
Necessary and SuÆcient Conditions forRepresenting General Distributions by CoxiansTakayuki Osogami1 and Mor Harchol-Balter1Department of Computer Science, Carnegie Mellon University5000 Forbes Avenue, Pittsburgh, PA 15213, USAfosogami, harcholg@cs.cmu.eduAbstract. A common analytical technique involves using a Coxian dis-tribution to model a general distribution G, where the Coxian distribu-tion agrees with G on the �rst three moments. This technique is mo-tivated by the analytical tractability of the Coxian distribution. Algo-rithms for mapping an input distribution G to a Coxian distributionlargely hinge on knowing a priori the necessary and suÆcient number ofphases in the representative Coxian distribution. In this paper, we for-mally characterize the set of distributions G which are well-representedby an n-phase Coxian distribution, in the sense that the Coxian dis-tribution matches the �rst three moments of G. We also discuss a fewcommon, practical examples.1 IntroductionBackground Approximating general distributions by phase-type (PH) distri-butions has signi�cant application in the analysis of stochastic processes. Manyfundamental problems in queueing theory are hard to solve when general dis-tributions are allowed as inputs. For example, the waiting time for an M/G/cqueue has no nice closed formula when c > 1, while the waiting time for anM/M/c queue is trivially solved. Tractability of M/M/c queues is attributed tothe memoryless property of the exponential distribution. A popular approach toanalyzing queueing systems involving a general distribution G is to approximateG by a PH distribution. A PH distribution is a very general mixture of expo-nential distributions, as shown in Figure 1 [21]. The Markovian nature of thePH distribution frequently allows a Markov chain representation of the queueingsystem. Once the system is represented by a Markov chain, this chain can oftenbe solved by matrix-analytic methods [18, 21], or other means.When �tting a general distribution G to a PH distribution, it is common tolook for a PH distribution which matches the �rst three moments of G. In thispaper, we say that:De�nition 1. A distribution G is well-represented by a distribution F if F andG agree on their �rst three moments.We choose to limit our discussion in this paper to three-moment matching, be-cause matching the �rst three moments of an input distribution has been shown
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Fig. 1. A PH distribution is the distribution of the absorption time in a �nite statecontinuous time Markov chain. The �gure shows a 4-phase PH distribution. There aren = 4 states, where the ith state has exponentially-distributed sojourn time with rate�i. With probability p0i we start in the ith state, and the next state is state j withprobability pij . Each state i has probability pi5 that the next state will be the absorbingstate. The absorption time is the sum of the times spent in each of the states.
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Exp Exp ExpFig. 2. An n-phase Coxian distribution is a particular n-phase PH distribution whoseunderlying Markov chain is of the form in the �gure, where 0 � pi � 1 and �i > 0 forall 0 � i � n.to be e�ective in predicting mean performance for variety of many computer sys-tem models [7, 10, 23, 29, 33]. Clearly, however, three moments might not alwayssuÆce for every problem, and we leave the problem of matching more momentsto future work.Most existing algorithms for �tting a general distribution G to a PH distri-bution, restrict their attention to a subset of PH distributions, since general PHdistributions have so many parameters that it is diÆcult to �nd time-eÆcient al-gorithms for �tting to the general PH distributions [14, 15, 20, 27, 32]. The mostcommonly chosen subset is the class of Coxian distributions, shown in Figure 2.Coxian distributions have the advantage of being much simpler than general PHdistributions, while including a large subset of PH distributions without needingadditional phases. For example, for any acyclic PH distribution Pn, there existsa Coxian distribution Cn with the same number of phases such that Pn andCn have the same distribution function [5]. In this paper we will restrict ourattention to Coxian distributions.Motivation and Goal When �nding a Coxian distribution C which well-represents a given distribution G, it is desirable that C be minimal, i.e., thenumber of phases in C be as small as possible. This is important because it



minimizes the additional states necessary in the resulting Markov chain for thequeueing system. Unfortunately, it is not known what is the minimal number ofphases necessary to well-represent a given distribution G by a Coxian distribu-tion. This makes it diÆcult to evaluate the e�ectiveness of di�erent algorithmsand also makes the design of �tting algorithms open-ended.The primary goal of this paper is to characterize the set of distributions whichare well-represented by an n-phase Coxian distribution, for each n = 1; 2; 3; : : :.De�nition 2. Let S(n) denote the set of distributions that are well-representedby an n-phase Coxian distribution for positive integer n.Our characterization of fS(n); n � 1g will allow one to determine, for any dis-tribution G, the minimal number of phases that are needed to well-representG by a Coxian distribution.1 Such a characterization will be a useful guidelinefor designing algorithms which �t general distributions to Coxian distributions.Another application of this characterization is that some existing �tting algo-rithms, such as Johnson and Taa�e's nonlinear programming approach [15], re-quire knowing the number of phases n in the minimal Coxian distribution. Thecurrent approach involves simply iterating over all choices for n [15], whereasour characterization would immediately specify n.Providing suÆcient and necessary conditions for a distribution to be in S(n)does not always immediately give one a sense of which distributions satisfy thoseconditions, or of the magnitude of the set of distributions which satisfy thecondition. A secondary goal of this paper is to provide examples of commondistributions which are included in S(n) for particular integers n.In �nding simple characterizations of S(n), it will be very helpful to start byde�ning an alternative to the standard moments, which we refer to as normalizedmoments.De�nition 3. Let �Fk be the k-th moment of a distribution F for k = 1; 2; 3.The normalized k-th moment mFk of F for k = 2; 3 is de�ned to bemF2 = �F2(�F1 )2 and mF3 = �F3�F1 �F2 :Notice the correspondence to the coeÆcient of variability CF and skewness Fof F : mF2 = C2F + 1 and mF3 = �FpmF2 , where �F = �F3(�F2 )3=2 . (Notice thecorrespondence between �F and the skewness of F , F , where F = ��F3(��F2 )3=2 and��Fk is the centralized k-th moment of F for k = 2; 3.)1 One might initially argue that S(2), the set of distributions well-represented by a two-phase Coxian distribution, should include all distributions, since a 2-phase Coxiandistribution has four parameters (p1, p2, �1, �2), whereas we only need to matchthree moments of G. A simple counter example shows this argument to be false.Let G be a distribution whose �rst three moments are 1, 2, and 12. The system ofequations for matching G to a 2-phase Coxian distribution with three parameters(�1, �2, p) results in either �1 or �2 being negative.



