
Classifying Scheduling Policies with Respect to
Unfairness in an M/GI/1 �

Adam Wierman
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA 15213

acw@cmu.edu

Mor Harchol-Balter
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA 15213

harchol@cs.cmu.edu

ABSTRACT
It is common to evaluate scheduling policies based on their mean
response times. Another important, but sometimes opposing, per-
formance metric is a scheduling policy’s fairness. For example, a
policy that biases towards small job sizes so as to minimize mean
response time may end up being unfair to large job sizes. In this
paper we define three types of unfairness and demonstrate large
classes of scheduling policies that fall into each type. We end with
a discussion on which jobs are the ones being treated unfairly.

Categories and Subject Descriptors
F.2.2 [Nonnumerical Algorithms and Problems]: Sequencing and
Scheduling; G.3 [Probability and Statistics]: Queueing Theory;
C.4 [Performance of Systems]: Performance Attributes—Unfair-
ness

General Terms
Performance, Algorithms

Keywords
Scheduling; unfairness; M/G/1; FB; LAS; SET; feedback; least at-
tained service; shortest elapsed time; PS; processor sharing; SRPT;
shortest remaining processing time; slowdown

1. INTRODUCTION
Traditionally the performance of scheduling policies has been

measured using mean response time (a.k.a. sojourn time, time in
system) [8, 11, 13, 16], and more recently mean slowdown [1, 5,
7]. Under these measures, size based policies that give priority to
small job sizes (a.k.a. service requirements) at the expense of larger
job sizes perform quite well [15]. However, these policies tend not
to be used in practice due to a fear of unfairness. For example, a�This work was supported by NSF Career Grant CCR-0133077 and
by Pittsburgh Digital Greenhouse Grant 01-1.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMETRICS’03,June 10–14, 2003, San Diego, California, USA.
Copyright 2003 ACM 1-58113-664-1/03/0006 ...$5.00.

policy that always biases towards jobs with small sizes seems likely
to treat jobs with large sizes unfairly [4, 17, 18, 19].

This tradeoff between minimizing mean response time while main-
taining fairness is an important design constraint in many applica-
tions. For example, in the case of Web servers, it has been shown
that by giving priority to requests for small files, a Web server can
significantly reduce response times; however it is important that
this improvement not come at the cost of unfairness to requests for
large files [8]. The same tradeoff applies to other application ar-
eas; for example, scheduling in supercomputing centers. Here too
it is desirable to get small jobs out quickly, while not penalizing
the large jobs, which are typically associated with the important
customers. The tradeoff also occurs for age based policies.For ex-
ample, UNIX processes are assigned decreasing priority based on
their current age – CPU usage so far. This can create unfairness for
old processes. To address the tension between minimizing mean
response time and maintaining fairness, hybrid schedulingpolicies
have also been proposed; for example, policies that primarily bias
towards young jobs, but give sufficiently old jobs high priority as
well.

Recently, the topic of unfairness has been looked at formally by
Bansal and Harchol-Balter, who study the unfairness properties of
the Shortest-Remaining-Processing-Time (SRPT) policy under an
M/GI/1 system [2]; and by Harchol-Balter, Sigman, and Wierman,
who address unfairness under all scheduling policies asymptoti-
cally as the job size grows to infinity [9]. In this paper, these results
are extended to characterize the existence of unfairness under all
priority based scheduling policies, for all job sizes.

In order to begin to understand unfairness however, we must first
formalize what is meant by fair performance. In this definition,
and throughout this paper we will be using the following notation.
We will consider only an M/GI/1 system with a continuous service
distribution having finite mean and finite variance. We letT (x)
be the steady-state response time for a job of sizex, and� < 1
be the system load. That is� def= �E[X], where� is the average
arrival rate of the system andX is a random variable distributed
according to the service (a.k.a. job size) distributionF (x) with
density functionf(x). The slowdown seen by a job of sizex isS(x) def= T (x)=x, and the expected slowdown for a job of sizex
under scheduling policyP isE[S(x)]P .

DEFINITION 1.1. Jobs of sizex are treated fairly under policyP iff E[S(x)]P � 1=(1 � �). Further, a scheduling policy is fair
iff it treats every job size fairly.

DEFINITION 1.2. Jobs of sizex are treated unfairly under pol-
icy P iff E[S(x)]P > 1=(1 � �). Further, a scheduling policy is
unfair iff there exists a job sizex that is treated unfairly.

PS

PLCFS

FB

LRPTSRPT

PSJF

SJF

Based
Remaining Size

Size Based
Preemptive,

FCFS

Non−preemptive
JFL

Age Based

Fair
Always

Sometimes
Unfair Always

Unfair

Figure 1: Classification of unfairness showing a few examples of
both individual policies and groups of policies within eachclass.

Definition 1.1 is a natural extension of the notion of fairness used
in [2, 9]. Notice that the definition of fairness has two parts. First,
the expected slowdown seen by a job of sizex must be no greater
than a constant (i.e. independent ofx). Processor-Sharing (PS)
is a common scheduling policy that achieves this. UnderPS the
processor is shared evenly among all jobs in the system at every
point in time. It is well known thatE[S(x)]PS = 1=(1 � �) [21],
independent of the job sizex. The second condition of the defini-
tion of fairness is that the particular constant must be1=(1 � �).
Although this constant may seem arbitrary, in Section 2 we will
show that1=(1 � �) is the lowest possible constant obtainable un-
der any policy with constant expected slowdown. This fact isa
formal verification that1=(1 � �) is the appropriate constant for
defining fairness.

With these definitions, it is now possible to classify scheduling
policies based on whether they (i) treat all job sizes fairlyor (ii)
treat some job sizes unfairly. Curiously, we find that some policies
may fall into either type (i) or type (ii) depending on the system
load. We therefore definethree classes of unfairness:

Always Fair: Policies that are fair under all loads and all service
distributions.

Sometimes Unfair: Policies that are unfair for some loads and
some service distributions; but are fair under other loads and
service distributions. For most policies in this class we show
that there exists a cutoff load�crit, below which the policy is
fair for all service distributions, and above which the policy
is unfair for at least some service distributions.

Always Unfair: Policies that are unfair under all loads and all ser-
vice distributions.

The goal of this paper is to classify scheduling policies into the
above three types (see Figure 1). Scheduling policies are typically
divided into non-preemptive policies and preemptive policies. We
find that non-preemptive policies can either be Sometimes Unfair
or Always Unfair, however preemptive policies may fall intoany
of the three types. In this paper, we concentrate on preemptive pri-
ority based policies. These include policies for which (i) afixed
priority is associated with each possible job size (a.k.a.size based
policies), (ii) a fixed priority is associated with each possible job
age (a.k.a. age based policies), and (iii) a fixed priority is as-
sociated with each possible remaining size (a.k.a.remaining size
based policies). Observe that (i) includes policies like Preemptive-
Shortest-Job-First where small jobs have higher priority,but also
includes perverse policies like Preemptive-Longest-Job-First and

others. Observe that (ii) includes policies like Feedback (FB)1

scheduling where young jobs are given priority, yet also includes
other practical policies that primarily bias towards youngjobs and
also give high priority to sufficiently old jobs. Observe that (iii) in-
cludes policies like Shortest-Remaining-Processing-Time-First and
Longest-Remaining-Processing-Time-First that bias towards jobs
with small and large remaining times respectively, as well as prac-
tical hybrids. We show that all policies in (i) and (ii) are Always
Unfair; whereas policies in (iii) can be Sometimes Unfair orAl-
ways Unfair.

