Classifying Scheduling Policies with Respect to

Unfairness in

Adam Wierman
Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213

acw@cmu.edu

ABSTRACT

It is common to evaluate scheduling policies based on theamm
response times. Another important, but sometimes oppppiry
formance metric is a scheduling policy’s fairness. For eplama
policy that biases towards small job sizes so as to minimiearm
response time may end up being unfair to large job sizes. i$n th
paper we define three types of unfairness and demonstrae lar
classes of scheduling policies that fall into each type. Wé\eith

a discussion on which jobs are the ones being treated unfairl

Categories and Subject Descriptors

F.2.2 Nonnumerical Algorithms and Problemg: Sequencing and
Scheduling; G.3Probability and Statistics]: Queueing Theory;
C.4 [Performance of Systemp Performance Attributes-Ynfair-
ness

General Terms
Performance, Algorithms

Keywords

Scheduling; unfairness; M/G/1; FB; LAS; SET,; feedbackstes-
tained service; shortest elapsed time; PS; processongh&RPT;
shortest remaining processing time; slowdown

1. INTRODUCTION

Traditionally the performance of scheduling policies hagrb
measured using mean response time (a.k.a. sojourn time,itim
system) [8, 11, 13, 16], and more recently mean slowdown [1, 5
7]. Under these measures, size based policies that givetpitio
small job sizes (a.k.a. service requirements) at the expefriarger
job sizes perform quite well [15]. However, these policiesd not
to be used in practice due to a fear of unfairness. For exaraple

an M/GI/1”

Mor Harchol-Balter
Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213

harchol@cs.cmu.edu

policy that always biases towards jobs with small sizes sdiely
to treat jobs with large sizes unfairly [4, 17, 18, 19].

This tradeoff between minimizing mean response time whaem
taining fairness is an important design constraint in mapliea-
tions. For example, in the case of Web servers, it has beemnsho
that by giving priority to requests for small files, a Web sgrgan
significantly reduce response times; however it is imparthat
this improvement not come at the cost of unfairness to rdgties
large files [8]. The same tradeoff applies to other applicatr-
eas; for example, scheduling in supercomputing centerse tde
it is desirable to get small jobs out quickly, while not penalgy
the large jobs, which are typically associated with the irtgoat
customers. The tradeoff also occurs for age based poli€msex-
ample, UNIX processes are assigned decreasing priorigdoais
their current age — CPU usage so far. This can create unésifoe
old processes. To address the tension between minimiziagm me
response time and maintaining fairness, hybrid schedplatigies
have also been proposed; for example, policies that priyniaias
towards young jobs, but give sufficiently old jobs high pitipas
well.

Recently, the topic of unfairness has been looked at foynigll
Bansal and Harchol-Balter, who study the unfairness ptigseof
the Shortest-Remaining-Processing-Time (SRPT) poligeumn
M/GI/1 system [2]; and by Harchol-Balter, Sigman, and Wiam
who address unfairness under all scheduling policies amtimp
cally as the job size grows to infinity [9]. In this paper, teessults
are extended to characterize the existence of unfairneser wil
priority based scheduling policies, for all job sizes.

In order to begin to understand unfairness however, we nmgst fi
formalize what is meant by fair performance. In this defomiti
and throughout this paper we will be using the following tiota
We will consider only an M/GI/1 system with a continuous segv
distribution having finite mean and finite variance. We 1&tr)

be the steady-state response time for a job of sizandp < 1

be the system load. That;]tsdéf AE[X], where) is the average

arrival rate of the system an¥l is a random variable distributed

*This work was supported by NSF Career Grant CCR-0133077 and according to the service (a.k.a. job size) distributiB(r) with

by Pittsburgh Digital Greenhouse Grant 01-1.

Permission to make digital or hard copies of all or part o twork for
personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyoofherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

SIGMETRICS’03June 10-14, 2003, San Diego, California, USA.
Copyright 2003 ACM 1-58113-664-1/03/0006$5.00.

density functionf(z). The slowdown seen by a job of sizeis

S(x) def T'(z)/z, and the expected slowdown for a job of size
under scheduling policy is E[S(x)]".

DEFINITION 1.1. Jobs of size: are treated fairly under policy
Piff E[S(x)]” < 1/(1 — p). Further, a scheduling policy is fair
iff it treats every job size fairly.

DEFINITION 1.2. Jobs of size: are treated unfairly under pol-
icy P iff E[S(x)]” > 1/(1 — p). Further, a scheduling policy is
unfair iff there exists a job size that is treated unfairly.

FB

7 Preemptive,
. Size Based
"\ PSJF

PLCFS \
SRPT LRPT

Figure 1: Classification of unfairness showing a few examples of
both individual policies and groups of policies within eadlass.

Definition 1.1 is a natural extension of the notion of faimased
in [2, 9]. Notice that the definition of fairness has two paFfgst,
the expected slowdown seen by a job of sizeust be no greater
than a constant (i.e. independenta9f Processor-SharindP§)
is a common scheduling policy that achieves this. Ur@ithe
processor is shared evenly among all jobs in the system & eve
point in time. It is well known tha#?[S(z)]F° = 1/(1 — p) [21],
independent of the job size The second condition of the defini-
tion of fairness is that the particular constant mustipél — p).
Although this constant may seem arbitrary, in Section 2 wié wi
show thatl /(1 — p) is the lowest possible constant obtainable un-
der any policy with constant expected slowdown. This faci is
formal verification thatl /(1 — p) is the appropriate constant for
defining fairness.

With these definitions, it is now possible to classify schiedyu
policies based on whether they (i) treat all job sizes fainy(ii)
treat some job sizes unfairly. Curiously, we find that some@s
may fall into either type (i) or type (ii) depending on the t®m
load. We therefore defintairee classes of unfairness

Always Fair: Policies that are fair under all loads and all service
distributions.

Sometimes Unfair: Policies that are unfair for some loads and
some service distributions; but are fair under other loauds a
service distributions. For most policies in this class wavsh
that there exists a cutoff load.;:, below which the policy is
fair for all service distributions, and above which the pgli
is unfair for at least some service distributions.

Always Unfair: Policies that are unfair under all loads and all ser-
vice distributions.

The goal of this paper is to classify scheduling policies itfite
above three types (see Figure 1). Scheduling policies pieatyy
divided into non-preemptive policies and preemptive petic We
find that non-preemptive policies can either be SometimeaitUn
or Always Unfair, however preemptive policies may fall irany
of the three types. In this paper, we concentrate on preeenpti-
ority based policies. These include policies for which (ifixad
priority is associated with each possible job size (a.gize based
policieg, (ii) a fixed priority is associated with each possible job
age (a.k.a. age based policigs and (iii) a fixed priority is as-
sociated with each possible remaining size (a.kesmaining size
based policies Observe that (i) includes policies like Preemptive-
Shortest-Job-First where small jobs have higher priokiti, also
includes perverse policies like Preemptive-Longest-Biost and

others. Observe that (ii) includes policies like FeedbaeR)t
scheduling where young jobs are given priority, yet alsduites
other practical policies that primarily bias towards yoyolgs and
also give high priority to sufficiently old jobs. Observe tki) in-

cludes policies like Shortest-Remaining-Processingefiirst and
Longest-Remaining-Processing-Time-First that bias td&/gobs
with small and large remaining times respectively, as welbiac-
tical hybrids. We show that all policies in (i) and (ii) arewdys
Unfair; whereas policies in (iii) can be Sometimes UnfairAd+

ways Unfair.