Relevant Previous Work All prior work on characterizing S(n) has focusedon characterizing S(2)� , where S(2)� is the set of distributions which are well-represented by a 2-phase Coxian+ distribution, where a Coxian+ distributionis simply a Coxian distribution with no mass probability at zero, i.e. p1 = 1.Observe S(2)� � S(2). Altiok [2] showed a suÆcient condition for a distribution Gto be in S(2)� . More recently, Telek and Heindl [31] expanded Altiok's conditionand proved the necessary and suÆcient condition for a distribution G to be inS(2)� . While neither Altiok nor Telek and Heindl expressed these conditions interms of normalized moments, the results can be expressed more simply with ournormalized moments, as shown in Theorem 1. In this paper, we will characterizeS(2), as well as characterizing S(n), for all integers n � 2.Our Results While the goal of the paper is to characterize the set S(n), thischaracterization turns out to be ugly. One of the key ideas in the paper is thatthere is a set SV (n) � S(n) which is very close to S(n) in size, such that SV (n) hasa very simple speci�cation via normalized moments. Thus, much of the proofsin this paper revolve around SV (n).De�nition 4. For integers n � 2, let SV (n) denote the set of distributions, F ,with the following property on their normalized moments:mF2 > nn� 1 and mF3 � n+ 2n+ 1mF2 : (1)The main contribution of this paper is a derivation of the nested relationshipbetween SV (n) and S(n) for all n � 2. This relationship is illustrated in Figure 3and proven in Section 3. There are three points to observe: (i) S(n) is a propersubset of S(n+1) for all integers n � 2, and likewise SV (n) is a proper subsetof SV (n+1); (ii) SV (n) is contained in S(n) and close to S(n) in size; providinga simple characterization for S(n); (iii) S(n) is almost contained in SV (n+1) forall integers n � 2 (more precisely, we will show S(n) � SV (n+1) [ E(n), whereE(n) is the set of distributions well-represented by an Erlang-n distribution).This result yields a necessary number and a suÆcient number of phases for agiven distribution to be well-represented by a Coxian distribution. Additionalcontributions of the paper are described below.With respect to the set S(2), we derive the exact necessary and suÆcientcondition for a distribution G to be in S(2) as a function of the normalizedmoments of G. This complements the results of Telek and Heindl, who analyzedS(2)� , which is a subset of S(2). (See Section 2).Lastly, we provide a few examples of common, practical distributions includedin the set SV (n) � S(n). All distributions we consider have �nite third moment.The Pareto distribution and the Bounded Pareto distribution (as de�ned in [8])have been shown to �t many recent measurements of job service requirementsin computing systems, including the �le size requested by HTTP requests [3, 4],the CPU requirements of UNIX jobs [9, 19], and the duration of FTP transfers[24]. We show that a large subset of Bounded Pareto distributions is in SV (2).
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Fig. 3. The main contribution of this paper: a simple characterization of S(n) by SV (n).Solid lines delineate S(n) (which is irregular) and dashed lines delineate SV (n) (whichis regular { has a simple speci�cation). Observe the nested structure of S(n) and SV (n).SV (n) is close to S(n) in size and is contained in S(n). S(n) is almost contained inSV (n+1).We also provide conditions under which the Pareto and uniform distributionsare in SV (n) for each n � 2. (See Section 4).22 Full Characterization of S(2)The Telek and Heindl [31] result may be expressed in terms of normalized mo-ments as follows:Theorem 1 (Telek, Heindl). G 2 S(2)� i� G is in the following union of sets:�F ���9mF2 � 12 + 3p2(2�mF2 ) 32mF2 � mF3 � 6(mF2 � 1)mF2 and 32 � mF2 < 2�[ nF ���mF3 = 3 and mF2 = 2o [ nF ���32mF2 < mF3 and 2 < mF2 o :We now show a simple characterization for S(2):Theorem 2. G 2 S(2) i� G is in the following union of sets:�F ���43mF2 � mF3 � 6(mF2 � 1)mF2 and 32 � mF2 � 2� [ SV (2); (2)where recall SV (2) is the set: nF ���43mF2 � mF3 and 2 < mF2 o.2 Our results show that the �rst three moments of the Bounded Pareto distributionand the Pareto distribution are matched by a Coxian distribution with a smallnumber of phases. Note however that this does not necessarily imply that the shapeof these distributions is well-matched by a Coxian distribution with few phases,since the tail of these distributions is not exponential. Fitting the shape of heavy-tailed distributions by phase-type distributions such as PH distributions is studiedin several recent papers [6, 11, 12, 17, 26, 30].