Lastly, for the case where jobs are being treated unfairly, we in-
vestigatewhich job sizesare treated unfairly, and find that these are
not necessarily the jobs one would expect. Furthermore, we find
that the answer to this question depends on the system load.

2. ALWAYS FAIR
Two well known Always Fair policies are Processor-Sharing (PS)

and Preemptive-Last-Come-First-Served (PLCFS). Recall that
PLCFS always devotes the full processor to the most recent ar-
rival. Both of these policies have the same expected performance:E[S(x)]PS = E[S(x)]PLCFS = 1=(1 � �) for all x. An im-
portant open problem not answered in this paper is the question of
what other policies are in the Always Fair class. This question has
received attention recently in the work of Friedman and Hender-
son [6], where the authors introduce a new preemptive policy, FSP
that falls into this class. Although no queueing analysis ofFSP
is known, a simulation study suggests that it achieves performance
similar to that of Shortest-Remaining-Processing-Time while guar-
anteeing fairness.

We now address why the value of1=(1 � �) appears in the def-
inition of Always Fair. It seems plausible that there existsa policy
that is bothstrictly fair in the sense that all job sizes have the same
expected slowdown, and has slowdown strictly less than1=(1��).
We show below that there is no such policy.

THEOREM 2.1. There is no policyP such thatE[S(x)]P is in-
dependent ofx andE[S(x)]P < 1=(1� �).

This theorem follows from the lemma below, which provides a
necessary condition for a policy to be Always Fair. We will appeal
to this result in the proof of Theorem 4.1.

LEMMA 2.1. If scheduling policyP is Always Fair, thenlimx!1E[S(x)]P = 1=(1� �)
PROOF. First, becauseP is Always Fair,E[S(x)]P � 1=(1��)

for all x, and thereforelimx!1E[S(x)]P � 1=(1��). Thus, we
need only show thatlimx!1E[S(x)]P � 1=(1� �). We accom-
plish this by bounding the expected slowdown for a job of sizex
from below, and then showing that the lower bound converges to1=(1� �) as we letx!1.

To lower bound the expected slowdown, we consider a modi-
fied policyQx;a that throws away all arrivals whose response time
underP is greater than or equal toa and also throws away arrivals
with size greater thanx. Further,Qx;a works on the remaining jobs
at the exact moments thatP works on these jobs. We will begin by
calculating the load made up of jobs of size less thany (wherey < a < x) underQx;a, �(y)Qx;a . By Markov’s Inequality we1Note thatFB is sometimes referred to by two other names: Least-
Attained-Service (LAS) and Shortest-Elapsed-Time (SET).

obtainP (T (y)P < a) � 1� ya(1��) . Thus, we see that�(y)Qx;a � �Z y0 �1� ta(1� �)� tf(t)dt= �(y)P � �m2(y)a(1� �)
where�(y)P def= � R y0 tf(t)dt is the load made up by jobs of size

less than or equal toy in P andm2(y) def= R y0 t2f(t)dt. The in-
tuition behind the remainder of the proof is that asa, y, andx get
very large,�(y)Qx;a approaches� which tells us that the load of
jobs thatmustcomplete beforex underP goes to�.

We now derive a lower bound on the response time of a job of
sizex under policyP . We will be interested in largex, with a < x.
We divideT (x)P into two partsT1 andT2 whereT1 represents the
time from whenx starts service until it has remaining sizea andT2 represents the time from whenx has remaining sizea until it
completes service. We first note thatT2 � a. To lower boundT1 consider the set of jobs,Sy, with size less thany and whose
response time underP is less thana. The jobs inSy are worked
on at the same moments underQx;a andP , and they comprise
load �(y)Qx;a . During timeT1, job x receives service underP
at most during the time the system is idle of jobs inSy, which is1� �(y)Qx;a fraction of the time. ThusE[T1] � x� a1� �(y)Qx;a :
It follows thatE[T (x)]P = E[T1] +E[T2] � x� a1� �(y)Qx;a + aE[S(x)]P � x� ax�1� �(y)P + �m2(y)a(1��) � + ax

Now, we must sety anda as functions ofx such that, as we
let x ! 1, we converge as desired. Notice that asx ! 1,
we would like�(y)P ! �, �m2(y)a(1��) ! 0, and ax ! 0. Thus,
we must havea � x such thaty ! 1 anda ! 1. We can
accomplish this by settinga = 4px andy = px. Notice thatm2(px) ! E[X2] < 1 asx ! 1. Now, looking at expected
slowdown we see that asx!1:E[S(x)]P � x� 4pxx�1� �(px) + �m2(px)4px(1��)� + 4pxx= 1� 4=px1� �(px) + �m2(px)4px(1��) + 4px! 11� �
3. ALWAYS UNFAIR

In this section we will show that a large number of common poli-
cies are Always Unfair. That is, many common policies are guaran-
teed to treat some job size unfairly under all system loads. In each
subsection we will investigate a class of common policies, proving
that the class is Always Unfair. Figure 2 summarizes the policies
that will be looked at in this section.

Section 3.1 illustrates that all non-preemptive policies are unfair
for all loads when the service distribution is defined on someneigh-
borhood of zero. However, if the service distribution has a non-zero
lower bound then only non-preemptive policies that do not make

FB

PSJF

FCFS

Age Based

Non−size Based,
Non−preemptive

Size Based
Preemptive,

Always
Unfair

Figure 2: A detail of the Always Unfair classification.

use of job sizes (non-size based) are guaranteed to be unfairfor all
loads. (Note that among non-preemptive policies it is not possible
to prioritize based on age or remaining size.) Section 3.2 shows
that any preemptive, size based policy is Always Unfair. In fact,
we show that any job size that is assigned a fixed, low priorityupon
arrival will be treated unfairly. We next discuss policies where a
job’s priority is a function of its current age. We first investigate a
common policy of this type in Section 3.3 and then in Section 3.4
extend the results to show that every age based policy is Always
Unfair.

3.1 Non-size based, non-preemptive policies
The analysis in this section is based on the simple observation

that any policy where a small job cannot preempt the job in service
will likely be unfair to small jobs. For example, let us beginwith
the class of non-preemptive policies.

LEMMA 3.1. Any non-preemptive policyP is unfair for all loads
under any service distribution defined on a neighborhood of zero.

PROOF. We can bound the performance ofP by noticing that,
at a minimum, an arriving job of sizex must takex time plus the

excess of the job that is serving. Thus,E[T (x)]P � x+ �E[X2]2E[X] .

Notice thatlimx!0E[S(x)]P = 1. Thus, there exists some job
sizey such thatE[S(y)]P > 1=(1� �), for all � < 1.

The above theorem says that any non-preemptive policy where
some fraction of the arriving jobs are tagged as high priority, oth-
ers are tagged as low priority, and low priority jobs cannot preempt
high priority jobs will be unfair to small jobs. Specifically, the
small jobs in the neighborhood of zero, regardless of their priority,
will have to wait behind the excess of the service distribution. Fur-
thermore, even under policies which do allow some preemption, for
example a policyP which allows small jobs to preempt large ones
some fraction of the time, there is still unfairness to the small jobs
sinceE[S(x)]P will have a term dependent onE[X2] which will
causeE[S(x)] ! 1 asx ! 0. Such policies are unfair for all
loads when the service distribution is defined on a neighborhood of
zero.