Lastly, for the case where jobs are being treated unfainyjrw
vestigatavhich job sizesire treated unfairly, and find that these are
not necessarily the jobs one would expect. Furthermore, mek fi
that the answer to this question depends on the system load.

2. ALWAYS FAIR

Two well known Always Fair policies are Processor-SharPg)(
and Preemptive-Last-Come-First-ServB CFS). Recall that
PLCFS always devotes the full processor to the most recent ar-
rival. Both of these policies have the same expected pedncet
E[S(x)]"® = E[S(x)]"*“"S = 1/(1 — p) for all z. An im-
portant open problem not answered in this paper is the quesfi
what other policies are in the Always Fair class. This qoeshias
received attention recently in the work of Friedman and Hend
son [6], where the authors introduce a new preemptive pdhsi
that falls into this class. Although no queueing analysis-6P
is known, a simulation study suggests that it achieves pedoce
similar to that of Shortest-Remaining-Processing-Timdewuar-
anteeing fairness.

We now address why the value bf(1 — p) appears in the def-
inition of Always Fair. It seems plausible that there exa{solicy
that is bothstrictly fair in the sense that all job sizes have the same
expected slowdown, and has slowdown strictly less thdh — p).

We show below that there is no such policy.

THEOREM 2.1. There is no policyP such that£[S(z)]” is in-
dependent of and E[S(z)]” < 1/(1 — p).

This theorem follows from the lemma below, which provides a
necessary condition for a policy to be Always Fair. We wilpapl
to this result in the proof of Theorem 4.1.

LEmMMA 2.1. If scheduling policyP is Always Fair, then
lim, oo E[S(2)]” = 1/(1 = p)

PROOF First, becaus® is Always Fair,B[S(z)]” < 1/(1—p)
for all , and thereforéim,. _, o, E[S(z)]” < 1/(1 — p). Thus, we
need only show thdim,_, - E[S(z)]¥ > 1/(1 — p). We accom-
plish this by bounding the expected slowdown for a job of size
from below, and then showing that the lower bound converges t
1/(1 — p) as we letr — co.

To lower bound the expected slowdown, we consider a modi-
fied policy Q... that throws away all arrivals whose response time
underP is greater than or equal toand also throws away arrivals
with size greater than. Further,Q).,, works on the remaining jobs
at the exact moments th&works on these jobs. We will begin by
calculating the load made up of jobs of size less thafwhere
y < a < z)underQ. .., p(y)9=<. By Markov’s Inequality we

'Note thatFB is sometimes referred to by two other names: Least-
Attained-Servicel(AS) and Shortest-Elapsed-Tim8ET).

obtainP(T(y)" < a) > 1 — _4%—. Thus, we see that

(

Qu.a Y,
p(y) > A/O (1 7a(1ip))tf(t)dt
=)" -
p def

wherep(y)” = A foy tf(t)dt is the load made up by jobs of size

less than or equal tg in P andm.(y) ef [2 f(t)dt. The in-
tuition behind the remainder of the proof is thatsgs;, andz get
very large,p(y)@== approacheg which tells us that the load of
jobs thatmustcomplete befora: underP goes top.

We now derive a lower bound on the response time of a job of

sizex under policyP. We will be interested in large, witha < .
We divideT ()" into two partsTy andT» whereT; represents the
time from whenz starts service until it has remaining sizeand
T, represents the time from whenhas remaining size until it
completes service. We first note tHAt > a. To lower bound
T, consider the set of jobsy,, with size less thary and whose
response time undeP is less tharu. The jobs inS, are worked
on at the same moments undgr. ., and P, and they comprise
load p(y)?==. During timeT}, job z receives service unde?P
at most during the time the system is idle of jobsSin which is
1 — p(y)@== fraction of the time. Thus

EN] > W'
It follows that
B[T@)]" = BO)+E[D] > y— g +a
ElS@)” > = ;

+ =
- P 4 Ama(y) T
r (1 p(y)" + a(17p)>

Now, we must seyy anda as functions ofr such that, as we
let z — oo, we converge as desired. Notice thatzas—~ oc,
we would like p(y)” — p, %fﬁj} — 0,and2 — 0. Thus,
we must haver < z such thaty — oo anda — oo. We can
accomplish this by setting = 4,/ andy = /z. Notice that
ma(y/z) = E[X?] < co asz — oco. Now, looking at expected

slowdown we see that as— oc:

r —4/x 4\/z
ElS@)" 2 \/:mQ(ﬁ) \av/_
ﬁ(l—P(\/E)‘Fm)
_ 1-4/Ve LA
T p(E) e TR
Lo
1-p
O

3. ALWAYS UNFAIR

In this section we will show that a large number of common-poli
cies are Always Unfair. That is, many common policies aregua
teed to treat some job size unfairly under all system loadgath
subsection we will investigate a class of common policiesyipg
that the class is Always Unfair. Figure 2 summarizes thecpesi
that will be looked at in this section.

Section 3.1 illustrates that all non-preemptive policiesunfair
for all loads when the service distribution is defined on somigh-
borhood of zero. However, if the service distribution hasa-mero
lower bound then only non-preemptive policies that do nokena

FCFS Non-size Based,
on—preemptive

FB

,:"\\ Age Based
Always J—
Unfair| .~ Preemptive,
. Size Baseg

PSIF

Figure 2: A detail of the Always Unfair classification.

use of job sizes (non-size based) are guaranteed to be tofaif
loads. (Note that among non-preemptive policies it is naisfize
to prioritize based on age or remaining size.) Section 3dvsh
that any preemptive, size based policy is Always Unfair. dotf
we show that any job size that is assigned a fixed, low priouigyn
arrival will be treated unfairly. We next discuss policiehere a
job’s priority is a function of its current age. We first intiggte a
common policy of this type in Section 3.3 and then in Sectigh 3
extend the results to show that every age based policy is yslwa
Unfair.

3.1 Non-size based, non-preemptive policies

The analysis in this section is based on the simple observati
that any policy where a small job cannot preempt the job ivicer
will likely be unfair to small jobs. For example, let us begiith
the class of non-preemptive policies.

LeEMMA 3.1. Any non-preemptive polidy is unfair for all loads
under any service distribution defined on a neighborhoocead.z

PrROOF We can bound the performance Bfby noticing that,
at a minimum, an arriving job of size must taker time plus the

excess of the job that is serving. Thus[T (z)]” > = + "2’;[[);(2]].