A summary of Theorems 1 and 2 is shown in Figure 4. Figure 4(a) illustrateshow close S(2) and SV (2) are in size. Figure 4(b) shows the distributions whichare in S(2) but not S(2)� .
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(b)Fig. 4. (a) The thick solid lines delineate S(2). The striped region shows SV (2) � S(2).(b) Again, the thick solid lines delineate S(2). The shaded region shows S(2) n S(2)� .Proof (Theorem 2). The theorem will be proved by reducing S(2) to S(2)� andemploying Theorem 1. The proof hinges on the following observation: an ar-bitrary distribution G 2 S(2) i� G is well-represented by some distribution3Z(�) = X(�)p+ 1� p for some X 2 S(2)� . It therefore suÆces to show that Z isin the set de�ned in (2).By Theorem 1, since X 2 S(2)� , X is in the following union of sets:�F ���9mF2 � 12 + 3p2(2�mF2 ) 32mF2 � mF3 � 6(mF2 � 1)mF2 and 32 � mF2 < 2�[nF ���mF3 = 3 and mF2 = 2o[nF ���32mF2 < mF3 and 2 < mF2 o :Observe that mZk = mXkp for k = 2; 3. Thus, Z is in the following union of sets:�F ���9p; 9pmF2 � 12 + 3p2(2� pmF2 ) 32p2mF2 � mF3 � 6(pmF2 � 1)p2mF2 and 32p � mF2 < 2p�[�F ���9p;mF3 = 3p and mF2 = 2p�[�F ���9p; 32mF2 < mF3 and 2p < mF2 � (3)3 To shed light on this expression, consider random variables VX whose distributionis X. Then random variableVZ = �VX with probability p0 with probability 1� p;has distribution Z, since Pr(VZ < t) = pPr(VX < t) + (1� p).



We want to show that Z is in the set de�ned in (2). To do this, we rewrite theset de�ned in (2) as:�F ���43mF2 � mF3 � 6(mF2 � 1)mF2 and 32 � mF2 � 2�[nF ���43mF2 � mF3 � 32mF2 and 2 < mF2 o[nF ���32mF2 < mF3 and 2 < mF2 o : (4)Observe that (3) and (4) are now in similar forms. We now prove that the setde�ned in (3) is a subset of the set de�ned in (4), and the set de�ned in (4) is asubset of the set de�ned in (3). The technical details are postponed to AppendixA, Lemma 3. ut3 A Characterization of S(n)In this section, we prove that SV (n) is contained in S(n), where SV (n) is the setof distributions whose normalized moments satisfy (1), and that S(n) is almostcontained in SV (n+1). Figure 5 provides a graphical view of the SV (n) sets withrespect to the normalized moments. Figure 5 illuminates several points. First,there is a nested relationship between SV (n) and SV (n�1). This makes intuitivesense, since an n-phase Coxian can represent at least as many distributions asan (n�1)-phase Coxian. Next, observe that as either mG2 or mG3 decreases, morephases are needed to well-represent G. The intuition behind this is that thelower normalized moments, m2 and m3, imply moving towards a deterministicdistribution (which has the minimum possible values of m2 and m3), and adeterministic distribution is well-known to require an in�nite number of phases.On the ip side, for distributions with suÆciently high m2 and m3, two phasesare all that is needed, since high m2 and m3 can be achieved by mixing twoexponentials with very di�erent rates. We prove the following theorem:Theorem 3. SV (n) � S(n) � SV (n+1) [ E(n), where E(n) is the set of distribu-tions that are well-represented by an Erlang-n distribution for integers n � 2.An Erlang-n distribution refers to the distribution of a random variable, whichis equal to the sum of n i.i.d. exponential random variables. Notice that the nor-malized moments of distributions in E(n), mE(n)2 and mE(n)3 , satisfy the followingconditions: mE(n)2 = n+ 1n and mE(n)3 = n+ 2n : (5)Theorem 3 tells us that S(n) is \sandwiched between" SV (n) and SV (n+1).From Figure 5, we see that SV (n) and SV (n+1) are quite close for high n. Thuswe have a very accurate representation of S(n). Theorem 3 follows from the nexttwo lemmas:Lemma 1. S(n) � SV (n+1) [ E(n).
