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Abstract

We propose a new particle filter that incorporates a model of costs when
generating particles. The approach is motivated by the observation that
the costs of accidentally not tracking hypotheses might be significant in
some areas of state space, and irrelevant in others. By incorporating a
cost model into particle filtering, states that are more critical to the system
performance are more likely to be tracked. Automatic calculation of the
cost model is implemented using an MDP value function calculation that
estimates the value of tracking a particular state. Experiments in two
mobile robot domains illustrate the appropriateness of the approach.

1 Introduction

In recent years, particle filters [?, ?, ?] have found widespread application in domains with
noisy sensors, such as computer vision and robotics [?, ?]. Particle filters are powerful
tools for Bayesian state estimation in non-linear systems. The key idea of particle filters is
to approximate a posterior distribution over unknown state variables by a set of particles,
drawn from this distribution.

This paper addresses a primary deficiency of particle filters: Particle filters are insensitive
to costs that might arise from the approximate nature of the particle representation. Their
only criterion for generating a particle is the posterior likelihood of a state.

To illustrate this point, consider the example of a Space Shuttle. Failures of the engine
system are extremely unlikely, even in the presence of evidence to the contrary. Should
we therefore not track the possibility of such failures, just because they are unlikely? No.
If failure to track such low-likelihood events may incur high costs—such as a mission
failure—these variables should be tracked even when their posterior probability is low.
This observation suggests that costs should be taken into consideration when generating
particles in the filtering process.

This paper proposes a particle filter that generates particles according to a distribution that
combines the posterior probability with a risk function. The risk function measures the
importance of a state location on future cumulative costs. We obtain this risk function via
an MDP that calculates the approximate future risk of decisions made in a particular state.
Experimental results in two robotic domains illustrate that our approach yields significantly
better results than a particle filter insensitive to costs.



2 The “Classical” Particle Filter

Particle filters are a popular means of estimating the state of partially observable control-
lable Markov chains [?], sometimes referred to as dynamical systems [?]. To do so, particle
filters require two types of information: data, and a probabilistic model of the system. The
data generally comes in two flavors: controls (e.g., robot motion commands) and measure-
ments (e.g., camera images). The measurement at time

�
will denoted ��� , and ��� denotes

the control asserted in the time interval � ���
	�����
. Thus, the data is given by

� ��� ��� � ��� ��������� ��� and � ��� ��� � ��� ��������� ���
Following common notation in the controls literature, we use the subscript � to refer to an
event at time

�
, and the superscript � to denote all events leading up to time

�
.

Particle filters, like any member of the family of Bayes filters such as Kalman filters and
HMMs, estimate the posterior distribution of the state of the dynamical system conditioned
on the data, ��������� � � � � �! . They do so via the following recursive formula

�������"� � � � � �  � # �����$���"� �%�  %& �������"� ��� � �%��'(�  �)������'��*� � ��'�� � � ��'(�  ,+ �%��'(� (1)

where # � is a normalization constant. To calculate this posterior, three probability distribu-
tions are required, which together are commonly referred as the probabilistic model of the
dynamical system: (1) A measurement model, �)�$�-�"� ���  , which describes the probability of
measuring � � when the system is in state � � . (2) A control model, ����� � � � � � � ��'(�  , which
characterizes the effect of controls � � on the system state by specifying the probability that
the system is in state ��� after executing control ��� in state �%��'(� . (3) An initial state distri-
bution, �)����.  , which specifies the user’s knowledge about the initial system state. See [?, ?]
for examples of such models in practical applications.

Eqn. 1 is easily derived under the common assumption that the system is Markov:

����� � � � � � � �  /10325436� # � �)�$� � � � � � � ��'�� � � �  �)��� � � � ��'�� � � �  7 098�:9;3<� # �%�)�$���"� ���  ���$�%��� � ��'(� � � �  � # � �)�$� � � � �  & �)��� � � � ��'�� � � � � � ��'��  ���$� ��'(� � � ��'(� � � �  ,+ � ��'��7 098�:9;3<� # �%�)�$���"� ���  %& �)������� ��� � �%��'(�  �)���%��'(��� � ��'�� � � ��'(�  =+ �%��'(� (2)

Notice that this filter, in the general form stated here, is commonly known as a Bayes filter.
Special versions of this filter includes the Kalman filter, the hidden Markov model, binary
filters, and of course particle filters.

In many applications, the key concern in implementing this probabilistic filter is the con-
tinuous nature of the states � , controls � , and measurements � . Even in discrete versions,
these spaces might be prohibitively large to compute the entire posterior.