However, under service distributions with non zero lower bounds
on the smallest job size a much smaller set of policies can be classi-
fied as Always Unfair. These are the non-size based, non-preemptive
policies. (Note that the remainder of the possible non-preemptive
policies are explored in Section 4.1.)

THEOREM 3.1. All non-size based, non-preemptive policiesP
are Always Unfair.

PROOF. Assume that the service time distribution has lower boundC > 0 (we have already dealt with the case ofC = 0). We

will show that jobs of sizeC are treated unfairly. Recall that all
non-preemptive, non-size based policies have the same expected
response time for a job of sizex [10].E[T (C)]P = C + �E[X2]2(1� �)= C(1� �) + � R10 (t+ C)F (t+C)dt1� �= C �C�+ C�+ � R10 tF (t+ C)dt1� �> C1� �
where the last inequality follows since the service distribution is
required to be non-deterministic.

3.2 Preemptive, size based policies
In this section we analyze size based policies (i.e. policies where

a job receives a priority based on a bijection of its originalsize),
where higher priority jobs always preempt lower priority jobs. An
example of such a policy is Preemptive-Shortest-Job-First(PSJF),
which improves overall time in system with respect toPS by bi-
asing towards jobs with small sizes. We seek to understand the
unfairness properties caused by this bias. Further, every policy in
this class will bias against a particular job size, so it is important to
understand if unfairness results from this bias.

THEOREM 3.2. Any preemptive, size based policy is Always
Unfair.

The remainder of this section will prove this result. We will
break the analysis into two cases: (1) when there exists a finite
sized job that has the lowest priority and (2) when there is nofinite
sized job with the lowest priority. Case (2) will be broken into two
subcases: (2.1) when priorities decrease monotonically (i.e., the
PSJF policy), and (2.2) when priorities are non-monotonic, but no
finite sized job receives the lowest priority. This method ofproof
will be used again in Section 3.4 and Section 4.3.

It will be helpful in the proofs below if we first analyze the
Longest-Remaining-Processing-Time (LRPT) policy. At any given
point, theLRPT policy shares the processor evenly among all the
jobs in the system with the longest remaining processing time.LRPT
has the following expected slowdown [9]:E[S(x)]LRPT = 11� � + �E[X2]2x(1� �)2 (1)= E[B(x)]x + E[B(V)]x
whereV is the work in the system seen by an arrival andB(x) is
the length of a busy period started by a job of sizex.

LEMMA 3.2. Under LRPT, for all finite job sizesy,E[S(y)]LRPT > 1=(1��) under any bounded or unbounded ser-
vice distribution, for all�. Further,E[S(y)]LRPT is monotonically
decreasing withy to 1=(1� �).

PROOF. The proof is immediate from Equation 1.

We are now ready to prove case (1).

LEMMA 3.3. Any preemptive, size based policyP that gives
some finite job sizey the lowest possible priority is Always Unfair.

PROOF. We will derive the time a job of sizey spends in the sys-
tem. LetT (y) = W (y)+R(y)whereW (y) is the time untily first
receives service (waiting time) andR(y) is the time from wheny
first receives service until it completes (residence time).Notice thaty must wait behind all jobs that are already in the system. So, its
waiting time isW (y) = B(V). Further, since an arriving job will
preempt the job with probability one, we know that the residence
timeR(y) = B(y).

Thus, for jobs of the lowest priorityE[S(y)]P = E[S(y)]LRPT . BecauseLRPT has a monotonically
decreasing expected slowdown curve that converges to1=(1 � �),
we can conclude that no matter what job size has the lowest priority,
the expected slowdown of that job size will be strictly greater than1=(1� �).

We now move to case (2.1).

LEMMA 3.4. Under PSJF there is some job sizey such that for
all x > y and for all �, E[S(x)]PSJF > 1=(1 � �) under any
unbounded service distribution.

PROOF. It is well known that [10]:E[T (x)]PSJF = � R x0 t2f(t)dt2(1� �(x))2 + x1� �(x)
where�(x) def= � R x0 tf(t)dt.

Thus,limx!1E[S(x)]PSJF = 1=(1��) since the service dis-
tribution is assumed to have finite variance. To prove the lemma it
is sufficient to show thatddxE[S(x)] converges to zero from below
asx!1.

By observing thatddxE[S(x)]PSJF = ddx E[T (x)]PSJFx= x ddxE[T (x)]PSJF �E[T (x)]PSJFx2 ;
our goal reduces to showing that asx!1x ddxE[T (x)]PSJF �E[T (x)]PSJF < 0 (2)

Let us begin by calculatingx ddxE[T (x)]PSJF = �2x2f(x) R x0 t2f(t)dt(1� �(x))3+ 3�x3f(x)2(1� �(x))2 + x1� �(x)
which gives us x ddxE[T (x)]PSJF �E[T (x)]PSJF= �2x2f(x) R x0 t2f(t)dt(1� �(x))3+ 3�x3f(x)2(1� �(x))2 � � R x0 t2f(t)dt2(1� �(x))2 !

Observe that distributions with finite second moments must havef(x) = o(x�3), whereg(x) def= o(h(x)) if limx!1 g(x)h(x) = 0.
Using this observation, we see thatlimx!1x ddxE[T (x)]PSJF �E[T (x)]PSJF = ��E[X2]2(1� �)2 < 0
Recalling Equation 2, we can conclude that asx!1,E[S(x)]!1=(1� �) from above.

We are now left with only case (2.2).

LEMMA 3.5. Any preemptive, size based policyP where there
is no finite job size that receives the lowest priority is Always Un-
fair.

PROOF. Note that Lemma 3.4 leaves only the case where for
every job sizex there is a job sizey > x such that the priority ofy is less than the priority ofx, but the priorities are not decreasing
monotonically.

We will complete the proof by taking advantage of our knowl-
edge ofPSJF. Choose some job sizey such thatPSJF treats all job
sizes larger thany unfairly. We know that for some sizez greater
thany, z has a lower priority than all jobs of smaller size. Thus,z
is treated, with respect to these smaller jobs, as if it were in PSJF.
Further, if jobs larger thanz have higher priority thanz, they will
simply raiseE[S(z)]P . Thus,z is treated at least as badly as it
would have been underPSJF. Since any suchz is treated unfairly
underPSJF (by Lemma 3.3), this completes the proof.

Notice that under the policies in this section, the job sizesthat
are treated unfairly depend on how priorities are assigned.When
there is a finite job sizey that receives the lowest priority, theny is
treated unfairly. However, in the case when no job size was given
the lowest priority, we see that it is not the largest job thatis treated
the most unfairly. This follows from the fact thatddxE[S(x)]PSJF
is decreasing asx ! 1. Thus, some other class of large, but
not the largest, jobs is receiving the most unfair treatment. This
observation is discussed in more detail in Section 3.3.2.

3.3 FB
We now turn to a specific policy, Feedback (FB) scheduling.

UnderFB, the job with the least attained service gets the proces-
sor to itself. If several jobs all have the least attained service,
they time-share the processor viaPS. This is a practical policy,
since a job’s age is always known, although its size may not be
known. This policy improves uponPS with respect to mean re-
sponse time and mean slowdown when the job size distribution
has decreasing failure rate [20] and closely approximates the op-
timal policy, Shortest-Remaining-Processing-Time, under distribu-
tions with regularly varying tails [3]. We have [10]:E[T (x)]FB = � R x0 tF (t)dt(1� �x)2 + x1� �x
where�x def= � R x0 F (t)dt.