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Fig. 5. Depiction of SV(n) sets for n = 2; 3; 4; 32 as a function of the normalizedmoments. Observe that all possible nonnegative distributions lie within the regiondelineated by the two dotted lines: m2 � 1 and m3 � m2 [16]. SV (n) for n = 2; 3; 4; 32are delineated by solid lines, which includes the border, and dashed lines, which doesnot include the border.Lemma 2. SV (n) � S(n).Proof (Lemma 1). The proof proceeds by induction. When n = 2, the lemmafollows from (1), (5), and Theorem 2. Next, assume that S(n) � SV (n+1) [ E(n)for n � k � 1. Consider an arbitrary distribution G 2 S(k). Let Z(�) = (X(�)
Y (�))p+ 1� p, where X is an exponential distribution and Y is a (k � 1)-phaseCoxian distribution.4 Observe that for any arbitrary distribution G 2 S(k), thereexists some such Z which well-represents G. By the assumption of induction,Y 2 SV (k) [ E(k�1). We prove that (i) if Y 2 SV (k), then Z 2 SV (k+1) and (ii) ifY 2 E(k�1), then Z 2 SV (k+1) [ E(k). Without loss of generality, we can set the�rst moment of X to 1. To see why this is possible, observe that Z is comprisedof k exponential phases, and the normalized second and third moments of Z, mZ2and mZ3 are both invariant to multiplying all the rates of exponential phases inZ by the same constant. Thus, if the �rst moment of X equals �X1 6= 1, then therates of all the phases in Z may be multiplied by �X1 to bring the �rst momentof X down to 1.4 To shed light on this expression, consider random variables VX and VY whose dis-tributions are X and Y , respectively. Then random variableVZ = �VX + VY with probability p0 with probability 1� p;has distribution Z, since Pr(VZ < t) = pPr(VX + VY < t) + (1� p).



(i) Suppose Y 2 SV (k): We �rst prove that mZ2 > k+1k . Observe thatmZ2 = 2 + 2�Y1 + �Y2p(1 + �Y1 )2 > 2 + 2�Y1 + kk�1�Y2p(1 + �Y1 )2 ;where the inequality follows from Y 2 SV (k). The right hand side is minimizedwhen �Y1 = k � 1. Thus, mZ2 > k+1pk � k+1k . Next, we prove that mZ3mZ2 � k+3k+2 forall mZ2 > k+1k . Notice that mZ3mZ2 is independent of p:mZ3mZ2 = (6 + 6�Y1 + 3�Y2 + �Y3 )(1 + �Y1 )(2 + 2�Y1 + �Y2 )2 :Since mZ3mZ2 is an increasing function of �Y3 , it is minimized at �Y3 = k+2k+1 (�Y2 )2�Y1 ,since Y 2 SV (k). Thus,mZ3mZ2 � (1 + �Y1 )(6(k + 1)�Y1 + 6(k + 1)(�Y1 )2 + 3(k + 1)�Y1 �Y2 + (k + 2)(�Y2 )2)(k + 1)�Y1 (2 + 2�Y1 + �Y2 )2 :The in�mum of the right hand side occurs at:�Y2 = max� 6(k + 1)�Y1 (1 + �Y1 )4 + 4�Y1 + (k + 1)(4 + �Y1 ) ; kk � 1(�Y1 )2� :By evaluating mZ3mZ2 at �Y2 = kk�1 (�Y1 )2, we havemZ3mZ2 � (1 + �Y1 ) �6(k + 1)(k � 1)2(1 + �Y1 ) + 3k(k2 � 1)(�Y1 )2 + k2(k + 2)(�Y1 )3�(k + 1) [2(k � 1) + 2(k � 1)�Y1 + k(�Y1 )2]2 �By Lemma 4 in Appendix A, mZ3mZ2 � k+3k+2 . By evaluating mZ3mZ2 at�Y2 = 6(k + 1)�Y1 (1 + �Y1 )4 + 4�Y1 + (k + 1)(4 + �Y1 ) ;we have mZ3mZ2 � 3 �8(1 + �Y1 ) + (k + 1)(8 + 5�Y1 )�16(2 + k)(1 + �Y1 ) � k + 3k + 2 ;where the last inequality holds i� �Y1 � 8kk+9 . However, �Y1 � 8kk+9 holds if6(k + 1)�Y1 (1 + �Y1 )4 + 4�Y1 + (k + 1)(4 + �Y1 ) > kk � 1(�Y1 )2:(ii) Suppose Y 2 E(k�1): We will prove that (a) if �Y1 = (k � 1) and p = 1,then Z 2 E(k), and (b) if �Y1 6= (k � 1) or p < 1, then Z 2 SV (k+1). For part(a), observe that if Y 2 E(k�1), �Y1 = (k � 1), and p = 1, then we have alreadyseen that mZ2 = k+1k in part (i). It is also easy to see that mZ3 = k+2k , andhence Z 2 E(k). For part (b), if �Y1 6= (k � 1) or p < 1, then �rst notice thatmZ2 > k+1k , since mZ2 is minimized when �Y1 = (k � 1) and p = 1. Also, sincemY3 = k+1k�1 > k+2k�1 , mZ3mZ2 � k+3k+2 by part (i), and hence Z 2 SV (k+1). ut



Proof (Lemma 2). When n = 2, the lemma follows from Theorem 2. The re-mainder of the proof assumes n � 3. We prove that for an arbitrary distributionG 2 SV (n), there exists an n-phase Coxian Z such that the normalized mo-ments of G and Z agree. Notice that the �rst moment of Z is easily matchedto G by normalization without changing the normalizing moments of Z. Theproof consists of two parts: (i) the case when the normalized moments of G sat-isfy mG3 > 2mG2 � 1; (ii) the case when the normalized moments of G satisfymG3 � 2mG2 � 1.