The particle filter addresses these concerns by approximating the posterior using sets of
state samples (particles):> � � � �(? @BA� � @DC �FEHGHGHG E I (3)

The set
> � consists of J particles � ? @KA� , for some large number of J (e.g, J � 	*��L�L*L

). To-
gether, these particles approximates the posterior ����� � � � � � � �! . > � is calculated recursively.



Initially, at time
� � L

, the particles � ? @KA. are generated from the initial state distribution���$� .  . The
�
-th particle set

> � is then calculated recursively from
> ��'(� as follows:

1 set
> � � > 0 ���� ���

2 for � � 	
to J do

3 pick the � -th sample � ? �!A��'���� > ��'��
4 draw � ? �!A�
	 ���$� � � � � � � ? �!A��'��  
5 set � ? �!A� � �)�$� � � � ? �!A�  
6 add �$� ? �!A� � � ? �!A�� to

> 0 ����
7 endfor
8 for � � 	

to J do
9 draw � ? @BA� from

> 0 ���� with probability proportional to � ? @BA�
10 add � ? @BA� to

> �
11 endfor

Lines 2 through 7 generates a new set of particles that incorporates the control �(� . Lines 8
through 10 applies a technique known as resampling [?] to account for the measurement � � .
It is a well-known fact that (for large J ) the resulting weighted particles are asymptotically
distributed according to the desired posterior [?].

In recent years, researchers have actively developed various extensions of the basic particle
filter, capable of coping with degenerate situations that are often relevant in practice [?, ?,
?, ?]. However, the common aim of this rich body of literature is to generate samples from
the posterior �)������� � � � � �! . If different controls at different states infer drastically different
costs, generating samples according to the posterior runs the risk of not capturing important
events that warrant action. Overcoming this deficiency is the very aim of this paper.

3 Decision Theoretic Particle Filters

Decision theory is principally concerned with techniques for making an optimal decision
given a loss structure. If we let � ��� � �  be the expected future loss given the state � and the
action � , decision theory suggests we should choose our action according to the following
criteria:

argmin� &�� � ��� � �  ���$�  !+ � (4)

We can use the particles in a particle filter to monte-carlo integrate these integrals for the
purposes of decision making. Unfortunately, there is no guarantee that the integrals will
converge quickly. In fact, even if the particles were each drawn independently from the
state distribution (they are not - the particle positions are corellated) there would be no
guarantee of a quick convergence.

In monte-carlo integration, we are free to choose the distribution which we draw from
and then likelihood weight the results. What is the optimal distribution to draw from?
The optimal distribution is proportional the integrand � �$� � �  �)���  since the problem then
reduces to the monte carlo integration of the normalization constant—a process with zero
variance.

We can not accept the cost of a full decision theoretic approach so we must approximate.
In particular, we wish to maintain only one distribution over states. What should this distri-
bution be? In evaluation of the argmin � The quantity of interest is the difference between
the expected future loss of action � � and action � � . When this difference is large, it is more
important that the “right” decision be made. Let’s call the difference the “risk”, � ���  and, as



an efficiency approximation, force the risk to be dependent on only the state. We will first
show how to keep particles according to a distribution proportional to � �$�  �����  and then
provide a technique for automatically extracting this risk function from the instantanuous
future loss,

� �$� � �  . Our hope is that we reduce the variance in our estimates of the optimal
action and achieve superior performance. This hope will be born out by experiments.

3.1 Risk-Sensitive Sampling

Risk-sensitive sampling generates particles factoring in a risk function, � �$�  . Formally, all
we have to ask of a risk function � is that it be positive and finite almost everywhere. Given
such a risk function, decision theoretic particle filters generate samples that are distributed
according to

� � � ��� �  ���$� � � � � � � �  (5)

Here � � ��� � �����  ���$�)� � � � � �! !+ �  '�� is a normalization constant that ensures that the term in

(5) is indeed a probability distribution. Thus, the probability that a state sample � ? @KA� is part

of
> � is not only a function of its posterior probability, but also of the risk ����� ? @KA�  associated

with that sample.

Sampling from (5) is easily achieved by the following two modifications of the basic parti-
cle filter algorithm. First, the initial set of particles � ? @KA. is generated from the distribution

� . ����� .  ���$� .  (6)

Second, Line 5 of the particle filter algorithm is replaced by the following assignment:

���	��
 ? � A ��� ��� ? � A  � ��� ? ��A '��  '���� ���  � � ? � A  (7)

We conjecture that this simple modification results in a particle filter with samples dis-
tributed according to � � ����� �  �)��� � � � � � � �3 . Our conjecture is obviously true for the
base case