Notice thatlim,_,o E[S(z)]” = co. Thus, there exists some job
sizey such thatE[S(y)]” > 1/(1 — p),forallp < 1. O

The above theorem says that any non-preemptive policy where
some fraction of the arriving jobs are tagged as high psioath-
ers are tagged as low priority, and low priority jobs canreempt
high priority jobs will be unfair to small jobs. Specificallthe
small jobs in the neighborhood of zero, regardless of thadripy,
will have to wait behind the excess of the service distritmutiFur-
thermore, even under policies which do allow some preempti
example a policyP which allows small jobs to preempt large ones
some fraction of the time, there is still unfairness to thaljobs
since E[S(z)]” will have a term dependent afi[X %] which will
causeE[S(z)] — oo asz — 0. Such policies are unfair for all
loads when the service distribution is defined on a neigldmmitof
zero.

However, under service distributions with non zero loweurims
on the smallest job size a much smaller set of policies cartelssie
fied as Always Unfair. These are the non-size based, nonvptae
policies. (Note that the remainder of the possible non+ppizve
policies are explored in Section 4.1.)

THEOREM 3.1. All non-size based, non-preemptive policies
are Always Unfair.

PrROOF Assume that the service time distribution has lower bound
C > 0 (we have already dealt with the case @f = 0). We

will show that jobs of sizeC' are treated unfairly. Recall that all PrROOF We will derive the time a job of sizg spends in the sys-
non-preemptive, non-size based policies have the sametexpe tem. LetT (y) = W (y)+ R(y) whereW (y) is the time untily first
response time for a job of size[10]. receives service (waiting time) adél(y) is the time from whery
first receives service until it completes (residence timmtice that

E[T(C)]P - C+ AE[X?] y mgst vyait pehind all jobs that are alregdy in the .syste.m. ISQ, i
2(1-p) waiting time isW (y) = B(V'). Further, since an arriving job will
C(1—p)+A [+ C)F(t+ C)dt preempt the job with probability one, we know that the resme
= 1—p time R(y) = B(y).
Thus, for jobs of the lowest priority
_ C=Cp+Cp+ [T tF(t+C)at E[S(y)]” = E[S(y)]**F'T. Becausd.RPT has a monotonically
a 1—p decreasing expected slowdown curve that convergég(tb— p),
C we can conclude that no matter what job size has the lowesityri
> 1-—p the expected slowdown of that job size will be strictly gezdahan
1/(1 — p).
where the last inequality follows since the service distiiin is / p- O
required to be non-deterministic] We now move to case (2.1).

: : ‘L LEMMA 3.4. Under PSJF there is some job sigsuch that for
3.2 Preemptive, size based policies all = > y and for all p. BIS(@)]"*7F > 1/(1 - p) under any

In this section we analyze size based policies (i.e. paligieere unbounded service distribution.
a job receives a priority based on a bijection of its origisiak),

where higher priority jobs always preempt lower prioritpgo An PROGF. Itis well known that [10]:

example of such a policy is Preemptive-Shortest-Job-fSiF), pssr Ao PF(t)dt x

which improves overall time in system with respect? by bi- BT (z)] = 20— p(z))2 ' 1-p(z)

asing towards jobs with small sizes. We seek to understamd th

unfairness properties caused by this bias. Further, evaigygn wherep(z) &' A Jy tf(t)dt.

this class wi_II bias _against a particular jo_b s_ize, so it ipamant to Thus lim, e E[S(2)]757F = 1/(1- p) since the service dis-
understand if unfairness results from this bias. tribution is assumed to have finite variance. To prove thenarit

is sufficient to show thaX E[S(z)] converges to zero from below
THEOREM 3.2. Any preemptive, size based policy is Always a5z — oo.

Unfair. By observing that
The remainder of this section will prove this result. We will iE[S(I)]PSJF _d B[T(@)]""
break the analysis into two cases: (1) when there exists & fini dx dx x
sized job that has the lowest priority and (2) when there iimite e L E[T(2)]"%'" — E[T(2)]"%7"
sized job with the lowest priority. Case (2) will be brokemaitwo = 22)

subcases: (2.1) when priorities decrease monotonicaby, (he

i S - | red to showing that:
PSJF policy), and (2.2) when priorities are non-monotonic, boit n ourgoatreduces fo snowing thals= oo

finite sized job receives the lowest priority. This methochadof IiE[T(m)]PSJF _ E[T(.T)]PSJF <0 @)
will be used again in Section 3.4 and Section 4.3.
It will be helpful in the proofs below if we first analyze the Let us begin by calculating
Longest-Remaining-Processing-TimeRPT) policy. At any given 5 9)
point, theLRPT policy shares the processor evenly among all the miE[T(m)]PSJF _ Nz f(x fo i f
jobs in the system with the longest remaining processing.tirRPT d (1= p(x))?
has the following expected slowdown [9]: 3 f(x) "
1 AR Ty T @)
O L &)

1—p 2z(1-—p)? which gives us

E[B(z)] | E[B(V)] d : :
— . + . TEE[T(T)]PS‘]F o E[T(’L‘)]PS‘JF
whereV is the work in the system seen by an arrival @ik) is N f(x) [2 f()dt
the length of a busy period started by a job of size - (1= p(x))?
3 w42
LEMMA 3.2. Under LRPT, for all finite job sizeg, 4 3z f(x) . At f(t)dZt
E[S(y)]**FT > 1/(1 - p) under any bounded or unbounded ser- 21 =p(x))* 201 = p(z))

vice distribution, for allp. Further, E[S(y)] """ is monotonically Observe that distributions with finite second moments mastéh

deCreaSing Wlﬂy to 1/(1 — p) f(”) — 0(51373), Whereg(m) d:ef O(h()) if hmz—)oo hEz; = 0.
PROOF The proof is immediate from Equation 1] Using this observation, we see that
PSJF PSJF —AE[XQ}
We are now ready to prove case (1). lim x—E[T()] — E[T(x)] = m <0
LEMMA 3.3. Any preemptive, size based poligythat gives Recalling Equation 2, we can conclude thatas> co, E[S(z)] —

some finite job sizg the lowest possible priority is Always Unfair. ~ 1/(1 — p) from above. [J

We are now left with only case (2.2).

LEMMA 3.5. Any preemptive, size based poliBywhere there
is no finite job size that receives the lowest priority is Alw&n-
fair.

PROOF Note that Lemma 3.4 leaves only the case where for

every job sizer there is a job sizg > x such that the priority of
y is less than the priority of, but the priorities are not decreasing
monotonically.

We will complete the proof by taking advantage of our knowl-
edge ofPSJF. Choose some job sizesuch thaPSJF treats all job
sizes larger thag unfairly. We know that for some sizegreater
thany, z has a lower priority than all jobs of smaller size. Thus,
is treated, with respect to these smaller jobs, as if it wefRSIF.
Further, if jobs larger tham have higher priority tham, they will
simply raiseE[S(z)]”. Thus,z is treated at least as badly as it
would have been und&SJF. Since any such is treated unfairly
underPSJF (by Lemma 3.3), this completes the proof]

Notice that under the policies in this section, the job sthed
are treated unfairly depend on how priorities are assighéten
there is a finite job sizg that receives the lowest priority, thgris
treated unfairly. However, in the case when no job size wasngi
the lowest priority, we see that it is not the largest job thateated
the most unfairly. This follows from the fact thgt E[S(z)]” /"
is decreasing as — oc. Thus, some other class of large, but
not the largest, jobs is receiving the most unfair treatméritis
observation is discussed in more detail in Section 3.3.2.