(i) Suppose G 2 SV (n) and mG3 > 2mG2 � 1: We need to show that G is well-represented by some n-phase Coxian distribution. We will prove something strongerthat G is well-represented by a distribution Z where Z = X + Y , and X is aparticular two-phase Coxian distribution with no mass probability at zero andY is a particular Erlang-(n� 2) distribution. (For the intuition behind this par-ticular way of representing G, please refer to [22]). The normalized moments ofX are chosen as follows:mX2 = mG2 (n� 3)� (n� 2)mG2 (n� 2)� (n� 1) ;mX3 = �(n� 1)mX2 � (n� 2)� �(n� 2)mX2 � (n� 3)�2 mG3mX2� (n� 2)(mX2 � 1) �n(n� 1)(mX2 )2 � n(2n� 5)mX2 + (n� 1)(n� 3)�mX2 :The �rst moment of Y is chosen as follows: �Y1 = (n� 2)(mX2 � 1)�X1 . It is easyto see that the normalized moments of G and Z agree:mZ2 = mX2 + 2y +mY2 y2(1 + y)2 = mG2 ;mZ3 = mX2 mX3 + 3mX2 y + 3mY2 y2 +mY2 mY3 y3(mX2 + 2y +mY2 y2)(1 + y) = mG3 ;wheremY2 = n�1n�2 andmY3 = nn�2 are the normalized moments of Y , and y = �Y1�X1 .Finally, we will show that there exists a two-phase Coxian distribution with nomass probability at zero, with normalized moments mX2 and mX3 . By Theorem1, it suÆces to show that mX2 > 2 and mX3 > 32mX2 . The �rst condition, mX2 > 2,can be shown using nn�1 < mG2 , which follows from G 2 SV (n). It can also beshown that mX3 > 2mX2 �1 � 32mX2 using nn�1 < mG2 and mG3 > 2mG2 �1, whichis the assumption that we made at the beginning of (i).(ii) Suppose G 2 SV (n) and mG3 � 2mG2 � 1: We again must show that G iswell-represented by an n-phase Coxian distribution. We will show that G iswell-represented by a distribution Z(�) = U(�)p + 1 � p (See Section 2 for anexplanation of Z), where p = 12mG2 �mG3 and the normalized moments of U satisfymU2 = pmG2 and mU3 = pmG3 . It is easy to see that the normalized moments ofG and Z agree. Therefore, it suÆces to show that U is well-represented by ann-phase Coxian distribution W , since then G is well represented by an n-phaseCoxian distribution Z(�) = W (�)p + 1 � p (See Section 2 for an explanation of



Z). We will prove that U is well-represented by an n-phase Coxian distributionW , where W = X + Y and X is a two-phase Coxian distribution with no massprobability at zero and Y is an Erlang-(n � 2) distribution. The normalizedmoments of X are chosen as follows:mX2 = mU2 (n� 3)� (n� 2)mU2 (n� 2)� (n� 1) and mX3 = 2mX2 � 1;the �rst moment of Y is chosen as follows: �Y1 = (n� 2)(mX2 � 1)�X1 . It is easyto see that the normalized moments of U and W agree:mW2 = mX2 + 2y +mY2 y2(1 + y)2 = mU2 ;mW3 = mX2 mX3 + 3mX2 y + 3mY2 y2 +mY2 mY3 y3(mX2 + 2y +mY2 y2)(1 + y) = 2mU2 � 1 = mU3 ;where mY2 = n�1n�2 and mY3 = nn�2 are the normalized moments of Y , andy = �Y1�X1 . Finally, we will show that there exists a two-phase Coxian distributionwith normalized moments mX2 and mX3 . By Theorem 2, it suÆces to show that32 � mX2 , since 43mX2 � mX3 = 2mX2 � 1 � 6(mX2 � 1)mX2 ;where the �rst inequality holds when mX2 � 32 and the second inequality holdswhen 32 � mX2 � 2. Since G 2 SV (n),mG3 � n+2n+1mG2 . Thus,mU2 � mG22mG2 �n+2n+1mG2 =n+1n : Finally, mX2 � 32 follows from mU2 � n+1n . ut4 Examples of Some Common Distributions in S(n)In this section, we give examples of distributions that are well-represented byan n-phase Coxian distribution. In particular, we discuss Bounded Pareto distri-butions, uniform distributions, symmetric triangular distributions, and Paretodistributions, and derive the necessary and suÆcient condition for these distri-butions to be in SV (n) � S(n). A summary is shown in Figure 6.We �rst discuss the set of Bounded Pareto distributions. A Bounded Paretodistribution has a density functionf(x) = �x���1 l�1� � lu��for l � x � u and 0 elsewhere, where 0 < � < 2 [8]. Bounded Pareto distributionshave been empirically shown to �t many recent measurements of computingworkloads. These include Unix process CPU requirements measured at Bellcore:1 � � � 1:25 [19], Unix process CPU requirements measured at UC Berkeley:� � 1 [9], sizes of �les transferred through the Web: 1:1 � � � 1:3 [3, 4], sizes of�les stored in Unix �lesystems [13], I/O times [25], sizes of FTP transfers in the
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Fig. 6. A summary of the results in Section 4. A few particular classes of distributionsare shown in relation to SV (n). BP� refers to the subset of Bounded Pareto distribu-tions contained in SV (2). UNIFORM refers to the class of all uniform distributionsdescribed in De�nition 5. We �nd that the larger the support of the uniform distribu-tion, the fewer the number of phases that suÆces. T RIANGULAR refers to the set ofsymmetric triangular distributions, described in De�nition 5. These interestingly havethe same behavior as the uniform distribution. Finally, PARET O refers to the class ofPareto distributions with �nite third moment, described in De�nition 5. For this class,we �nd that the lower the value of the �-parameter, the fewer the number of phasesthat are needed.Internet: :9 � � � 1:1 [24], and Pittsburgh Supercomputing Center workloadsfor distributed servers consisting of Cray C90 and Cray J90 machines [28].The normalized