Given the bias thatFB provides for small jobs (since they are al-
ways young), it is natural to ask about the performance of thelarge
jobs. Thus, understanding the growth of slowdown as a function of
the job sizex is important. The following Lemma will be useful in
evaluatingFB’s performance.

LEMMA 3.6. For all x and�,E[T (x)]PSJF � E[T (x)]FB.

PROOF. The proof is simply algebraic.E[T (x)]PSJF = � R x0 t2f(t)dt2(1� �(x))2 + x1� �(x)� �E[X2x]2(1� �(x))2 + x1� �(x)� 12�E[Xx2] + x(1� �x)(1� �x)2= E[T (x)]FB

THEOREM 3.3. Under FB scheduling there is some job sizey
such that for allx > y,E[S(x)]FB > 1=(1��) under any service
distribution, for all�. Furthermore,E[S(x)]FB is not monotonic
in x.

PROOF. The first part of the theorem follows immediately from
combining Lemma 3.4 and Lemma 3.6.

For the second part, we show thatE[S(x)]FB is monotonically
increasing for smallx, but decreasing asx ! 1. We start by
differentiating response time:x ddxE[T (x)]FB = 2�2F (x)x R x0 tF (t)dt(1� �x)3+ 2�x2F (x)(1� �x)2 + x1� �x
which gives us x ddxE[T (x)]FB �E[T (x)]FB (3)= 2�2F (x)x R x0 tF (t)dt(1� �x)3 !+ 2�x2F (x)(1� �x)2 � � R x0 tF (t)dt(1� �x)2 !

Recall from Equation 2 that the above gives us the sign ofddxE[S(x)]FB.
There are two terms in Equation 3. The first term is clearly pos-

itive. Notice that forx such thatF (x) � 14 we have:x ddxE[T (x)]FB �E[T (x)]FB� �(1� �x)2 �2x2F (x)� 12x2� � 0
which shows thatE[S(x)]FB is monotonically increasing forx
such thatF (x) � 34 .

We now prove that the expected slowdown converges to1=(1 ��) from above asx!1. First, we know thatlimx!1E[S(x)]FB = 1=(1 � �) [9]. Next, Equation 3 gives
us the sign of ddxE[S(x)]FB . As in the proof of Lemma 3.4, for
any distribution with finite second moment, we know thatF (x) =o(x�2). Using this observation and the fact that�x ! � asx !1, limx!1x ddxE[T (x)]FB �E[T (x)]FB = ��E[X2]2(1� �)2 < 0
Thus, there exists some job sizex0 such that for allx > x0,E[S(x)]FB is monotonically decreasing inx.

The proof of this theorem shows us that all job sizes greater than
a certain size have higher mean response time underFB than under
PS. Counter-intuitively however, the job that performs the worst is
not the largest job. Thus, the intuition that by helping the small jobs
FB must hurt the biggest jobs is not entirely true.

Interestingly, this theorem is counter to the common portrayal
of FB in the literature. When investigatingE[S(x)]FB, previous
literature has used percentile plots such as Figure 3(b), which hide
the behavior of the largest one percent of the jobs [12]. Whenwe
look at the same plots as a function of job size, such as Figure
3(a), the presence of a hump becomes evident. In fact, even under
bounded distributions, this hump seems to exist regardlessof the
bound placed onx.

0 2 4 6 8 10 12 14
x

0

5

10

15

20

25

E[S(x)]

(a)

0 0.2 0.4 0.6 0.8 1
F[x]

0

5

10

15

20

25

E[S(x)]

(b)

Figure 3: Plots (a) and (b) show the growth ofE[S(x)]FB for� = :9. In both cases the service distribution is taken to be Expo-
nential with mean 1. The horizontal line shows fair performance,
thus whenE[S(x)]FB is above this line FB is treating a job size
unfairly. Note that job sizes as low asx = 5 are already in the
99.9 percentile of the job size distribution.

3.3.1 Who is treated unfairly?
Having shown that some job sizes are treated unfairly underFB

scheduling, it is next interesting to understand exactly which job
sizes are seeing poor performance. The following theorem places a
lower bound on the size of jobs that can be treated unfairly.

THEOREM 3.4. For x such that�x � 1�p1� �,E[T (x)]FB � 1=(1� �)
PROOF. The proof will proceed by simply manipulatingE[T (x)]FB.E[T (x)]FB = � R x0 tF (t)dt(1� �x)2 + x1� �x� �x R x0 F (t)dt(1� �x)2 + x1� �x= �xx(1� �x)2 + x(1� �x)(1� �x)2 = x(1� �x)2

Letting �x � 1 � p1� � we complete the proof of the theo-
rem.

It is important to notice that as� increases, so does the lower
bound1 � p1� � on �x. In fact, this bound converges to 1 as� ! 1, which signifies that the size of the smallest job that might
be treated unfairly is increasing unboundedly as� increases. Inter-
estingly, this work also provides bounds on the job sizes that might
be treated unfairly underPSJF due to Lemma 3.6.

3.3.2 Intuition for non-monotonicity
The fact thatFB andPSJF have non-monotonic slowdown is

somewhat surprising. Below we provide an intuitive explanation
for this phenomenon.

For small jobs, it is clear thatFB andPSJF provide preferential
treatment. Thus it is believable that the slowdown should increase
monotonically as job size increases.

Next consider a somewhat large jobx, of sizex, where this job
is large enough that with high probability it is the largest job in any
busy period in which it appears. UnderFB andPSJF, job x will
complete only at the end of the busy period, since it is the largest
job in the busy period. Observe that jobx will also only complete
at the end of its busy period underLRPT, since all jobs complete
at the end of the busy period underLRPT. Thus the performance
of job x underFB andPSJF may be approximated by the perfor-
mance of jobx underLRPT. Next recall from Lemma 3.2, that the

Figure 4: Plot (a) showsE[S(x)]LRPT (above) andE[S(x)]FB
(below). Plot (b) showsE[S(x)]LRPT (above) andE[S(x)]PSJF
(below). In both cases� = :9 and the service distribution is taken
to be Exponential with mean 1. Notice that the expected slow-
down for a job of sizex under both FB and PSJF quickly con-
verges to the expected slowdown ofx under LRPT.

expected slowdown of jobx underLRPT converges monotonically
from above to1=(1 � �) asx ! 1. Thus it follows that the
expected slowdown of jobx underFB andPSJF also converges
monotonically from above to1=(1 � �) asx ! 1. Further, it
is natural thatLRPT has a monotonically decreasing tail since the
asymptotic behavior ofLRPT is the same as the asymptotic behav-
ior of a busy period.

Figure 4(a) shows thatFB does in fact converge in performance
to LRPT for large job sizes. Figure 4(b) shows the same forPSJF.

3.4 Age based policies
FB scheduling is one example of an age based policy (i.e. poli-

cies where a job’s priority is some bijection of its current age). Age
based policies are interesting because they include many hybrid
policies where, in order to minimize mean response time and curb
the unfairness seen by large jobs, both sufficiently old jobsand very
young jobs receive preferential treatment.

