acknowledgements

Thanks to Srini Seshan for help with porting dummynet to Linux; to Christos Gkantsidis for providing

detailed information on libwww; to Mukesh Agrawal for helping with initial overload experiments;

and to Jennifer Rexford, John Wilkes, and Erich Nahum for proofreading the paper.

References

[1] T. F. Abdelzaher and N. T. Bhatti. Web content adaptation to improve server overload behavior. WWW8
/ Computer Networks, 31(11-16):1563–1577, 1999.

[2] W. Almesberger. Linux network traffic control — implementation overview. Available at
http://lrcwww.epfl.ch/linux-diffserv/.

[3] D. Andresen and T. Yang. Multiprocessor scheduling with client resources to improve the response time
of WWW applications. In International Conference on Supercomputing, pages 92–99, 1997.

[4] M. Arlitt and T. Jin. Workload characterization of the 1998 world cup web site. IEEE Network, 14(3):30–
37, 2000.

[5] M. Aron and P. Druschel. TCP implementation enhancements for improving webserver performance.
Technical Report TR99-335, Rice University, 6, 1999.

[6] Akamai Technologies B. Maggs, Vice President of Research. Personal communication., 2001.

[7] G. Banga and P. Druschel. Measuring the capacity of a web server under realistic loads. World Wide
Web, 2(1-2):69–83, 1999.

[8] G. Banga, P. Druschel, and J. C. Mogul. Resource containers: A new facility for resource management
in server systems. In Proceedings of OSDI ’99, pages 45–58, 1999.

[9] N. Bansal and M. Harchol-Balter. Scheduling solutions for coping with transient overload. Technical
Report CMU-CS-01-134, Carnegie Mellon University, May 2001.

[10] Nikhil Bansal and Mor Harchol-Balter. Analysis of SRPT scheduling: Investigating unfairness. In Pro-
ceedings of ACM SIGMETRICS ’01, 2001.

[11] P. Barford and M. E. Crovella. Generating representative Web workloads for network and server perfor-
mance evaluation. In Proceedings of SIGMETRICS ’98, pages 151–160, July 1998.

[12] P. Barford and M. E. Crovella. A performance evaluation of hyper text transfer protocols. In Proceedings
of ACM SIGMETRICS ’99, pages 188–179, May 1999.

[13] M. Bender, S. Chakrabarti, and S. Muthukrishnan. Flow and stretch metrics for scheduling continuous
job streams. In Proceedings of the 9th Annual ACM-SIAM Symposium on Discrete Algorithms, 1998.

[14] D. J. Bernstein. Syn cookies. http://cr.yp.to/syncookies.html, 1997.

[15] A. Bestavros, R. L. Carter, M. E. Crovella, C. R. Cunha, A. Heddaya, and S. A. Mirdad. Application-level
document caching in the internet. In Proceedings of the Second International Workshop on Services in
Distributed and Networked Environments (SDNE’95), June 1995.

[16] L. Brakmo and L. Peterson. Performance problems in 4.4 BSD TCP. ACM Computer Communications
Review, 25(5), 1995.

[17] H. Braun and K. Claffy. Web traffic characterization: an assessment of the impact of caching documents
from NCSA’s Web server. In Proceedings of the Second International WWW Conference, 1994.

[18] L. Cherkasova and P. Phaal. Session based admission control: A mechanism for improving the performance
of an overloaded web server. Technical Report HPL-98-119, Hewlett Packard Laboratories, 6 1998.

[19] A. Cockcroft. Watching your web server. The Unix Insider at http://www.unixinsider.com, April 1996.

35



[20] M. Colajanni, P. S. Yu, and D. M. Dias. Analysis of task assignment policies in scalable distributed
Web-server systems. IEEE Transactions on Parallel and Distributed Systems, 9(6):585–699, 1998.

[21] M. Crovella, R. Frangioso, and M. Harchol-Balter. Connection scheduling in web servers. In USENIX
Symposium on Internet Technologies and Systems, October 1999.

[22] D. M. Dias, William Kish, Rajat Mukherjee, and Renu Tewari. A scalable and highly available web
server. In COMPCON, pages 85–92, 1996.

[23] P. Druschel and G. Banga. Lazy receiver processing (LRP): A network subsystem architecture for server
systems. In Proceedings of OSDI ’96, pages 261–275, October 1996.

[24] Sameh Elnikety, Erich M. Nahum, John Tracey, and Willy Zwaenepoel. A method for transparent
admission control and request scheduling in dynamic e-commerce Web sites. In International World-
Wide Web Conference (WWW), New York, NY, May 2004.

[25] A. Feldmann. Web performance characteristics. IETF plenary Nov.’99.
http://www.research.att.com/ anja/feldmann/papers.html.