3.3 FB

We now turn to a specific policy, FeedbadkB) scheduling.

UnderFB, the job with the least attained service gets the proces-

sor to itself. If several jobs all have the least attained/iser
they time-share the processor W&. This is a practical policy,

since a job’s age is always known, although its size may not be

known. This policy improves upoRS with respect to mean re-

THEOREM 3.3. Under FB scheduling there is some job size
such that for alke > y, E[S(z)]"” > 1/(1— p) under any service
distribution, for all p. Furthermore,E[S(z)]" 2 is not monotonic
inz.

PROOF The first part of the theorem follows immediately from
combining Lemma 3.4 and Lemma 3.6.

For the second part, we show thatS(z)]"? is monotonically
increasing for smalk, but decreasing a8 — oco. We start by
differentiating response time:

d rp_ 2AF(x)z [) tF(t)dt
TEE[T(T)] = A= p)?
2222 F(x) x
(1=pz)*> 1=pa

which gives us

oL BT ()] - BT (@) ©

AN’ F(z)x [tF(t)dt
(1-pa)?

N 2\a’F(z) A [fy tF(t)dt
(L —pa)? (1 —pa)?
Recall from Equation 2 that the above gives us the sign of
= E[S(x)]"".
There are two terms in Equation 3. The first term is clearly pos
itive. Notice that forz such thatF'(z) > ; we have:

oL BT (@)™ - B[T@)]""

> ﬁ <2x2f(z) - %ﬁ) >0

which shows that?Z[S(z)]F® is monotonically increasing for:

sponse time and mean slowdown when the job size distribution sych that#'(z) < 8

has decreasing failure rate [20] and closely approximdtesop-
timal policy, Shortest-Remaining-Processing-Time, urtistribu-
tions with regularly varying tails [3]. We have [10]:

A S tF(t)dt x

B = S+

wherep, & AfS F(t)dt.

Given the bias thaEB provides for small jobs (since they are al-
ways young), it is natural to ask about the performance ofaige
jobs. Thus, understanding the growth of slowdown as a fanaf
the job sizer is important. The following Lemma will be useful in
evaluatingFB's performance.

LEMMA 3.6. Forall z andp, E[T(z)]"5/" < E[T(z)]"".
PROOF. The proofis simply algebraic.

PSIF A ST f(t)dt T
FIE@) ::2£—igv =)
< AE[X2] T
= 2(1—p(2))* 1-p(z)
< %)\E[XZQ]ﬁ-z(l—pz)
- (1= pa)?
= E[T(x)""

We now prove that the expected slowdown convergdy td —
p) from above ag — oc. First, we know that
lim, 00 E[S(2)]"? = 1/(1 — p) [9]. Next, Equation 3 gives
us the sign ofL E[S(z)]“®. As in the proof of Lemma 3.4, for
any distribution with finite second moment, we know thgt:) =
o(z~?). Using this observation and the fact that — p asz —
00,

—A\E[X?
2(1 - p)?

Thus, there exists some job sizg such that for allz > =z,
E[S(x)]" " is monotonically decreasing in [

lim x%E[T(x)]FB - E[T(2)]"" =

T — 00

<0

The proof of this theorem shows us that all job sizes grehter t
a certain size have higher mean response time Urigléhan under
PS. Counter-intuitively however, the job that performs therstas
not the largest job. Thus, the intuition that by helping thal jobs
FB must hurt the biggest jobs is not entirely true.

Interestingly, this theorem is counter to the common pgdira
of FB in the literature. When investigating[S(z)]"”?, previous
literature has used percentile plots such as Figure 3(kghwiide
the behavior of the largest one percent of the jobs [12]. Wiken
look at the same plots as a function of job size, such as Figure
3(a), the presence of a hump becomes evident. In fact, evasr un
bounded distributions, this hump seems to exist regardietise
bound placed on:.

25 25

20 20
15
ES(x)]
10

15

ES(x)]
10

/

0246X8101214

0
0 02 04 06 08 1
F{x]

Figure 3: Plots (a) and (b) show the growth aE[S(x)]"”? for

p =.9. In both cases the service distribution is taken to be Expo-
nential with mean 1. The horizontal line shows fair perfornnae,
thus whenE[S(z)]¥®? is above this line FB is treating a job size
unfairly. Note that job sizes as low as = 5 are already in the
99.9 percentile of the job size distribution.

3.3.1 Who is treated unfairly?

Having shown that some job sizes are treated unfairly urRBer
scheduling, it is next interesting to understand exactlyctvijiob
sizes are seeing poor performance. The following theorawegla
lower bound on the size of jobs that can be treated unfairly.

THEOREM 3.4. For x such thatp, <1 —+/1 —p,
E[T(2)]"® < 1/(1 - p)

PrROOF The proof will proceed by simply manipulating
E[T(x)])"".

A [“tF(t)d z
E[T ()" = (flf pit))f e
Az [F(t)dt z
- (T=pe)? 1= pas
_ Pa s(l=ps) _ =
(1=p2)? (I—p2)? (1—pz)?

Letting p. < 1 — /T — p we complete the proof of the theo-
rem. O

It is important to notice that ag increases, so does the lower
bound1 — /T —p on p,. In fact, this bound converges to 1 as
p — 1, which signifies that the size of the smallest job that might
be treated unfairly is increasing unboundedlypascreases. Inter-
estingly, this work also provides bounds on the job sizesrtiight
be treated unfairly undé?SJF due to Lemma 3.6.

3.3.2 Intuition for non-monotonicity

The fact thatFB and PSJF have non-monotonic slowdown is
somewhat surprising. Below we provide an intuitive exptama
for this phenomenon.

For small jobs, it is clear th&B andPSJF provide preferential
treatment. Thus it is believable that the slowdown shoutdease
monotonically as job size increases.

Next consider a somewhat large jobof sizex, where this job
is large enough that with high probability it is the largext jn any
busy period in which it appears. UndeB andPSJF, job z will
complete only at the end of the busy period, since it is thgelstr
job in the busy period. Observe that jotwill also only complete
at the end of its busy period undeRPT, since all jobs complete
at the end of the busy period undeRPT. Thus the performance
of job = underFB andPSJF may be approximated by the perfor-
mance of jobr underLRPT. Next recall from Lemma 3.2, that the

60
50
40
E[S(x)]130
20
10

50
40
LRPT 30 LRPT
20

10 PSJF

6 8 10 12 14 0 2 4 6 8 10 12 14
X X

Figure 4: Plot (a) showsE[S(z)]“*F" (above) andE[S(z)]"?
(below). Plot (b) shows2[S(z)]*FT (above) andE[S(x)])F 7 F
(below). In both casep = .9 and the service distribution is taken
to be Exponential with mean 1. Notice that the expected slow-
down for a job of sizer under both FB and PSJF quickly con-
verges to the expected slowdownzotinder LRPT.

expected slowdown of jolb underLRPT converges monotonically
from above to1/(1 — p) asz — oo. Thus it follows that the
expected slowdown of jolr underFB and PSJF also converges
monotonically from above ta/(1 — p) asz — oo. Further, it
is natural thalLRPT has a monotonically decreasing tail since the
asymptotic behavior dfRPT is the same as the asymptotic behav-
ior of a busy period.

