Modeling and Performance Analysis of BitTorrent-Like Peer-to-Peer Networks

Dongyu Qiu, R. Srikant

Department of Electrical and Computer Engineering and

Coordinated Science Lab
University of Illinois

Introduction

- Peer-to-peer networks:
 - Peers participate in an application level overlay network and operate as both servers and clients.
 - Scalable: the service burden is distributed to all participating peers.
- Applications: File sharing, distributed directory service, web cache, storage, and grid computation etc.
- ▶ P2P file sharing: Kazza, Gnuttella, eDonkey/Overnet, BitTorrent.
- In some segments of the Internet, P2P traffic accounts for 40% of the Internet traffic.

▶ Seed is a server that has the entire file

- Seed is a server that has the entire file
- ▶ File stored in many pieces of 256 KB each

- Seed is a server that has the entire file
- ▶ File stored in many pieces of 256 KB each
- A new peer starts downloading some pieces from the seed

- Seed is a server that has the entire file
- ▶ File stored in many pieces of 256 KB each
- A new peer starts downloading some pieces from the seed
- If there are many peers, each peer will have different parts of the file

- Seed is a server that has the entire file
- ▶ File stored in many pieces of 256 KB each
- A new peer starts downloading some pieces from the seed
- If there are many peers, each peer will have different parts of the file
- Key point: Peers download from each other

- Peer 5 joins the network
- downloads a .torrent file

- Peer 5 joins the network
- downloads a .torrent file
- connects to the tracker

- Peer 5 joins the network
- downloads a .torrent file
- connects to the tracker
- the tracker returns peer information

- Peer 5 joins the network
- downloads a .torrent file
- connects to the tracker
- the tracker returns peer information
- connects to other peers and begins downloading

▶ A peer which has the entire file is called a seed

- A peer which has the entire file is called a seed
- A peer that is not a seed is called a downloader

- A peer which has the entire file is called a seed
- A peer that is not a seed is called a downloader
- A downloader becomes a seed once it has the entire file

- A peer which has the entire file is called a seed
- A peer that is not a seed is called a downloader
- A downloader becomes a seed once it has the entire file
- Each peer uploads to five other peers who give it the best download rates

- A peer which has the entire file is called a seed
- A peer that is not a seed is called a downloader
- A downloader becomes a seed once it has the entire file
- Each peer uploads to five other peers who give it the best download rates
- ▶ Every 30 seconds, drops its connection to peer with the smallest download rate and picks a new one at random

Issues to Be Addressed

- Peer Evolution
- Scalability
- ▶ File Sharing Efficiency
- Incentive Mechanisms and its Effect.

 $\blacktriangleright x(t)$: number of downloaders, y(t): number of seeds

- $\blacktriangleright x(t)$: number of downloaders, y(t): number of seeds
- \triangleright λ : arrival rate of new requests

- $\blacktriangleright x(t)$: number of downloaders, y(t): number of seeds
- \triangleright λ : arrival rate of new requests
- \triangleright θ : the rate at which downloaders abort the download

- $\blacktriangleright x(t)$: number of downloaders, y(t): number of seeds
- λ : arrival rate of new requests
- \triangleright θ : the rate at which downloaders abort the download
- c : downloading bandwidth, μ : uploading bandwidth of a peer

- $\blacktriangleright x(t)$: number of downloaders, y(t): number of seeds
- λ : arrival rate of new requests
- \bullet : the rate at which downloaders abort the download
- c : downloading bandwidth, μ : uploading bandwidth of a peer
- $\triangleright \eta$: effectiveness parameter (Yang and de Veciana)

- $\blacktriangleright x(t)$: number of downloaders, y(t): number of seeds
- λ : arrival rate of new requests
- \bullet : the rate at which downloaders abort the download
- c : downloading bandwidth, μ : uploading bandwidth of a peer
- $\triangleright \eta$: effectiveness parameter (Yang and de Veciana)
- $ightharpoonup \gamma$: seed departure rate

A Simple Fluid Model

$$\frac{\mathrm{d}x}{\mathrm{d}t} = \lambda - \theta x(t) - \min\{cx(t), \mu(\eta x(t) + y(t))\},$$

$$\frac{\mathrm{d}y}{\mathrm{d}t} = \min\{cx(t), \mu(\eta x(t) + y(t))\} - \gamma y(t),$$