[26] Cooperative Association for Internet Data Analysis (CAIDA). Packet length distributions.
http://www.caida.org/analysis/AIX/plen hist, 1999.

[27] E. J. Friedman and S. G. Henderson. Fairness and efficiency in web server protocols. In Proceedings of the
2003 ACM SIGMETRICS Conference on Measurement and Modeling of Computer Systems, May 2003.

[28] Mingwei Gong and Carey Williamson. Quantifying the properties of SRPT scheduling. In Proceed-
ings of IEEE/ACM International Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS), 2003.

[29] J. Gwertzman and M. Seltzer. The case for geographical push-caching. In Proceedings of HotOS ’94, May
1994.

[30] Internet Town Hall. The internet traffic archives. Available at http://town.hall.org/Archives/pub-
/ITA/.

[31] M. Harchol-Balter, B. Schroeder, M. Agrawal, and N. Bansal. Size-based scheduling to improve web
performance. ACM Transactions on Computer Systems, 21(2), May 2003.

[32] IRCache Home. The trace files. http://www.ircache.net/Traces/, 2004.

[33] Microsoft TechNet Insights and Answers for IT Professionals. The arts and science of web server tuning
with internet information services 5.0. http://www.microsoft.com/technet/, 2001.

[34] R. Iyer, V. Tewari, and K. Kant. Overload control mechanisms for web servers. In Workshop on Perfor-
mance and QoS of Next Generation Networks, November 2000.

[35] Kirk L. Johnson, John F. Carr, Mark S. Day, and M. Frans Kaashoek. The measured performance of
content distribution networks. In Proceedings of the 5th International Web Caching and Content Delivery
Workshop, 2000.

[36] M. Kaashoek, D. Engler, D. Wallach, and G. Ganger. Server operating systems. In SIGOPS European
Workshop ’96, pages 141–148, 1996.

[37] B. Krishnamurthy and J. Rexford. Web Protocols and Practice: HTTP/1.1, Networking Protocols,
Caching, and Traffic Measurement. Addison-Wesley, 2001.

[38] B. Krishnamurthy, C. Wills, and Y. Zhang. The use and performance of content distribution networks.
In Internet Measurement Workshop. Proceedings of the First ACM SIGCOMM Workshop on Internet
Measurement Workshop., 2001.

[39] J. Kurose and K. W. Ross. Computer Networking: A Top-Down Approach Featuring the Internet. Addison
Wesley Longman, Inc., 2001, pp.319.

[40] W. LeFebvre. Cnn.com: Facing a world crisis. Invited talk at the USENIX Technical Conference, June
2002.

[41] S. Manley and M. Seltzer. Web facts and fantasy. In Proceedings of the 1997 USITS, 1997.

[42] D. McWherter, B. Schroeder, A. Ailamaki, and M. Harchol-Balter. Priority mechanisms for OLTP and
transactional web applications. In 20th International Conference on Data Engineering (ICDE 2004),
2004.

36



[43] M.Day, B.Cain, G.Tomlinson, and P.Rzewski. A model for content internetworking (cdi). Internet Draft
(draft-ietf-cdi-model-02.txt), May 2002.

[44] J. C. Mogul. The case for persistent-connection HTTP. In Proceedings of ACM SIGCOMM ’95, pages
299–313, October 1995.

[45] J. C. Mogul. Network behavior of a busy Web server and its clients. Technical Report 95/5, Digital
Western Research Laboratory, October 1995.

[46] J. C. Mogul and K. K. Ramakrishnan. Eliminating receive livelock in an interrupt-driven kernel. In Proc.
USENIX 1996 Technical Conference, pages 99–111, 1996.

[47] C.D. Murta and T.P. Corlassoli. Fastest connection first: A new scheduling policy for web servers. In
Proceedings of the 18th International Teletraffic Congress (ITC-18), September 2003.

[48] E. Nahum, M. Rosu, S. Seshan, and J. Almeida. The effects of wide-area conditions on www server
performance. In Proceedings of ACM SIGMETRICS ’01, pages 257–267, 2001.

[49] National Institute of Standards and Technology. Nistnet. http://snad.ncsl.nist.gov/itg/nistnet/.

[50] Jitendra Padhye, Victor Firoiu, Donald F. Towsley, and James F. Kurose. Modeling tcp reno performance:
a simple model and its empirical validation. IEEE/ACM Trans. Netw., 8(2):133–145, 2000.

[51] Vivek S. Pai, P. Druschel, and W. Zwaenepoel. Flash: An efficient and portable web server. In Proceedings
of USENIX 1999, June 1999.

[52] V. Paxson and M. Allman. Computing TCP’s retransmission timer. RFC 2988,
http://www.faqs.org/rfcs/rfc2988.html, November 2000.