Figure 4(a) shows th&B does in fact converge in performance
to LRPT for large job sizes. Figure 4(b) shows the same8d F.

3.4 Age based policies

FB scheduling is one example of an age based policy (i.e. poli-
cies where a job’s priority is some bijection of its curregea Age
based policies are interesting because they include mabsichy
policies where, in order to minimize mean response time ami ¢
the unfairness seen by large jobs, both sufficiently old gitbvery
young jobs receive preferential treatment.

Observe that undefB, priority is strictly decreasingwvith age.
Thus, a new arrival will run alone until it achieves the agepf the
youngest job in the system; and then those jobs ofsagél time-
share. This timesharing is caused by the fact that if one tiatiss
to run, its priority will drop, causing a different job to inediately
run, and so on. In the case of a policy where prioritgtisctly in-
creasingwith age, a new arrival always has the lowest priority and
can't run until the system is idle.

More generally one can imagine a set of ages whose priorities
are the lowest in their neighborhood. Suppose @geepresents
such a local minimum. Jobs with agéwill accumulate, and once
one such job begins to run that job will continue running luiti
hits a lower priority age. Thus, the behavior of age-basditipe
can be quite varied. In our analyses below we will assumetitet
between two jobs of the same age are broken in favor of theéhpth t
arrived first.

THEOREM 3.5. Age based policies are Always Unfair.

The remainder of this section will prove this theorem using a
method similar to the method used in Section 3.2. We break the
analysis into two cases: (1) the case when there exists a $iaid
job that has the lowest priority and (2) when there is no fisited
job with the lowest priority. We begin with case (1).

LEMMA 3.7. Any age based polick where there is a finite age
C that receives the lowest priority is Always Unfair.

PrROOF. We will show thatP must be unfair to a job of siz8™*,
whereC™ is infinitesimally larger tharg.

First notice that when a job of siZ8* arrives, all the work in
the system can be guaranteed to be completed béforéeaves.
Further, all arriving jobs of size will have min{z, C'’} work com-
pleted on them befor€™ leaves the system. Thus we can view
this as a busy period and derive:

AE[X?] |
+C
BIEh)” = A
B AE[X?) ct
21— p)(1—pc) 1—pc

Now, notice thatZ[T(CT)]” > C*/(1 — p) when
A ‘
EE[XZ] >Ct (p—pc)

or equivalently

AE[X7]
1— 2 s -
(1-p)+ 50+ > 1 rc

Since(1 — p) > (1 — pc), the above condition is met for all finite
c. O

We now move to case (2).

LEMMA 3.8. Any age based policy where no finite job size has
the lowest priority is Always Unfair.

The proof of this final lemma follows from Theorem 3.3 and an
argument symmetric to the proof of Lemma 3.5.

4. SOMETIMES UNFAIR

We now move to the class of Sometimes Unfair policies — poli-
cies that for some treat all job sizes fairly, but for othes treat
some job size unfairly. In Section 4.1 we return to non-pretara
policies and illustrate that when the service distribusets a non-
zero lower bound on the smallest job size, non-preemptilieips
can avoid being Always Unfair by making use of job sizes, but
cannot attain the Always Fair class. In Section 4.2 we buil -
vious work in [2] to show that the Shortest-Remaining-Pssaey-
Time (SRPT) policy is Sometimes Unfair (under both bounded and
unbounded distributions). Specifically we show that: oK %
E[S(z)]**FT is monotonically increasing im for all z and is al-
ways less than or equal iy (1 — p). However, forp > peris,
we see non-monotonic behaviak[S(x)]*#FT is monotonically
increasing inz for all z such thatp(z) < 1 but is monotonically
decreasing in: for all = greater than somey. We also contrast the
behavior ofSRPT under bounded versus unbounded service distri-
butions. More generally, in Section 4.3 we analyze the fldss
of remaining size based policies and show that any remagizey
based policy is either Sometimes Unfair or Always Unfair.

4.1 Non-preemptive, size-Based Policies

This section completes the analysis of non-preemptiveciesli
begun in Section 3.1. Itis based on the observation thagittis a
lower bound on the smallest job size in the service distidioythen
it is possible for a non-preemptive policy to avoid being Ais
Unfair.

THEOREM 4.1. Any non-preemptive, size-based polieys ei-
ther Sometimes Unfair or Always Unfair.

PROOF Recall thalim, . E[S(z)]9 = 1 for all
non-preemptive policie§, by Theorem 4 from [9]. Thus, we can

apply Lemma 2.1 to conclude that a non-preemptive pafiayan-
not attain Always Fair. ThusP (being a non-preemptive policy)
must be either Always Unfair or Sometimes Unfair.

Observe there are examples of size based, non-preemptive po
cies in each of the two classes. For instance, it can easshéen
that the Longest-Job-First. §F) policy is Always Unfair. How-
ever, Shortest-Job-Firs8JF) is only Sometimes Unfair — that is,
there exist service distributions and loads such BJst(z)]°7F <
1/(1 — p) for all z. One example of such a distribution and load is
(X —2) ~Ezp(l)withp=0.2. O

4.2 SRPT

Under theSRPT policy, at every moment of time, the server is
processing the job with the shortest remaining procesgimg fThe
SRPT policy is well-known to be optimal for minimizing mean re-
sponse time [14]. The mean response time for a job of sizeas
follows [15]:

2y ft)dt + 32°F ()

BIr@P = (1 p@)?
v dt
*./0 1= p(0)
A [tE(t)dt Toodt
1—p(@))? +/0 1= (1)

def

wherep(z) = X [tf(t)dt.

THEOREM 4.2. For z such thatp(z) < 1, E[S(z)]°""" is
monotonically increasing im.

PROOF. Begin by defining

ma(z) & /0 210 =2/: tF(t)dt — 22°F (z)

Then we can derive
d

- %E[T($)}SRPT
W@ [FWd | X F()
1= p(a))? 0—p@)” ' T=p(@)

which gives us

v BT E)TT - BT (@)

B (2)\2f(a?)a?2 s tf(t)dt)

1= p(a))?
L 2a"F@) Mg iF@r
(1=p()* (1 -p(2))?

T v dt
* (1 ~ o) ‘/0 1,,)@)
2N* f(x)x® [tF(t)dt
(1 —p(x))?

(| =)

Recall that this expression provides us with the sign of gréevd-
tive of slowdown. There are 3 terms in the above expressitve. T
first of these terms is clearly positive. The third of thegenteis

also clearly positive. We will complete the proof by showthat
the third term is of larger magnitude than the second term.
To obtain a bound on the third term, we can quickly show that

T roodt
1—p(x) _/0 1—p(t)
_ [T A—p®)— (A px))
- [S Eia = @
1 x
> m/g p(z) — p(t)dt
To further specify this bound we can compute
/I p(t)dt = / / s)dsdt
= / / s)dtds
= '/0. sf(s)(z — s)ds
= pla)z — Ama(z) 5)

Finally, putting all three terms back together we see thatrwh
p(z) < 3,

d RPT
- EE[T(x)]S -

2X* f(z)x” [tF(t)dt
(1—p(2))?