moments of a Bounded Pareto distribution, F , aremF2 = (r � 1)2r(log r)2 ; mF3 = (r � 1)(r + 1)2r log rwhen � = 1, andmF2 = (1� �)2�(2� �) (r� � 1)(r2 � r�)(r � r�)2 ; mF3 = (1� �)(2� �)�(3� �) (r� � 1)(r3 � r�)(r � r�)(r2 � r�) ;when 0 < � < 1 or 1 < � < 2, where r = ul . Not all Bounded Pareto distributionare in SV (2). However, a large subset of the Bounded Pareto distributions residein SV (2). Figure 7 shows the necessary and suÆcient condition on r as a functionof � for a Bounded Pareto distribution to be in SV (2). Speci�cally, a BoundedPareto distribution is in SV (2) if and only if r = ul is above the two lines shownin Figure 7. We use BP� to denote the subset of Bounded Pareto distributionswhich are contained in SV (2).Next, we discuss uniform distributions, symmetric triangular distributions,and Pareto distributions, and derive the necessary and suÆcient condition forthese distributions to be in SV (n). We use the following de�nitions:
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For all F 2 PARET O,1 < mF2 < 43 and mF3 = �2(mF2 )2 + 3mF2 + 2(mF2 � 1)pmF2 (mF2 � 1)4� 3mF2for all � > 3.Simple consequences of the theorem are:Corollary 1. Let F 2 UNIFORM with parameters l and u. Then, F 2 SV (n)if and only if n � 7+14r+30r2+14r3+7r4(1�r)2(1+4r+r2) , where r = ul . In particular, for all valuesof u, n = 7 if l = 0, and n > 7 whenever l > 0.Let F 2 T RIANGULAR with parameters l and u. Then, F 2 SV (n) if andonly if n � 4(11+34r+54r2+34r3+11r4)(1�r)2(5+14r+5r2) , where r = ul . In particular, for all valuesof l and u, n � 9.Let F 2 PARET O with parameters � and k. Then, F 2 SV (n) if and onlyif n > (�� 1)2 for all values of k. In particular, n > 4 for all � > 3 and k.5 ConclusionThe contribution of this paper is a characterization of the set S(n) of distributionsG which are well-represented by an n-phase Coxian distribution. We introduceseveral ideas which help in creating a simple formulation of S(n). The �rst isthe concept of normalized moments. The second is the notion of SV (n), a nearlycomplete subset of S(n) with an extremely simple representation. The argumentsrequired in proving the above results have an elegant structure which repeatedlymakes use of the recursive nature of the Coxian distributions.Our characterization of S(n) provides a necessary number of phases and asuÆcient number of phases for a given distribution to be well-represented bya Coxian distribution, and these bounds are nearly tight. This result has sev-eral practical uses. First, in designing algorithms which �t general distributionsto Coxian distributions (�tting algorithms), it is desirable to �nd a minimal(fewest number of phases) Coxian distribution. Our characterization allows al-gorithm designers to determine how close their Coxian distribution is to theminimal Coxian distribution, and provides intuition for coming up with im-proved algorithms. We have ourselves bene�tted from exactly this point. In acompanion paper [22], we develop an algorithm for �nding a minimal Coxiandistribution that well-represents a given distribution. We �nd that the simplecharacterization of S(n) provided herein is very useful in this task. Our resultsare also useful as an input to some existing �tting algorithms, such as Johnsonand Taa�e's nonlinear programming approach [15], which require knowing a pri-ori the number of phases n in the minimal Coxian distribution. Furthermore weclassify a few examples of common and practical distributions as being subsetsof S(n) for some n.Future work includes a simple characterization of the set of distributions thatare well-represented by general n-phase PH distributions. If we were to follow



the approach in this paper, we would start by specifying the lower bounds forthe second and third normalized moments of general n-phase PH distributions.However, this seems to be nontrivial: although the lower bound on the normalizedsecond moment is known [1], the lower bound on the normalized third momentof n-phase PH distributions is not known.AcknowledgementWe would like to thank Miklos Telek for his help in improving the presentationand quality of this paper.References1. D. Aldous and L. Shepp. The least variable phase type distribution is Erlang.Communications in Statistics - Stochastic Models, 3:467 { 473, 1987.2. T. Altiok. On the phase-type approximations of general distributions. IIE Trans-actions, 17:110 { 116, 1985.3. M. E. Crovella and A. Bestavros. Self-similarity in World Wide Web traÆc: Ev-idence and possible causes. IEEE/ACM Transactions on Networking, 5(6):835 {846, December 1997.4. M. E. Crovella, M. S. Taqqu, and A. Bestavros. Heavy-tailed