Comparison with download from a single server:

- Assume $\theta = 0, c = \infty$
- **Departure** rate of downloaders is μ , independent of x
- ▶ Need $\lambda < \mu$ for stability
- ▶ P2P is scalable, but single-server download is not

If $\frac{1}{c} \ge \frac{1}{\eta} (\frac{1}{\mu} - \frac{1}{\gamma})$, the downloading bandwidth is the constraint:

$$\bar{x} = \frac{\lambda}{c(1 + \frac{\theta}{c})}, \qquad \bar{y} = \frac{\lambda}{\gamma(1 + \frac{\theta}{c})}$$

If $\frac{1}{c} \ge \frac{1}{\eta} (\frac{1}{\mu} - \frac{1}{\gamma})$, the downloading bandwidth is the constraint:

$$\bar{x} = \frac{\lambda}{c(1 + \frac{\theta}{c})}, \qquad \bar{y} = \frac{\lambda}{\gamma(1 + \frac{\theta}{c})}$$

If $\frac{1}{c} \leq \frac{1}{\eta} (\frac{1}{\mu} - \frac{1}{\gamma})$, the uploading bandwidth is the constraint:

$$\bar{x} = \frac{\lambda}{\nu(1 + \frac{\theta}{\nu})}, \qquad \bar{y} = \frac{\lambda}{\gamma(1 + \frac{\theta}{\nu})},$$

where
$$\frac{1}{\nu} = \frac{1}{\eta} (\frac{1}{\mu} - \frac{1}{\gamma})$$
.

▶ Little's law: Average download time

$$T = \max\{\frac{1}{c}, \frac{1}{\eta}(\frac{1}{\mu} - \frac{1}{\gamma})\}.$$

Little's law: Average download time

$$T = \max\{\frac{1}{c}, \frac{1}{\eta}(\frac{1}{\mu} - \frac{1}{\gamma})\}.$$

Scalability: T is not a function of λ , the request arrival rate

Little's law: Average download time

$$T = \max\{\frac{1}{c}, \frac{1}{\eta}(\frac{1}{\mu} - \frac{1}{\gamma})\}.$$

- Scalability: T is not a function of λ , the request arrival rate
- Need for incentives: When the seed departure rate γ increases, T increases

Little's law: Average download time

$$T = \max\{\frac{1}{c}, \frac{1}{\eta}(\frac{1}{\mu} - \frac{1}{\gamma})\}.$$

- Scalability: T is not a function of λ , the request arrival rate
- Need for incentives: When the seed departure rate γ increases, T increases
- Initially when the downloading rate c increases, T decreases. However, beyond a point the uploading rate becomes the bottleneck

Little's law: Average download time

$$T = \max\{\frac{1}{c}, \frac{1}{\eta}(\frac{1}{\mu} - \frac{1}{\gamma})\}.$$

- Scalability: T is not a function of λ , the request arrival rate
- Need for incentives: When the seed departure rate γ increases, T increases
- Initially when the downloading rate c increases, T decreases. However, beyond a point the uploading rate becomes the bottleneck
- Prior work assumes $c=\infty$ (motivated by the asymmetry in cable modem and DSL rates): doesn't capture the above effect

Effectiveness of File Sharing

▶ For a given downloader *i*, we assume that it is connected to *k* other downloaders.

$$\eta = 1 - \mathsf{P} \left\{ \begin{array}{c} \text{downloader } i \text{ has no piece that} \\ \text{the connected peers need} \end{array} \right\}.$$

We assume that the piece distributions between different peers are independent and identical. Then

$$\eta = 1 - \mathsf{P} \left\{ \begin{array}{l} \text{downloader } j \text{ needs no} \\ \text{piece from downloader } i \end{array} \right\}^k,$$

where j is a downloader connected to i.

For each downloader, we assume that the number of pieces it has is uniformly distributed in $\{0, \dots, N-1\}$, where N is the number of pieces of the served file.