“(m [)

=) (2(1A T;((?»?) * (1A TZ@))

E[T(m)]SRPT

(6)

\Y%

O

COROLLARY 4.1. If p < 1, E[S(z)]°#"" is monotonically

increasing for allz. FurthermoreE[S(z)]5#F" < 1/(1 — p) for
all x.

PrROOF This follows immediately from the above theorem and
by recalling the following result: for any work conservinchedul-
ing policy P, lim, oo E[S(x)]” < 1/(1 —p)[9]. O

The fact thatE[S(z)]*#F" < 1/(1 — p) for all z whenp <
l was first proven in [2] using a different technique that did no
descrlbe the behavior @f[S(x)]**F'T as a function of increasing
Z.

The previous theorem showed monotonically increasing -slow
down for SRPT under low load. We now show that if load is suffi-
ciently high, a very different behavior occurs.

THEOREM 4.3. There exists @.i: < 1 such that for allp >
perit, E[S(z)]°FFT has monotonically decreasing slowdown for
x > o, for somez,. Further, forp > pcrie, for all z > zo,
E[S(z)]*#*" > 1/(1 — p) under any unbounded service distri-
bution.

Earlier work (see Theorem 8 of [2]) showed that fdo@unded
job size distribution the largest job size has the property that

E[S(p)]°*PT > 1/(1 — p). The above theorem extends this re-
sult to unbounded job size distributions by utilizing maatity.
The monotonicity result above is somewhat surprising. Orghtn
assume that the largest jobs are the ones receiving the mi@st u
treatment undeBRPT. This is in fact the case fdroundedob size
distributions, however it is not true famboundedob size distri-
butions.

PrROOF The proof for the unbounded case is somewhat tech-
nical, but will follow a similar method to the previous prodiVe
will show that asz — oo the derivative of expected slowdown
approaches zero from below.

As in Equation 2, the main section of the proof will again look
atz - L E[T(x)]°*" — E[T(2)]°#"". To evaluate the above
expression, we need to evaluate Equation 4. Because eugluat
the integral in this expression is difficult, we apply the Ma#lue
Theorem, which tells us that there exists,ac [0, =] such that

— z)/ p(t

- (1- p(.‘))(l — plea)) /0 p(x) — p(t)dt
A ()
(1= p(2))(1 = plea))
Thus, ase — oo, we apply Equation 6 and the above to obtain:

. diE[T(z)]SRPT B

2\ f(z)2® [P tF(t)dt B 3ma(x)
(1 *p(r))3 (1 —p(z))?

E[T(m)]SRPT

Ama(z)
TN = alen))
3EIX7 AE[X?]
(=02 " T=p(—plea))

So, the derivative of slowdown converges from below whes ithi
less than zero, which occurs when

1-ples) > 2—2p
: 1+ p(coc)
or equivalentlyp > —

To complete the proof, we need to boup(ts). By showing
that p(coo) < 1 we illustrate ap.,;: such that whem > pcrit,
E[S(x)]**FT will have a monotonically decreasing tail.

To characterize(c,) for x > 0 observe that

[o s < [FED=E D

1 /ﬂ”
< ——— [plz)—p(t)at
1= p(x) Jo
and, equivalently,
z p(z)—p(t)
1 < fO pl p(;:‘) dt 1
N tydt — 1—p(x)
So,c, satisfies
1 fw p(lw) (p()f)dt
_ Jo p(t
T—plea) — [op t)dt
[0 T t)dt
plez) = 1-— 7
E=r
fo p(z) — p(t)dt
pleso) = 1 lim ooy f‘(”dt

0 1-—p(t)

(a) 2
15 1.95
12.5 19
10
1.85
E[S(x)] 7.5 L8
5 175
2.5 17
; ,
024680121 1.65

0246X8101214

(c) (d)

2|
10
1.8
8
1.6
Es(x)] 6
4 1.4
2 1.2
0 1
0 02 04 06 08 1 0 02 04 06 08 1
Fx] F{x]

Figure 5: Plots (a) and (c) show the growth ofZ[S(z)]#""
for p = .9, while (b) and (d) showE[S(x)]°#”T whenp = .5.

In both cases the service distribution is taken to be Expotieh
with mean 1. The horizontal line shows fair performance, thu
when E[S(z)]°#"" is above this line SRPT is treating a job size
unfairly.

J§ p(z)—p(t)dt
I ﬂ(iwl;(tl()t) At
remainder of the proof bounds this value away from zero, Wwhic
proves the existence of@&,;;. Because the remainder of the proof

is algebraic, we leave it in Appendix A.[]

Thus, p(cxs) < 1 whenlim, o > 0. The

The existence of thig:g size beyond whichE[S(z)]**FT is
monotonically decreasing has gone unnoticed by previaeareh.
The reason is that percentile plots are typically used whening
expected slowdown. As seen in Figure 5, because the hump oc-
curs around the 99th percentile it is hidden when lookinghat t
percentile plots in Figure 5 (c) and (d). Viewing those sanotsp
as a function of job size, such as in Figure 5 (a) and (b), fsvea
the existence of a hump under high load. Note that the pedheof t
hump occurs far from the largest job size.

4.2.1 Who is treated unfairly?

Having seen thaBRPT is Sometimes Unfair, it is interesting to
consider which job sizes are being treated fairly/unfaiflize fol-
lowing theorem shows that asncreases, the number of jobs being
treated fairly also increases.

THEOREM 4.4. For z such thatp(z) < max{1 —/T—p, 3},
E[T(z)]5%"" < 1/(1 = p).

The proof of Theorem 4.4 follows immediately from Theorem
3.4, Theorem 4.2, and the following lemma, which allows us to
bound the performance &RPT by that undeFB.

LEMMA 4.1. Forall z andp, E[T(z)]°%"" < E[T()]"®.

PROOF. The proof is simply algebraic

z(1— pa) + $AE[X.7)

FB
E[T ()] TEar
x A (5 w2 fw)dy + 27 ()
RS (1 —pa)?
N x %A(o ny(y)dy-FzZF(x))
T l-p(2) (1—p(x))?
- z AT VP (y)dy + $2a”F(a)
1 —p(x) (1= p(x))?
> E[T(z)]SRPT
O
4.2.2 Intuition for dependence on load

Similarly toFB, notice thalSRPT exhibits non-monotonicity un-
der high load. Unlike=B however,SRPT does not have this non-
monotonicity at all loads. Intuitively, the existence ofampcan
be explained in the same way as it was @8 and PSJF in Sec-
tion 3.3.2. Under high load, the large jobs in 8RPT system do
not have the opportunity to increase their priority by redgdheir
remaining size. Thus, the largest job to arrive in a busyoglewill
likely be the last to leave. This leads to unfairness.

However,SRPT does not always treat large jobs unfairly because
during low load, the large job is often alone in its busy period,
which provides it the opportunity to increase its priority iare-
ceives service. Consequently, the large job will sometinwshe
the last job to finish in the busy period.