probability distri-butions in the world wide web. In A Practical Guide To Heavy Tails, chapter 1,pages 1 { 23. Chapman & Hall, New York, 1998.5. A. Cumani. On the canonical representation of homogeneous Markov processesmodeling failure-time distributions. Microelectronics and Reliability, 22:583 { 602,1982.6. A. Feldmann and W. Whitt. Fitting mixtures of exponentials to long-tail distri-butions to analyze network performance models. Performance Evaluation, 32:245{ 279, 1998.7. H. Franke, J. Jann, J. Moreira, P. Pattnaik, and M. Jette. An evaluation of paralleljob scheduling for ASCI blue-paci�c. In Proceedings of Supercomputing '99, pages679 { 691, November 1999.8. M. Harchol-Balter. Task assignment with unknown duration. Journal of the ACM,49(2), 2002.9. M. Harchol-Balter and A. Downey. Exploiting process lifetime distributions fordynamic load balancing. In Proceedings of SIGMETRICS '96, pages 13 { 24, 1996.10. M. Harchol-Balter, C. Li, T. Osogami, A. Scheller-Wolf, and M. Squillante. Taskassignment with cycle stealing under central queue. In Proceedings of ICDCS '03,pages 628{637, May 2003.11. A. Horv�ath and M. Telek. Approximating heavy tailed behavior with phase typedistributions. In Advances in Matrix-Analytic Methods for Stochastic Models, pages191 { 214. Notable Publications, July 2000.12. A. Horv�ath and M. Telek. Ph�t: A general phase-type �tting tool. In Proceedingsof Performance TOOLS 2002, pages 82 { 91, April 2002.13. G. Irlam. Unix �le size survey - 1993. Available at http://www.base.com/gordoni-/ufs93.html, September 1994.



14. M. A. Johnson and M. R. Taa�e. Matching moments to phase distributions: Den-sity function shapes. Communications in Statistics | Stochastic Models, 6:283 {306, 1990.15. M. A. Johnson andM. R. Taa�e. Matching moments to phase distributions: Nonlin-ear programming approaches. Communications in Statistics | Stochastic Models,6:259 { 281, 1990.16. S. Karlin and W. Studden. Tchebyche� Systems: With Applications in Analysisand Statistics. John Wiley and Sons, 1966.17. R. E. A. Khayari, R. Sadre, and B. Haverkort. Fitting world-wide web requesttraces with the EM-algorithm. Performance Evalutation, 52:175 { 191, 2003.18. G. Latouche and V. Ramaswami. Introduction to Matrix Analytic Methods inStochastic Modeling. ASA-SIAM, Philadelphia, 1999.19. W. E. Leland and T. J. Ott. Load-balancing heuristics and process behavior. InProceedings of Performance and ACM Sigmetrics, pages 54 { 69, 1986.20. R. Marie. Calculating equilibrium probabilities for �(n)=ck=1=n queues. In Pro-ceedings of Performance 1980, pages 117 { 125, 1980.21. M. F. Neuts. Matrix-Geometric Solutions in Stochastic Models: An AlgorithmicApproach. The Johns Hopkins University Press, 1981.22. T. Osogami and M. Harchol-Balter. A closed-form solution for mapping general dis-tributions to minimal PH distributions. In Proceedings of TOOLS 2003, September2003.23. T. Osogami, M. Harchol-Balter, and A. Scheller-Wolf. Analysis of cycle stealingwith switching cost. In Proceedings of SIGMETRICS '03, pages 184{195, June2003.24. V. Paxson and S. Floyd. Wide-are traÆc: The failure of Poisson modeling.IEEE/ACM Transactions on Networking, pages 226 { 244, June 1995.25. D. L. Peterson and D. B. Adams. Fractal patterns in DASD I/O traÆc. In CMGProceedings, December 1995.26. A. Riska, V. Diev, and E. Smirni. EÆcient �tting of long-tailed data sets into PHdistributions. Performance Evaluation, 2003 (to appear).27. C. Sauer and K. Chandy. Approximate analysis of central server models. IBMJournal of Research and Development, 19:301 { 313, 1975.28. B. Schroeder and M. Harchol-Balter. Evaluation of task assignment policies forsupercomputing servers: The case for load unbalancing and fairness. In Proceedingsof HPDC 2000, pages 211{219, 2000.29. M. Squillante. Matrix-analytic methods in stochastic parallel-server schedulingmodels. In Advances in Matrix-Analytic Methods for Stochastic Models. NotablePublications, July 1998.30. D. Starobinski and M. Sidi. Modeling and analysis of power-tail distributions viaclassical teletraÆc methods. Queueing Systems, 36:243 { 267, 2000.31. M. Telek and A. Heindl. Matching moments for acyclic discrete and continuousphase-type distributions of second order. International Journal of Simulation, 3:47{ 57, 2003.32. W. Whitt. Approximating a point process by a renewal process: Two basic meth-ods. Operations Research, 30:125 { 147, 1982.33. Y. Zhang, H. Franke, J. Moreira, and A. Sivasubramaniam. An integrated approachto parallel scheduling using gang-scheduling, back�lling, and migration. IEEETransactions on Parallel and Distributed Systems, 14:236 { 247, 2003.