� � L
, since the risk function � was explicitly incorporated in the construc-

tion of
> . (see (6)). By induction, let us assume that the particles in

> ��'�� are dis-
tributed according to � ��'(� �����%��'(�  ���$�%��'(��� � ��'(� � � ��'��� . Then Line 3 of the modi-

fied algorithm generates � ? �!A��'(� 	 � ��'(� � ��� ��'��  ����� ��'�� � � ��'�� � � ��'��" . Line 4 gives us�(? �!A� 	 � ��'�� � �$�%��'��  ���$�%�"� ��� � ����'��  ��������'��*� � ��'�� � � ��'��F . Samples generated in Line 9
are distributed according to

� ? �!A� � ��'�� ����� ��'��  ����� � � � � � � ��'(�  �)��� ��'�� � � ��'�� � � ��'(�  (8)

Substituting in the modified weight (eqn. 7) we find the final sample distribution:

�����%�  ��������'��  '�� �)�$���"� ���  � ��'(� � �$�%��'��  ���$�%��� ��� � ����'��  ���$�%��'��*� � ��'(� � � ��'��  � � ��'(� � �����  ��� ���"� �%�  �)���%��� ��� � �%��'(�  �)���%��'(��� � ��'(� � � ��'(�  (9)

This term is, up to the normalization constant � � # � � '(���'(� , equivalent to the desired distribu-
tion (5) (see also eqn. 1), which proves our conjecture. Thus, the decision theoretic particle
filter successfully generates samples from a distribution that factors in the risk � .
3.2 The Risk Function

The remaining question is: What is an appropriate risk function � ? How important is it to
track a state � ? Our approach rests on the assumption that there are two possible situations,



one in which the state is tracked well, and one in which the state is tracked poorly. In the
first situation, we assume that any controller will basically chose the right control, whereas
in the second situation, it is reasonable to assume that controls are selected anywhere be-
tween random and in the worst possible way. To complete this model, we assume that with
small probability, the state estimator might move from “well-tracked” to “lost track” and
vice versa.

These assumptions are sufficient to formulate an MDP that models the effect of tracking
accuracy on the expected costs. The MDP is defined over an augmented state space ��� � �  ,
where � � � L1��	 � is a binary state variable that models the event that the estimator tracks
the state with sufficient ( � � � 	

) or insufficient ( � � � L ) accuracy. The various probabilities
of the MDP are easily obtained from the known probability distributions via the natural
assumption that the variable � is conditionally independent of the system state � :

��� �$� � � � �  � � � � �$� ��'(� � � ��'��   � ����� � � � � � � ��'(�  �)� � � � � ��'��  �)�$���"� �$�%� � � �   � ���$���"� �%�  �)� �$�%. � � .   � ������.  �)� � .  � � �$� � � � �  � � �  � � ��� � � � �  (10)

The expressions on the left hand side define all necessary components of the augmented
model. The only unspecified terms on the right hand side are the initial tracking probability��� � .  and the transition probabilities for the state estimator �)� � � � � ��'(�  . The former must be
set in accordance to the initial knowledge state (e.g., 1 if the initial system state is known, 0
if it is unknown). For the latter, we adopt a model where with high likelihood the tracking
state is retained (�)� � � � � ��'��  � L1� ���

) and with low likelihood it changes (��� � ���� � ��'(�  �L1� L��
).

The MDP is solved via value iteration. To model the effect of poor tracking on the control
policy, our approach uses the following value iteration rule (stated here without discounting
for simplicity), in which � denotes the value function, and � is an auxiliary variable:

� � ��� � �   � �� 	�
���� � � ��� � �  � �  if � � 	
� � 
�� �� � � �$� � �  � �  � � 	*� �  � & � � �$� � �  � �  ,+ �  if � � L

� � �$� � �  � �  � � ��� � �  � ��
��� C .

& � � �$��� � � �   ��� � � � �  �)�����3� � � �  ,+ ��� (11)

This value iteration rule considers two cases: When � � 	
, i.e., the state is estimated suf-

ficiently accurately, it is assumed that the controller acts by minimizing costs. However,
if � � L , the controller adopts a mixture of picking the worst possible control � , and a ran-
dom control. These two options are traded off by the gain factor

�
, which controls the

“pessimism” of the approach.
� � 	

suggests that poor state estimation leads to the worst
possible control.

� � L is more optimistic, in that control is assumed to be random. Our
experiments have yielded indifferent results relative to the choice of

�
, and we use

� � L1���
for all experiments reported here.

Finally, the risk � is defined as the difference between the value function that arises from
accurate versus inaccurate state estimation:

� ���  � � ��� � � � L  � � ��� � � � 	  (12)

Under mild assumptions, �����  can be shown to be strictly positive.