Observe that underFB, priority is strictly decreasingwith age.
Thus, a new arrival will run alone until it achieves the age,a, of the
youngest job in the system; and then those jobs of agea will time-
share. This timesharing is caused by the fact that if one job starts
to run, its priority will drop, causing a different job to immediately
run, and so on. In the case of a policy where priority isstrictly in-
creasingwith age, a new arrival always has the lowest priority and
can’t run until the system is idle.

More generally one can imagine a set of ages whose priorities
are the lowest in their neighborhood. Suppose ageC represents
such a local minimum. Jobs with ageC will accumulate, and once
one such job begins to run that job will continue running until it
hits a lower priority age. Thus, the behavior of age-based policies
can be quite varied. In our analyses below we will assume thatties
between two jobs of the same age are broken in favor of the job that
arrived first.

THEOREM 3.5. Age based policies are Always Unfair.

The remainder of this section will prove this theorem using a
method similar to the method used in Section 3.2. We break the
analysis into two cases: (1) the case when there exists a finite sized
job that has the lowest priority and (2) when there is no finitesized
job with the lowest priority. We begin with case (1).

LEMMA 3.7. Any age based policyP where there is a finite ageC that receives the lowest priority is Always Unfair.

PROOF. We will show thatP must be unfair to a job of sizeC+,
whereC+ is infinitesimally larger thanC.

First notice that when a job of sizeC+ arrives, all the work in
the system can be guaranteed to be completed beforeC+ leaves.
Further, all arriving jobs of sizex will haveminfx;Cg work com-
pleted on them beforeC+ leaves the system. Thus we can view
this as a busy period and derive:E[T (C+)]P = �E[X2]2(1��) +C+1� �C= �E[X2]2(1� �)(1� �C) + C+1� �C
Now, notice thatE[T (C+)]P > C+=(1� �) when�2E[X2] > C+ (�� �C)
or equivalently (1� �) + �E[X2]2C+ > 1� �C
Since(1� �) � (1� �C), the above condition is met for all finiteC.

We now move to case (2).

LEMMA 3.8. Any age based policy where no finite job size has
the lowest priority is Always Unfair.

The proof of this final lemma follows from Theorem 3.3 and an
argument symmetric to the proof of Lemma 3.5.

4. SOMETIMES UNFAIR
We now move to the class of Sometimes Unfair policies – poli-

cies that for some� treat all job sizes fairly, but for other� treat
some job size unfairly. In Section 4.1 we return to non-preemptive
policies and illustrate that when the service distributionsets a non-
zero lower bound on the smallest job size, non-preemptive policies
can avoid being Always Unfair by making use of job sizes, but
cannot attain the Always Fair class. In Section 4.2 we build on pre-
vious work in [2] to show that the Shortest-Remaining-Processing-
Time (SRPT) policy is Sometimes Unfair (under both bounded and
unbounded distributions). Specifically we show that: for� � 12 ,E[S(x)]SRPT is monotonically increasing inx for all x and is al-
ways less than or equal to1=(1 � �). However, for� > �crit,
we see non-monotonic behavior:E[S(x)]SRPT is monotonically
increasing inx for all x such that�(x) � 12 but is monotonically
decreasing inx for all x greater than somex0. We also contrast the
behavior ofSRPT under bounded versus unbounded service distri-
butions. More generally, in Section 4.3 we analyze the full class
of remaining size based policies and show that any remainingsize
based policy is either Sometimes Unfair or Always Unfair.

4.1 Non-preemptive, size-Based Policies
This section completes the analysis of non-preemptive policies

begun in Section 3.1. It is based on the observation that if there is a
lower bound on the smallest job size in the service distribution, then
it is possible for a non-preemptive policy to avoid being Always
Unfair.

THEOREM 4.1. Any non-preemptive, size-based policyP is ei-
ther Sometimes Unfair or Always Unfair.

PROOF. Recall thatlimx!1E[S(x)]Q = 1 for all
non-preemptive policiesQ, by Theorem 4 from [9]. Thus, we can

apply Lemma 2.1 to conclude that a non-preemptive policyQ can-
not attain Always Fair. Thus,P (being a non-preemptive policy)
must be either Always Unfair or Sometimes Unfair.

Observe there are examples of size based, non-preemptive poli-
cies in each of the two classes. For instance, it can easily beshown
that the Longest-Job-First (LJF) policy is Always Unfair. How-
ever, Shortest-Job-First (SJF) is only Sometimes Unfair – that is,
there exist service distributions and loads such thatE[S(x)]SJF �1=(1� �) for all x. One example of such a distribution and load is(X � 2) � Exp(1) with � = 0:2.

4.2 SRPT
Under theSRPT policy, at every moment of time, the server is

processing the job with the shortest remaining processing time. The
SRPT policy is well-known to be optimal for minimizing mean re-
sponse time [14]. The mean response time for a job of sizex is as
follows [15]:E[T (x)]SRPT = �2 R x0 t2f(t)dt+ �2x2F (x)(1� �(x))2+Z x0 dt1� �(t)= � R x0 tF (t)dt(1� �(x))2 + Z x0 dt1� �(t)
where�(x) def= � R x0 tf(t)dt.

THEOREM 4.2. For x such that�(x) � 12 , E[S(x)]SRPT is
monotonically increasing inx.

PROOF. Begin by definingm2(x) def= Z x0 t2f(t) = 2 Z x0 tF (t)dt� 2x2F (x)
Then we can derivex � ddxE[T (x)]SRPT= 2�2f(x)x2 R x0 tF (t)dt(1� �(x))3 + �x2F (x)(1� �(x))2 + x1� �(x)
which gives us x � ddxE[T (x)]SRPT �E[T (x)]SRPT= 2�2f(x)x2 R x0 tF (t)dt(1� �(x))3 !+ �x2F (x)(1� �(x))2 � � R x0 tF (t)dt(1� �(x))2 !+� x1� �(x) � Z x0 dt1� �(t)�= 2�2f(x)x2 R x0 tF (t)dt(1� �(x))3 !�� �m2(x)2(1� �(x))2�+� x1� �(x) � Z x0 dt1� �(t)�

Recall that this expression provides us with the sign of the deriva-
tive of slowdown. There are 3 terms in the above expression. The
first of these terms is clearly positive. The third of these terms is

also clearly positive. We will complete the proof by showingthat
the third term is of larger magnitude than the second term.

To obtain a bound on the third term, we can quickly show thatx1� �(x) � Z x0 dt1� �(t)= Z x0 (1� �(t))� (1� �(x))(1� �(t))(1� �(x)) dt (4)� 11� �(x) Z x0 �(x)� �(t)dt
To further specify this bound we can computeZ x0 �(t)dt = � Z x0 Z t0 sf(s)dsdt= � Z x0 Z xs sf(s)dtds= � Z x0 sf(s)(x� s)ds= �(x)x� �m2(x) (5)

Finally, putting all three terms back together we see that when�(x) � 12 , x � ddxE[T (x)]SRPT �E[T (x)]SRPT= 2�2f(x)x2 R x0 tF (t)dt(1� �(x))3 !�� �m2(x)2(1� �(x))2�+� x1� �(x) � Z x0 dt1� �(t)� (6)� �� �m2(x)2(1� �(x))2�+� �m2(x)1� �(x)�� 0
COROLLARY 4.1. If � � 12 , E[S(x)]SRPT is monotonically

increasing for allx. FurthermoreE[S(x)]SRPT � 1=(1 � �) for
all x.