A Technical LemmasLemma 3. The set de�ned in (3) and the set de�ned in (4) are equivalent sets.Proof. Recall that the set de�ned in (3) is the union of the following three sets:A1 = �F ���9p; 9pmF2 � 12 + 3p2(2� pmF2 ) 32p2mF2 � mF3 � 6(pmF2 � 1)p2mF2 and 32p � mF2 < 2p� ;A2 = �F ���9p;mF3 = 3p and mF2 = 2p� ; A3 = �F ���9p; 32mF2 < mF3 and 2p < mF2 � ;the set de�ned in (4) is the union of the following three sets:B1 = �F ���43mF2 � mF3 � 6(mF2 � 1)mF2 and 32 � mF2 � 2� ;B2 = nF ���43mF2 � mF3 � 32mF2 and 2 < mF2 o ; B3 = nF ���32mF2 < m3 and 2 < mF2 o :It suÆces to prove that (i) A1 = B1 [ B2, (ii) A2 � B1 [ B2, and (iii)A3 = B3. (ii) and (iii) are immediate from the de�nition. To prove (i), we provethat A1 � B1 [ B2 and B1 [B2 � A1.Consider a distribution F 2 A1. We �rst show that F 2 B1 [ B2. Let u(p)and l(p) be the upper and lower bound of mF3 , respectively:l(p) = 3�3pmF2 � 4 +p2(2� pmF2 ) 32�p2mF2 ; u(p) = 6(pmF2 � 1)p2mF2 :Then, u(p) and l(p) are both continuous and increasing functions of p for 32mF2 �p � 2mF2 . When mF2 � 2, the range of p is 32mF2 � p � 1. Thus,43mF2 = l� 32mF2 � � mF3 � u(1) = 6(mF2 � 1)mF2 ;and hence F 2 B1. When 2 < mF2 , the range of p is 32mF2 � p � 2mF2 . Thus,43mF2 = l� 32mF2 � � mF3 � u� 2mF2 � = 32mF2 ;and hence F 2 B2. Therefore, A1 � B1 [ B2. However, since u(p) and l(p) arecontinuous functions of p, mF3 can take any value between the lower and upperbounds. Therefore, B1 [ B2 � A1. utLemma 4. Let y � 0 and k � 1. Then,(1 + y) �6(k + 1)(k � 1)2(1 + y) + 3k(k2 � 1)y2 + k2(k + 2)y3�(k + 1) [2(k � 1) + 2(k � 1)y + ky2]2 � k + 3k + 2 :



Proof. Letg(y; k) = (1 + y) �6(k + 1)(k � 1)2(1 + y) + 3k(k2 � 1)y2 + k2(k + 2)y3� (k + 2)�(k + 1) �2(k � 1) + 2(k � 1)y + ky2�2 (k + 3)= (2 + 4y + y2)k4 � 2(1 + 2y + 4y2 + y3)k3 � (2 + 4y + y2 � 5y3 � y4)k2+2(1 + y)(1 + y + 3y2)k:We prove that g(y; k) � 0. Let h(y; k) = g(y;k)k . It suÆces to prove h(y; k) � 0.Observe that @h(y;k)@k = 0 i� k = 2+4y+8y2+2y3�pd(y)3(2+4y+y2) , whered(y) = 16 + 64y + 108y2 + 66y3 + 17y4 + 5y5 + y6:Notice that d(y) � (4 + 8y + y2 + y3)2. Thus,2 + 4y + 8y2 + 2y3 +pd(y)3(2 + 4y + y2) � 2 + 4y + 8y2 + 2y3 + (4 + 8y + y2 + y3)3(2 + 4y + y2) � 1for y � 0. Therefore, h(y; k) is minimized when k = 2+4y+8y2+2y3+pd(y)3(2+4y+y2) . Lets(y) = h y; 2 + 4y + 8y2 + 2y3 +pd(y)3(2 + 4y + y2) != 2((28 + 83y + 16y2 + y3)d(y)� d(y) 32 )27(2 + 4y + y2)2�12(64 + 456y + 1260y2 + 1655y3 + 889y4 + 147y5)27(2 + 4y + y2)2 :It suÆces to prove s(y) � 0. Let t(y) = 27(2+ 4y+ y2)2s(y). It suÆces to provet(y) � 0. Notice that t(0) = 0. Thus, it suÆces to prove t0(y) � 0 for y � 0.However, t0(y) = 3pd(y)v(y), wherev(y)= 2(128 + 688y + 1922y2 + 3216y3 + 3055y4 + 1562y5 + 420y6 + 56y7 + 3y8)pd(y)�(64 + 216y + 198y2 + 68y3 + 25y4 + 6y5)d(y)� 2(128 + 688y + 1922y2 + 3216y3 + 3055y4 + 1562y5 + 420y6 + 56y7 + 3y8) �(4 + 8y + y2 + y3)� (64 + 216y + 198y2 + 68y3 + 25y4 + 6y5)d(y)= 3y2(912 + 5600 + 13212y2 + 15184y3 + 9604y4 + 3914y5 + 1175y6 + 235y7 + 21y8)� 0: ut