4 Experimental Results

We have applied our approach to two complimentary real-world robotic domains: robot
localization, and mobile robot diagnostics. Both yield superior results using our new
decision-theoretic approach when compared to the standard particle filter.

4.1 Mobile Robot Localization

Our first evaluation domain involves the problem of localizing a mobile robot from sensor
data [?]. In our experiments, we focused on the most difficult of all localization problems:
The kidnapped robot problem [?]. Here a well-localized robot is “tele-ported” to some
unknown location and has to recover from this event. This problem plays an important
role in evaluating the robustness of a localization algorithm. Figure 1a shows the robot
Pearl, which has recently been deployed in an assisted living facility as an assistant to the
elderly and cognitively frail. Our study is motivated by the fact that some of the robot’s
operational area is a densely cluttered dining room, where the robot is not allowed to cross
certain boundaries due to the danger of physically harming people. These boundaries are
illustrated by the black contours shown in Figure 1b, which also depicts an occupancy grid
map of the facility. In this area, the robot’s sensor are insufficient to avoid collisions, since
they can only sense obstacles at one specific height (34 cm).

Figure 2a shows the risk function � , projected into 2D. The darker a location, the higher the
risk. A sample set drawn from this risk function is shown in Figure 2b. This sample set
represents a uniform posterior; However, since decision theoretic particle filters incorporate
the risk function into the sampling process, the density of samples is proportional to the risk
function � .
Numerical results are summarized in Table 1, using data collected in the facility at dinner
time. We ran two types of experiments: First, we kidnapped the robot to any of the locations
marked A, B, and C in Figure 1, and measured the number of sensor readings required to
recover from this global failure. All three locations are within the high-risk area so the
recovery time is significantly shorter than with plain particle filters. Second, we measured
the number of times a simple-minded planner that always looks at the most likely pose
would violate the safety constraint. Here we find that our approach is approximately twice
as safe as the conventional particle filter, at virtually the same computational expense. All
experiments were repeated 20 times, and rely on real-world data and operating conditions.

4.2 Mobile Robot Diagnosis

To evaluate our approach in a second and somewhat complimentary problem domain, we
applied it to a challenging robot diagnostics problem, for the rover shown in Figure 3. Our
evaluation involves a data set where the rover is driven with a variety of different control
inputs in the normal operation mode. At the

	 � ���
time step, wheel #3 becomes stuck

and locked against a rock. The wheel is then driven in the backward direction, fixing the
problem. The rover returns to the normal operation mode and continues to operate normally
until the gear on wheel #4 breaks at the � L���� time step. This fault is not recoverable and
the controller just alters its input based on this state.

Tracking results in Figure 4 show that our approach yields superior results to the standard
particle filter. Even though failures are very unlikely, our approach successfully identifies
them due to the high risk associated with such a failure while the plain particle filter essen-
tially fails to do so. The estimation error is shown in the bottom row of Figure 4, which is
0 for our approach when 1,000 or more samples are used. Particle filters exhibit non-zero
error even with 100,000 samples.



(a)

�
�� �

A
�� � B

�

C

(b)

Figure 1: (a) Robot Pearl, as it interacts with elderly people at an assisted living facility in Oakmont,
PA. (b) Occupancy grid map. Shown here are also three testing locations labeled A, B, and C, and
regions of high costs (black contours).

(a) (b)

Figure 2: (a) Risk function � : the darker a location, the higher the risk. This function, which is used
in the proposal distribution, is derived from the immediate risk function shown in Figure 1b. (b)
Sample of a uniform distribution, taking into consideration the risk function � .
5 Discussion

We have proposed a new particle filter algorithm that considers a cost model when gener-
ating samples. The key idea is that particles are generated in proportion to their posterior
likelihood (old idea) and to the risk that arises relative to a control goal (new idea). An
MDP algorithm was developed that computes the risk function as a differential cumulative
cost. Experimental results in two robotic domains show the superior performance of our
new approach.
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standard filter decision theoretic filter
steps to re-localize when ported to A 120

�
13.7 89.3

�
12.3

steps to re-localize when ported to B 301
�

35.2 203
�

37.6
steps to re-localize when ported to C 63.2

�
6.2 57.2

�
7.7

number of violations after global kidnapping 96.1
�

14.1 57.4
�

10.3

Table 1: Localization results for the kidnapped robot problem, which emulates a total localization
failure. Our new approach requires consistently fewer steps for re-localization, and infers less cost.
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Figure 3: (a) The Hyperion rover, a mobile robot being developed at CMU. (b) Kinematic model. (c)
Rover position at time step 1, 10, 22 and 35.
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Figure 4: Tracking curves obtained with (a) plain particle filters, and (b) our new decision theoretic
filter. The bottom curves show the error, which is much smaller for our new approach.