Effectiveness of File Sharing

▶ Let n_i be number of pieces at downloader i.

$$\mathsf{P} \left\{ \begin{array}{l} \text{downloader } j \text{ needs no} \\ \text{piece from downloader } i \end{array} \right\} \\
= \mathsf{P} \left\{ j \text{ has all pieces of downloader } i \right\} \\
= \sum_{n_j=1}^{N-1} \sum_{n_i=0}^{n_j} \frac{1}{N^2} \mathsf{P} \left\{ j \text{ has all pieces of } i | n_i, n_j \right\} \\
= \sum_{n_j=1}^{N-1} \sum_{n_i=0}^{n_j} \frac{1}{N^2} \frac{\binom{N-n_i}{n_j-n_i}}{\binom{N}{n_j}} \\
= \frac{N+1}{N^2} \sum_{m=2}^{N} \frac{1}{m} \approx \frac{\log N}{N}$$

Effectiveness of File Sharing

 $\eta \approx 1 - \left(\frac{\log N}{N}\right)^k$

- In BitTorrent, each piece is typically 256KB. For a file that is a few hundreds of megabytes in size, N is of the order of several hundreds.
- ▶ Even if k = 1, η is very close to one.
- When k increases, η also increases but very slowly and the network performance increases slowly. Hence, when λ increases, the network performance increases but very slowly.
- When k = 0, $\eta = 0$.

Stability

$$\mathbf{A}_1 = \begin{bmatrix} -(\mu\eta + \theta) & -\mu \\ \mu\eta & -(\gamma - \mu) \end{bmatrix}.$$

$$\mathbf{A}_2 = \begin{bmatrix} -(\theta+c) & 0 \\ c & -\gamma \end{bmatrix}$$

- ▶ A_1 is a stable matrix, but A_2 may not be a stable matrix
- However, the system is globally stable

Characterizing Variability

- How does the number of seeds and downloaders vary around the numbers predicted by the deterministic model?
- Peers arrive according to a Poisson process.
- Download times are exponentially distributed

$$x(t) + \sqrt{\lambda}\hat{x}(t), \quad y(t) + \sqrt{\lambda}\hat{y}(t),$$

respectively, where $\hat{\mathbf{X}} = (\hat{x}, \hat{y})^T$ are described by an Ornstein-Uhlenbeck process:

$$d\hat{\mathbf{X}}(t) = \mathbf{A}\hat{\mathbf{X}}(t)dt + \mathbf{B}d\mathbf{W}(t),$$

 $\mathbf{A} = \mathbf{A}_1 \text{ or } \mathbf{A}_2$

Characterizing Variability

$$\mathbf{B} = \begin{bmatrix} 1 & -\sqrt{\rho} & -\sqrt{(1-\rho)} & 0 \\ 0 & 0 & \sqrt{(1-\rho)} & -\sqrt{(1-\rho)} \end{bmatrix},$$

where $\rho = T\theta/(T\theta + 1)$.

In steady-state, the number of seeds and downloaders is Gaussian with covariance Σ :

$$\mathbf{A}\mathbf{\Sigma} + \mathbf{\Sigma}\mathbf{A}^T + \mathbf{B}\mathbf{B}^T = 0.$$

Figure 1: The evolution of the number of seeds as a function of time ($\mu=0.00125,\,c=0.002,\,\theta=0.001,\,\gamma=0.005$)

Figure 2: The evolution of the number of downloaders as a function of time ($\mu=0.00125,\,c=0.002,\,\theta=0.001,\,\gamma=0.005$)

Figure 3: Histogram of the variation of the number of seeds around the fluid model ($\mu = 0.00125$, c = 0.002, $\theta = 0.001$, $\gamma = 0.005$)

Figure 4: Histogram of the variation of the number of downloaders around the fluid model ($\mu = 0.00125$, c = 0.002, $\theta = 0.001$, $\gamma = 0.005$)

Experimental Result

Figure 5: The evolution of the number of seeds as a function of time (real trace)

Experimental Result

Figure 6: The evolution of the number of downloaders as a function of time (real trace)

Conclusions

- Presented a simple fluid model for BitTorrent-like networks
- Studied the steady-state network performance and stability
- Obtained insight into the effect of different parameters on network performance
- Not covered in this talk: the effect of the built-in incentive mechanism of BitTorrent on network performance and the effect of optimistic unchoking on free-riding