[53] Idris A. Rai, Guillaume Urvoy-Keller, and Ernst Biersack. Analysis of LAS scheduling for job size
distributions with high variance. In Proceedings of the ACM Sigmetrics Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS), June 2003.

[54] M. Rawat and A. Kshemkayani. SWIFT: Scheduling in web servers for fast response time. In Second
IEEE International Symposium on Network Computing and Applications, April 2003.

[55] Internet Traffic Report. http://www.internettrafficreport.com, 2004.

[56] L. Rizzo. Dummynet: a simple approach to the evaluation of network protocols. ACM Computer
Communication Review, 27(1), 1997.

[57] L. E. Schrage and L. W. Miller. The queue M/G/1 with the shortest remaining processing time discipline.
Operations Research, 14:670–684, 1966.

[58] S. Seshan, Hari Balakrishnan, V.N. Padmanabhan, M. Stemm, and R. Katz. TCP behavior of a busy
internet server: Analysis and improvements. In Proceedings of Conference on Computer Communications
(IEEE Infocom), pages 252–262, 1998.

[59] A. Silberschatz, P. Galvin, and G. Gagne. Operating System Concepts, Sixth Edition. John Wiley &
Sons, 2002.

[60] W. Stallings. Operating Systems, Fourth Edition. Prentice Hall, 2001.

[61] T. Voigt and P. Gunnigberg. Kernel-based control of persistent web server connections. ACM SIGMET-
RICS Performance Evaluation Review, 29(2):20–25, 2001.

[62] T. Voigt, R. Tewari, D. Freimuth, and A. Mehra. Kernel mechanisms for service differentiation in
overloaded web servers. In Proceedings of the USENIX Annual Technical Conference, Boston, MA, June
2001.

[63] The World Wide Web Consortium (W3C). Libwww - the W3C protocol library. http://www.w3.org.

[64] M. Welsh and D. Culler. Adaptive overload control for busy internet servers. In Proceedings of the 2003
USENIX Symposium on Internet Technologies and Systems, 2003.

[65] A. Wierman and M. Harchol-Balter. Classifying scheduling policies with respect to unfairness in an
M/GI/1. In ACM Sigmetrics International Conference on Measurement and Modeling of Computer
Systems, 2003.

37



Appendix: Another Trace

In this appendix we consider one more trace and run all experiments on the new trace. We find

that the results are very similar to those shown in the body of the paper, both with respect to

comparative mean response times for the different scenarios (A) through (J), and with respect to

unfairness issues.

The log used here was collected from a NASA web server and is also available through the Internet

Traffic Archive [30]. We use several hours of one busy day of this log consisting of around 100000

mostly static requests. The minimum file size is 50 bytes, the maximum file size is 1.93 Mbytes. The

largest 2.5% of all requests make up 50% of the total load, exhibiting a strong heavy-tailed property.

The primary statistical difference between the NASA log and the soccer World Cup log (used in

body of the paper) is the mean request size: the NASA log shows a mean file size of 19 Kbytes while

for the World Cup log it was only around 5 Kbytes.

Results for the NASA log are shown in Figure 13, 14 and 15. They are extremely similar to the

corresponding Figures 9, 10, 11 and 12 for the World Cup trace.

The only difference is that response times are higher under the NASA log as compared with the

World Cup log for both FAIR and SRPT. The relative performance gains of SRPT and FAIR are

similar. The increase in response times under the NASA log may be attributed to the higher mean

file size.
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(A) FAIR - Baseline (A) SRPT - Baseline
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(B) FAIR - Delays (B) SRPT - Delays (B) Comparison
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(C) FAIR - Losses (C) SRPT - Losses (C) Comparison
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(D) FAIR - Delays and Losses (D) SRPT - Delays and Losses (D) Comparison
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(E) FAIR - Persistent (E) SRPT - Persistent (E) Comparison
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(F) FAIR - Initial RTO (F) SRPT - Initial RTO (F) Comparison
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(H) FAIR - User Abort/Reload (H) SRPT - User Abort/Reload (H) Comparison
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(I) FAIR - Packet length (I) SRPT - Packet length (I) Comparison
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Figure 13: Results under NASA trace log. Each row in the figure compares SRPT and FAIR under
workload W1 for one particular setup from Table 2. The left and middle columns show the response
times over time for the specific values given in Table 2, column 3. The right column evaluate the
range of values given in the column 4 of Table 2.
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(J) FAIR - Realistic case (J) SRPT - Realistic case

Figure 14: Comparison of FAIR (left) and SRPT (right) for the realistic setup for workload W1,
under NASA trace log.
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Figure 15: Mean response time comparison of FAIR and SRPT in the baseline case for the workloads
in Table 1, under the NASA trace log.
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