PROOF. This follows immediately from the above theorem and
by recalling the following result: for any work conserving schedul-
ing policyP , limx!1E[S(x)]P � 1=(1� �) [9].

The fact thatE[S(x)]SRPT � 1=(1 � �) for all x when� <12 was first proven in [2] using a different technique that did not
describe the behavior ofE[S(x)]SRPT as a function of increasingx.

The previous theorem showed monotonically increasing slow-
down for SRPT under low load. We now show that if load is suffi-
ciently high, a very different behavior occurs.

THEOREM 4.3. There exists a�crit < 1 such that for all� >�crit, E[S(x)]SRPT has monotonically decreasing slowdown forx � xo, for somexo. Further, for � > �crit, for all x > xo,E[S(x)]SRPT > 1=(1 � �) under any unbounded service distri-
bution.

Earlier work (see Theorem 8 of [2]) showed that for abounded
job size distribution, the largest job sizep has the property that

E[S(p)]SRPT > 1=(1 � �). The above theorem extends this re-
sult to unbounded job size distributions by utilizing monotonicity.
The monotonicity result above is somewhat surprising. One might
assume that the largest jobs are the ones receiving the most unfair
treatment underSRPT. This is in fact the case forboundedjob size
distributions, however it is not true forunboundedjob size distri-
butions.

PROOF. The proof for the unbounded case is somewhat tech-
nical, but will follow a similar method to the previous proof. We
will show that asx ! 1 the derivative of expected slowdown
approaches zero from below.

As in Equation 2, the main section of the proof will again look
at x � ddxE[T (x)]SRPT � E[T (x)]SRPT . To evaluate the above
expression, we need to evaluate Equation 4. Because evaluating
the integral in this expression is difficult, we apply the Mean Value
Theorem, which tells us that there exists acx 2 [0; x] such that11� �(x) Z x0 �(x)� �(t)1� �(t) dt= 1(1� �(x))(1� �(cx)) Z x0 �(x)� �(t)dt= �m2(x)(1� �(x))(1� �(cx))

Thus, asx!1, we apply Equation 6 and the above to obtain:x � ddxE[T (x)]SRPT � E[T (x)]SRPT= 2�2f(x)x2 R x0 tF (t)dt(1� �(x))3 !� �2m2(x)(1� �(x))2!+ �m2(x)(1� �(x))(1� �(cx))! � �2E[X2](1� �)2 + �E[X2](1� �)(1� �(c1))
So, the derivative of slowdown converges from below when this is
less than zero, which occurs when1� �(c1) > 2� 2�

or equivalently,� > 1 + �(c1)2
To complete the proof, we need to bound�(c1). By showing
that �(c1) < 1 we illustrate a�crit such that when� > �crit,E[S(x)]SRPT will have a monotonically decreasing tail.

To characterize�(cx) for x > 0 observe thatZ x0 �(x)� �(t)dt � Z x0 �(x)� �(t)1� �(t) dt� 11� �(x) Z x0 �(x)� �(t)dt
and, equivalently,1 � R x0 �(x)��(t)1��(t) dtR x0 �(x)� �(t)dt � 11� �(x)
So,cx satisfies11� �(cx) = R x0 �(x)��(t)1��(t) dtR x0 �(x)� �(t)dt�(cx) = 1� R x0 �(x)� �(t)dtR x0 �(x)��(t)1��(t) dt�(c1) = 1� limx!1 R x0 �(x)� �(t)dtR x0 �(x)��(t)1��(t) dt

0 0.2 0.4 0.6 0.8 1
F[x]

0

2

4

6

8

10

E[S(x)]

(c)

0 0.2 0.4 0.6 0.8 1
F[x]

1

1.2

1.4

1.6

1.8

2
(d)

0 2 4 6 8 10 12 14
x

0

2.5

5

7.5

10

12.5

15

E[S(x)]

(a)

0 2 4 6 8 10 12 14
x

1.65

1.7

1.75

1.8

1.85

1.9

1.95

2
(b)

Figure 5: Plots (a) and (c) show the growth ofE[S(x)]SRPT
for � = :9, while (b) and (d) showE[S(x)]SRPT when� = :5.
In both cases the service distribution is taken to be Exponential
with mean 1. The horizontal line shows fair performance, thus
whenE[S(x)]SRPT is above this line SRPT is treating a job size
unfairly.

Thus, �(c1) < 1 when limx!1 R x0 �(x)��(t)dtR x0 �(x)��(t)1��(t) dt > 0. The

remainder of the proof bounds this value away from zero, which
proves the existence of a�crit. Because the remainder of the proof
is algebraic, we leave it in Appendix A.

The existence of thisx0 size beyond whichE[S(x)]SRPT is
monotonically decreasing has gone unnoticed by previous research.
The reason is that percentile plots are typically used when viewing
expected slowdown. As seen in Figure 5, because the hump oc-
curs around the 99th percentile it is hidden when looking at the
percentile plots in Figure 5 (c) and (d). Viewing those same plots
as a function of job size, such as in Figure 5 (a) and (b), reveals
the existence of a hump under high load. Note that the peak of the
hump occurs far from the largest job size.

4.2.1 Who is treated unfairly?
Having seen thatSRPT is Sometimes Unfair, it is interesting to

consider which job sizes are being treated fairly/unfairly. The fol-
lowing theorem shows that as� increases, the number of jobs being
treated fairly also increases.

THEOREM 4.4. For x such that�(x) � maxf1�p1� �; 12g,E[T (x)]SRPT � 1=(1� �).
The proof of Theorem 4.4 follows immediately from Theorem

3.4, Theorem 4.2, and the following lemma, which allows us to
bound the performance ofSRPT by that underFB.

LEMMA 4.1. For all x and�,E[T (x)]SRPT � E[T (x)]FB:

PROOF. The proof is simply algebraicE[T (x)]FB = x(1� �x) + 12�E[Xx2](1� �x)2= x1 � �x + 12��R x0 y2f(y)dy + x2F (x)�(1 � �x)2� x1 � �(x) + 12��R x0 y2f(y)dy + x2F (x)�(1� �(x))2= x1 � �(x) + 12� R x0 y2f(y)dy + 12�x2F (x)(1� �(x))2� E[T (x)]SRPT
4.2.2 Intuition for dependence on load

Similarly toFB, notice thatSRPT exhibits non-monotonicity un-
der high load. UnlikeFB however,SRPT does not have this non-
monotonicity at all loads. Intuitively, the existence of ahumpcan
be explained in the same way as it was forFB andPSJF in Sec-
tion 3.3.2. Under high load, the large jobs in anSRPT system do
not have the opportunity to increase their priority by reducing their
remaining size. Thus, the largest job to arrive in a busy period will
likely be the last to leave. This leads to unfairness.

However,SRPT does not always treat large jobs unfairly because
during low load, the large job is often alone in its busy period,
which provides it the opportunity to increase its priority as it re-
ceives service. Consequently, the large job will sometimesnot be
the last job to finish in the busy period.