4.3 Remaining size based policies

SRPT is one example of a remaining size based policy. In this
section we will examine the entire class of remaining sizeeda
policies (i.e. policies where a job’s priority is some bijea of
its remaining size). The class of remaining size based ipslio-
cludes many hybrid policies; for example policies wheregrider
to minimize mean response time and curb the unfairness seen b
large jobs, both jobs with very small and sufficiently largeponse
times are given preferential treatment.

The class of all remaining size based policies is quite broad
the same way as for age based policies, there are many mossibl
mappings between priority and remaining size, allowingnfiortti-
ple local minima in priorities and many interesting behasioNe
will again choose to break ties among jobs in the system \hith t
same priority in favor of the job that arrived first.

Although SRPT is in this class and is Sometimes Unfair, not all
such policies are Sometimes Unfair. For instance LfRBT policy
is Always Unfair as shown in Lemma 3.2.

THEOREM 4.5. Allremaining size based policies are either Some-
times Unfair or Always Unfair.

The remainder of this section will prove this theorem usimg t
same method that was used in Section 3.4 and Section 3.2. We
break the analysis into two cases: (1) the case when thests exi
finite sized job that has the lowest priority and (2) whenéhismo
finite sized job with the lowest priority.

LEMMA 4.2. Any remaining size based polidy with a finite
remaining size~ having the lowest priority is either Always Unfair
or Sometimes Unfair.

PrRooOF We will begin by deriving the expected performance
seen by a job of original siz€, entering the system undé&r. No-
tice that all work initially in the system will be completeefore

C begins to be worked on. In addition, all arrivals during tivise
that have size less thati will be completed before” leaves the
system. However, ono€ starts being worked on and has remain-
ing sizet, the only arrivals that are guaranteed to finish befdre
leaves the system are those arrivals of size less tharhus, we
can view this as a busy period and derive

AE[X?) ¢ at
POV 2 =i+,

We will now show thatC will be treated unfairly under high
enough load. Using a similar derivation to that shown in Equa
4 and 5, we can see thaT(C)]” > 1/(1 — p) when

AE[X?] Clp—p(C) + dms(a)
2(1-p)(1 = p(C)) 1—p
or, equivalently,
AE[X7?]
2(1-p(0))
or, equivalently,

—Am2(C) > C(p - p(C))

AB[X?]

-+ (55

ol) > (1
Since(1 —p) > (1 —

1-p(C) C
p(C)), we immediately see thdt cannot

be fair if p(C) > 5. However, wherC' is the upper bound of a

bounded distribution ang = ; the bound does not hold. In this

- p(C))-

and what does exist is isolated to a couple particular gsicT his
paper is the first to approach the question of unfairnessaath
scheduling policies. Our aim in providing this taxonomyfiist, to
allow researchers to judge the unfairness of existing @diand,
second, to provide heuristics for the design of new scheduioli-
cies.

In our attempt to understand unfairness, we find many s@gris
Perhaps the biggest surprise is that for quite a few commdn po
cies, unfairness is a function of load. That is, at moderatew
loads, these policies are fair to all jobs. Yet at higher fpdbese
policies become unfair. This leads us to crahreeclassifications
of scheduling policies: Always Unfair, Sometimes UnfamdaAl-
ways Fair (shown in Figure 1). Rather than classifying iidiial
policies, we group policies into different types: size lthsage
based, remaining size based, and others. We prove thaealinm-
tive size based and age based policies are Always Unfaithatit
remaining size based policies and non-preemptive polaiedi-
vided between two classifications. The result that all preem
size based policies are Always Unfair may seem surprisirigfi
of the fact that one could choose to assign high priority tthbo
small jobs and sulfficiently large jobs in an attempt to curfainn
ness.

With respect to designing scheduling policies, we find timatax
high load, almost all scheduling policies are unfair. Hograynder
low load one has the opportunity to make a policy fair by somes
increasing the priority of large jobs. For examf&JF andSRPT
have very similar behavior and delay characteristics, éstlt in

case, we need to look at the system under a higher load. We cancompletely different unfairness classifications beca8ReT al-

raiseX so thatp = p(C) > +, in which case the bound holds.
Whenp(C) < 3 we need to do a more detailed analysis. Since

p(C) < % we can raise\ so thatp = 2p(C). Notice that if this is

not possible, it means that by raisingve madep(C) > 1, which

we have already dealt with.

Whenp = 2p(C), E[X] = 2m,(C) < 2 [tf(t)dt. Fur-
ther, thistells us thab[X] — ml() = ()butalsoE[X]
my(C) = [tf(t)dt. Thus, [tf(t)dt = [tf(t)dt. Using

this fact we can notice that

E[X?] :/oc 2 f(t)dt = /Otzf(t)dt+/mt2f(t)dt
> ma(C) + Oma(C) 2 2ms(C)

Thus, we can see that

AE[X?] Ama(C)
“*”*+<uX1—mon" c)
= “*”+<cu—mm>* c)

> (1-

p(C))
holds for all finiteC. [

LEMMA 4.3. Any remaining size based poli@y where an in-
finitely sized job has the lowest priority is either Somesirdafair
or Always Unfair.

The proof of this final lemma follows from Theorem 4.3 and an
argument symmetric to the proof of Lemma 3.5.

5. CONCLUSION

The goal of this paper is to classify scheduling policies in a
M/GI/1 in terms of their unfairness. Very little analyticptior
work exists on understanding the unfairness of schedulitigips,

lows large jobs to increase their priority, wher@&&] F does not.

A variety of techniques are used in order to classify posieidith
respect to fairness. For classifying individual policieis useful to
try to prove monotonicity properties for the policy over aterval
of job sizes. It then suffices to consider the performancenef t
policy on just one endpoint of the interval. In classifyingraup
of policies, it helps to decompose the group into two casks: t
case where the lowest priority job has a finite size/age, laadase
where the lowest priority job has infinite size/age. In thtelecase,
we find that the fairness properties for the entire group ditigs
reduces to looking at one individual policy.

Since so many policies are Always Unfair, and so many others
are Sometimes Unfair, it is interesting to agkois being treated
unfairly. Initially it seems that unfairness is an increasfunction
of job size, with the largest job being treated the most ulyfaT his
is in fact the case for most bounded job size distributiorsvéler,
for unbounded job size distributions, we find this usually tacbe
the case. Instead, unfairness is monotonically increasitigjob
size up to a particular job size; and later is monotonicatigrdas-
ing with job size. Thus the job being treated most unfairly*
of the hump”) is far from the largest. Interestingly, thisuthp”
changes as a function of load.

The above findings show that we are just beginning to undedsta
unfairness in scheduling policies. This is a fertile arethwmany
more properties yet to be uncovered.

6. REFERENCES

[1] Baily, Foster, Hoang, Jette, Klingner, Kramer, Macalus
Messina, Nielsen, Reed, Rudolph, Smith, Tomkins, Towns,
and Vildibill. Valuation of ultra-scale computing systems
White Paper, 1999.

N. Bansal and M. Harchol-Balter. Analysis of SRPT
scheduling: Investigating unfairness.RPmoceedings of ACM
Sigmetrics Conference on Measurement and Modeling of
Computer System2001.