4.3 Remaining size based policies
SRPT is one example of a remaining size based policy. In this

section we will examine the entire class of remaining size based
policies (i.e. policies where a job’s priority is some bijection of
its remaining size). The class of remaining size based policies in-
cludes many hybrid policies; for example policies where, inorder
to minimize mean response time and curb the unfairness seen by
large jobs, both jobs with very small and sufficiently large response
times are given preferential treatment.

The class of all remaining size based policies is quite broad. In
the same way as for age based policies, there are many possible
mappings between priority and remaining size, allowing formulti-
ple local minima in priorities and many interesting behaviors. We
will again choose to break ties among jobs in the system with the
same priority in favor of the job that arrived first.

AlthoughSRPT is in this class and is Sometimes Unfair, not all
such policies are Sometimes Unfair. For instance, theLRPT policy
is Always Unfair as shown in Lemma 3.2.

THEOREM 4.5. All remaining size based policies are either Some-
times Unfair or Always Unfair.

The remainder of this section will prove this theorem using the
same method that was used in Section 3.4 and Section 3.2. We
break the analysis into two cases: (1) the case when there exists a
finite sized job that has the lowest priority and (2) when there is no
finite sized job with the lowest priority.

LEMMA 4.2. Any remaining size based policyP with a finite
remaining sizeC having the lowest priority is either Always Unfair
or Sometimes Unfair.

PROOF. We will begin by deriving the expected performance
seen by a job of original sizeC, entering the system underP . No-
tice that all work initially in the system will be completed before

C begins to be worked on. In addition, all arrivals during thistime
that have size less thanC will be completed beforeC leaves the
system. However, onceC starts being worked on and has remain-
ing sizet, the only arrivals that are guaranteed to finish beforeC
leaves the system are those arrivals of size less thant. Thus, we
can view this as a busy period and deriveE[T (C)]P � �E[X2]2(1� �)(1� �(C)) + Z C0 dt1� �(t)

We will now show thatC will be treated unfairly under high
enough load. Using a similar derivation to that shown in Equations
4 and 5, we can see thatE[T (C)]P > 1=(1� �) when�E[X2]2(1� �)(1� �(C)) > C(�� �(C)) + �m2(x)1� �
or, equivalently,�E[X2]2(1� �(C)) � �m2(C) > C(�� �(C))
or, equivalently,(1� �) +� �E[X2]2C(1� �(C)) � �m2(C)C � > (1� �(C)) :

Since(1� �) � (1� �(C)), we immediately see thatP cannot
be fair if �(C) > 12 . However, whenC is the upper bound of a
bounded distribution and� = 12 , the bound does not hold. In this
case, we need to look at the system under a higher load. We can
raise� so that� = �(C) > 12 , in which case the bound holds.

When�(C) < 12 we need to do a more detailed analysis. Since�(C) < 12 we can raise� so that� = 2�(C). Notice that if this is
not possible, it means that by raising� we made�(C) � 12 , which
we have already dealt with.

When� = 2�(C), E[X] = 2m1(C) def= 2 R C0 tf(t)dt. Fur-
ther, this tells us thatE[X]�m1(C) = m1(C), but alsoE[X]�m1(C) = R1C tf(t)dt. Thus,

R C0 tf(t)dt = R1C tf(t)dt. Using
this fact, we can notice thatE[X2] = Z 10 t2f(t)dt = Z C0 t2f(t)dt+ Z 1C t2f(t)dt� m2(C) + Cm1(C) � 2m2(C)
Thus, we can see that(1� �) +� �E[X2]2C(1� �(C)) � �m2(C)C �� (1� �) +� �m2(C)C(1� �(C)) � �m2(C)C �> (1� �(C))
holds for all finiteC.

LEMMA 4.3. Any remaining size based policyP where an in-
finitely sized job has the lowest priority is either Sometimes Unfair
or Always Unfair.

The proof of this final lemma follows from Theorem 4.3 and an
argument symmetric to the proof of Lemma 3.5.

5. CONCLUSION
The goal of this paper is to classify scheduling policies in an

M/GI/1 in terms of their unfairness. Very little analyticalprior
work exists on understanding the unfairness of scheduling policies,

and what does exist is isolated to a couple particular policies. This
paper is the first to approach the question of unfairness across all
scheduling policies. Our aim in providing this taxonomy is,first, to
allow researchers to judge the unfairness of existing policies and,
second, to provide heuristics for the design of new scheduling poli-
cies.

In our attempt to understand unfairness, we find many surprises.
Perhaps the biggest surprise is that for quite a few common poli-
cies, unfairness is a function of load. That is, at moderate or low
loads, these policies are fair to all jobs. Yet at higher loads, these
policies become unfair. This leads us to createthreeclassifications
of scheduling policies: Always Unfair, Sometimes Unfair, and Al-
ways Fair (shown in Figure 1). Rather than classifying individual
policies, we group policies into different types: size based, age
based, remaining size based, and others. We prove that all preemp-
tive size based and age based policies are Always Unfair, butthat
remaining size based policies and non-preemptive policiesare di-
vided between two classifications. The result that all preemptive
size based policies are Always Unfair may seem surprising inlight
of the fact that one could choose to assign high priority to both
small jobs and sufficiently large jobs in an attempt to curb unfair-
ness.

With respect to designing scheduling policies, we find that under
high load, almost all scheduling policies are unfair. However under
low load one has the opportunity to make a policy fair by sometimes
increasing the priority of large jobs. For example,PSJF andSRPT
have very similar behavior and delay characteristics, but result in
completely different unfairness classifications becauseSRPT al-
lows large jobs to increase their priority, whereasPSJF does not.

A variety of techniques are used in order to classify policies with
respect to fairness. For classifying individual policies it is useful to
try to prove monotonicity properties for the policy over an interval
of job sizes. It then suffices to consider the performance of the
policy on just one endpoint of the interval. In classifying agroup
of policies, it helps to decompose the group into two cases: the
case where the lowest priority job has a finite size/age, and the case
where the lowest priority job has infinite size/age. In the latter case,
we find that the fairness properties for the entire group of policies
reduces to looking at one individual policy.

Since so many policies are Always Unfair, and so many others
are Sometimes Unfair, it is interesting to askwho is being treated
unfairly. Initially it seems that unfairness is an increasing function
of job size, with the largest job being treated the most unfairly. This
is in fact the case for most bounded job size distributions. However,
for unbounded job size distributions, we find this usually not to be
the case. Instead, unfairness is monotonically increasingwith job
size up to a particular job size; and later is monotonically decreas-
ing with job size. Thus the job being treated most unfairly (“top
of the hump”) is far from the largest. Interestingly, this “hump”
changes as a function of load.

The above findings show that we are just beginning to understand
unfairness in scheduling policies. This is a fertile area with many
more properties yet to be uncovered.

6. REFERENCES
[1] Baily, Foster, Hoang, Jette, Klingner, Kramer, Macaluso,

Messina, Nielsen, Reed, Rudolph, Smith, Tomkins, Towns,
and Vildibill. Valuation of ultra-scale computing systems.
White Paper, 1999.

[2] N. Bansal and M. Harchol-Balter. Analysis of SRPT
scheduling: Investigating unfairness. InProceedings of ACM
Sigmetrics Conference on Measurement and Modeling of
Computer Systems, 2001.

[3] N. Bansal and A. Wierman. Competitive analysis of M/GI/1
queueing policies. Technical Report CMU-CS-02-201,
Carnegie Mellon University, December 2002.