(2]

[3] N. Bansal and A. Wierman. Competitive analysis of M/GI/1
queueing policies. Technical Report CMU-CS-02-201,
Carnegie Mellon University, December 2002.

M. Bender, S. Chakrabarti, and S. Muthukrishnan. Flog an

stretch metrics for scheduling continous job streams. In

Proceedings of the 9th Annual ACM-SIAM Symposium on

Discrete Algorithms1998.

[5] A. B. Downey. A parallel workload model and its

implications for processor allocation. Rroceedings of High

Performance Distributed Computingages 112-123, August

1997.

E. Friedman and S. Henderson. Fairness and efficiency in

web server protocols. IRroceedings of ACM Sigmetrics

Conference on Measurement and Modeling of Computer

Systems2003.

M. Harchol-Balter and A. Downey. Exploiting process

lifetime distributions for dynamic load balancirgCM

Transactions on Computer Systerh§(3), 1997.

M. Harchol-Balter, B. Schroeder, N. Bansal, and

M. Agrawal. Implementation of SRPT scheduling in web

serversACM Transactions on Computer Syste2iy2):To

appear, May 2003.

M. Harchol-Balter, K. Sigman, and A. Wierman. Asymptoti

convergence of scheduling policies with respect to

slowdown.Performance Evaluatigqm9(1-4):241-256, 2002.

[10] L. Kleinrock. Queueing Systemgolume Il. Computer

Applications. John Wiley & Sons, 1976.

R. Perera. The variance of delay time in queueing system

M/G/1 with optimal strategy SRPArchiv fur Elektronik

und Uebertragungstechnid7:110-114, 1993.

I. Rai, G. Urvoy-Keller, and E. Biersack. Analysis of ISA

scheduling for job size distributions with high varianae. |

Proceedings of ACM Sigmetrics Conference on Measurement

and Modeling of Computer Syster2903.

J. Roberts and L. Massoulie. Bandwidth sharing and

admission control for elastic traffic. ITC Specialist

Seminay 1998.

[14] L. E. Schrage. A proof of the optimality of the shortest
remaining processing time disciplin®@perations Research
16:678-690, 1968.

[15] L. E. Schrage and L. W. Miller. The queue M/G/1 with the
shortest remaining processing time discipli®gperations
Research14:670-684, 1966.

[16] F. Schreiber. Properties and applications of the ogltim
queueing strategy SRPT - a survBychiv fur Elektronik und
Uebertragungstechnjld7:372—-378, 1993.

[17] A. Silberschatz and P. Galvi@perating System Concepts,
5th Edition John Wiley & Sons, 1998.

[18] W. Stallings.Operating Systems, 2nd Editidarentice Hall,
1995.

[19] A. TanenbaumModern Operating SystemBrentice Hall,
1992.

[20] A. Wierman, N. Bansal, and M. Harchol-Balter. A note
comparing response times in the M/GI/1/FB and M/GI/1/PS
gueuesOperations Research Letterfo appear, 2003.

[21] R. W. Wolff. Stochastic Modeling and the Theory of Queues
Prentice Hall, 1989.

[4]

[6]

[7]

(8]

9]

[11]

[12]

[13]

APPENDIX
A. SRPT IS SOMETIMES UNFAIR

We now complete the proof of Theorem 4.3 by showing that
Jg p(z)—p(t)dt >0

limg, oo
x plz)—p(t)
Tp() 9t

PROOF We continue by separating the integral in the denomi-
nator into three parts usingand s such thatp(r) = fp(z) and
p(s) = gp(z) for f < g € (0,1). Note that this is possible under
any non-constant service distribution.

IN

x

T R R Oy R pT Py

Working with each of the pieces, we can derive

A = / p(z) — plt)dt
= rp(a) —rp(s) + Ama(r)
= v - H)p(e) + Ama(r)
— (1= f)p+ Ama(r)asz = oo
B, = [o) = pityar
= (s=r)p(z) = [sp(s) — Ama(s) — rp(r) + Ama(r)]
= 8= g)p(e) — r(1 — Pp(e) + Ama(s) — Ama(r)
= s(1—g)p—r(l— f)p+ Ama(s) — Ama(r)asz — oo
e = [Tot) —pwyar
= (2—9)o(z) — zo(2) + Ama(x) + sp(s) — Ama(s)
= —s(1 —g)p(z) + Ama(z) — Ama(s)
- —s(1—g)p+)\E'[XQ] — Amz(s) asz — oo

Further, we can notice that

Ama(s) = ,\/Tth(t)dt+,\/s £ f(t)dt
2 Ama(s) +7(p(s) — p(r))
= Ama(s) +r(g9 — fp(z)
= Amo(s) +r(1 = flp(z) —r(1 - g)p(z)
= Ama(s)+r(1—flp—r(l —g)pasr — oo

Using this calculation in the formula fd8.., we see that as — co

B: > (s—1)(1-g)p(x)
- (s—n(-gp=e
and
B, < s(1—g)p(x)+ Ama(s)
= s(1=g)p+Ama(s) = v
Thus, forN(A,) > 4= andN(C,) > <=
N(A;)B > A,
N(C:)B > C.

CalculatingN (A) = lim, o N(A;) we see
r(1— o+ Ams(r)
(s—=r)(1—9g)p
r(1—f) Am(r)
(s=r)1-g) (s=r)1—g)p
and similarly forNV(C) = lim,_, o N(C,) we obtain

—s(1— g)p+ AB[X?] — Ama(s)

A%

N(Ax)

N@=) > (s—n-9p
So, it is sufficient to have
r(1-f) AB[X?]
Nd~) 2 =05 9 T Gona_op
N(Cw) > AE[X7] s

(s—r)(1-g)p s-r

We now have bounds on the pieces of the integral. So, putting
everything together we see that

[p = p(t)dt A+B+C
oo t

Joo el thgdt —=aA+ =mB+ 5C
S A+B+C
a 17¢11(T)N°O(A)B+ 1— p(s B+ OO(C)B
S B
=N (A)B + =B+ 7 N (C)B
_ 1

7775 Noo (4) + =55 + 755N (O)

def 1
Tl

The quantity; > 0 solong ass # r. [

To better understand Theorem 4.3 it is interesting to lockat
special case wher® ~ Exp(1). In this casef = % g = %
E[X?] =2,s= %, andr =~ 1 (s andr are very approximate). So,
we can calculate

2r 6AE[X?)

N(Ax) (s—r)+) ~ 38
2
N(Cw) > REXT_ s 4
(s—1) s—r
and
6 3
I > gN(A(,<J)+§+2N(Coo)z117.1

Theorem 4.3 then tells us that fpr> .99573, SRPT will not
have slowdown monotonicity under dizp(1) service distribu-
tion. Further, for thesp, SRPT is guaranteed to treat some job size
unfairly. Itis important to point out the looseness of thigihd. By
plotting the actual equation for expected time in systemeurash
Exp(1) distribution we find that the true critical value fpiin this
case is just under .7, much lower than the value obtainedtk
method in the previous proof.