[4] M. Bender, S. Chakrabarti, and S. Muthukrishnan. Flow and
stretch metrics for scheduling continous job streams. In
Proceedings of the 9th Annual ACM-SIAM Symposium on
Discrete Algorithms, 1998.

[5] A. B. Downey. A parallel workload model and its
implications for processor allocation. InProceedings of High
Performance Distributed Computing, pages 112–123, August
1997.

[6] E. Friedman and S. Henderson. Fairness and efficiency in
web server protocols. InProceedings of ACM Sigmetrics
Conference on Measurement and Modeling of Computer
Systems, 2003.

[7] M. Harchol-Balter and A. Downey. Exploiting process
lifetime distributions for dynamic load balancing.ACM
Transactions on Computer Systems, 15(3), 1997.

[8] M. Harchol-Balter, B. Schroeder, N. Bansal, and
M. Agrawal. Implementation of SRPT scheduling in web
servers.ACM Transactions on Computer Systems, 21(2):To
appear, May 2003.

[9] M. Harchol-Balter, K. Sigman, and A. Wierman. Asymptotic
convergence of scheduling policies with respect to
slowdown.Performance Evaluation, 49(1-4):241–256, 2002.

[10] L. Kleinrock. Queueing Systems, volume II. Computer
Applications. John Wiley & Sons, 1976.

[11] R. Perera. The variance of delay time in queueing system
M/G/1 with optimal strategy SRPT.Archiv fur Elektronik
und Uebertragungstechnik, 47:110–114, 1993.

[12] I. Rai, G. Urvoy-Keller, and E. Biersack. Analysis of LAS
scheduling for job size distributions with high variance. In
Proceedings of ACM Sigmetrics Conference on Measurement
and Modeling of Computer Systems, 2003.

[13] J. Roberts and L. Massoulie. Bandwidth sharing and
admission control for elastic traffic. InITC Specialist
Seminar, 1998.

[14] L. E. Schrage. A proof of the optimality of the shortest
remaining processing time discipline.Operations Research,
16:678–690, 1968.

[15] L. E. Schrage and L. W. Miller. The queue M/G/1 with the
shortest remaining processing time discipline.Operations
Research, 14:670–684, 1966.

[16] F. Schreiber. Properties and applications of the optimal
queueing strategy SRPT - a survey.Archiv fur Elektronik und
Uebertragungstechnik, 47:372–378, 1993.

[17] A. Silberschatz and P. Galvin.Operating System Concepts,
5th Edition. John Wiley & Sons, 1998.

[18] W. Stallings.Operating Systems, 2nd Edition. Prentice Hall,
1995.

[19] A. Tanenbaum.Modern Operating Systems. Prentice Hall,
1992.

[20] A. Wierman, N. Bansal, and M. Harchol-Balter. A note
comparing response times in the M/GI/1/FB and M/GI/1/PS
queues.Operations Research Letters, To appear, 2003.

[21] R. W. Wolff. Stochastic Modeling and the Theory of Queues.
Prentice Hall, 1989.

APPENDIX

A. SRPT IS SOMETIMES UNFAIR

We now complete the proof of Theorem 4.3 by showing thatlimx!1 R x0 �(x)��(t)dtR x0 �(x)��(t)1��(t) dt > 0.

PROOF. We continue by separating the integral in the denomi-
nator into three parts usingr ands such that�(r) = f�(x) and�(s) = g�(x) for f < g 2 (0; 1). Note that this is possible under
any non-constant service distribution.Z x0 �(x)� �(t)1� �(t) dt= Z r0 �(x)� �(t)1� �(t) dt+ Z sr �(x)� �(t)1� �(t) dt+Z xs �(x) � �(t)1� �(t) dt� 11� �(r) Z r0 �(x)� �(t)dt+ 11� �(s) Z sr �(x)� �(t)dt+ 11� �(x) Z xs �(x)� �(t)dtdef= 11� �(r)Ax + 11� �(s)Bx + 11� �(x)Cx
Working with each of the pieces, we can deriveAx = Z r0 �(x)� �(t)dt= r�(x)� r�(s) + �m2(r)= r(1� f)�(x) + �m2(r)! r(1� f)� + �m2(r) asx!1Bx = Z sr �(x)� �(t)dt= (s� r)�(x)� [s�(s) � �m2(s) � r�(r) + �m2(r)]= s(1� g)�(x) � r(1� f)�(x) + �m2(s)� �m2(r)! s(1� g)� � r(1� f)�+ �m2(s)� �m2(r) asx!1Cx = Z xs �(x)� �(t)dt= (x� s)�(x) � x�(x) + �m2(x) + s�(s) � �m2(s)= �s(1� g)�(x) + �m2(x)� �m2(s)! �s(1� g)� + �E[X2]� �m2(s) asx!1
Further, we can notice that�m2(s) = � Z r0 t2f(t)dt+ �Z sr t2f(t)dt� �m2(s) + r(�(s)� �(r))= �m2(s) + r(g � f)�(x)= �m2(s) + r(1� f)�(x)� r(1� g)�(x)! �m2(s) + r(1� f)�� r(1� g)� asx!1
Using this calculation in the formula forBx, we see that asx!1Bx � (s� r)(1� g)�(x)! (s� r)(1� g)� def= "
and Bx � s(1� g)�(x) + �m2(s)! s(1� g)�+ �m2(s) def=

Thus, forN(Ax) � Ax" andN(Cx) � Cx"N(Ax)B � AxN(Cx)B � Cx

CalculatingN(A1) = limx!1N(Ax) we seeN(A1) � r(1� f)�+ �m2(r)(s� r)(1� g)�= r(1� f)(s� r)(1� g) + �m2(r)(s� r)(1� g)�
and similarly forN(C1) = limx!1N(Cx) we obtainN(C1) � �s(1� g)�+ �E[X2]� �m2(s)(s� r)(1� g)�
So, it is sufficient to haveN(A1) � r(1� f)(s� r)(1� g) + �E[X2](s� r)(1� g)�N(C1) � �E[X2](s� r)(1� g)� � ss� r

We now have bounds on the pieces of the integral. So, putting
everything together we see thatR10 �� �(t)dtR10 ���(t)1��(t)dt � A+B + C11��(r)A+ 11��(s)B + 11��C� A+B + C11��(r)N1(A)B + 11��(s)B + 11��N1(C)B� B11��(r)N1(A)B + 11��(s)B + 11��N1(C)B= 111�f�N1(A) + 11�g� + 11��N1(C)def= 1l
The quantity1l > 0 so long ass 6= r.

To better understand Theorem 4.3 it is interesting to look atthe
special case whereX � Exp(1). In this case,f = 13 , g = 23 ,E[X2] = 2, s � 23 , andr � 13 (s andr are very approximate). So,
we can calculateN(A1) � 2r(s� r) + 6�E[X2](s� r) � 38N(C1) � 6�E[X2](s� r) � ss� r � 35
and l � 65N(A1) + 32 + 2N(C1) � 117:1

Theorem 4.3 then tells us that for� > :99573, SRPT will not
have slowdown monotonicity under anExp(1) service distribu-
tion. Further, for these�, SRPT is guaranteed to treat some job size
unfairly. It is important to point out the looseness of this bound. By
plotting the actual equation for expected time in system under anExp(1) distribution we find that the true critical value for� in this
case is just under .7, much lower than the value obtained using the
method in the previous proof.

