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ABSTRACT
Given a very large moderate-to-high dimensionality dataset, how
could one cluster its points? For datasets that don’t fit even on a
single disk, parallelism is a first class option. In this paper we ex-
plore MapReduce for clustering this kind of data. The main ques-
tions are (a) how to minimize the I/O cost, taking into account the
already existing data partition (e.g., on disks), and (b) how to mini-
mize the network cost among processing nodes. Either of themmay
be a bottleneck. Thus, we propose the Best of both Worlds – BoW
method, that automatically spots the bottleneck and chooses a good
strategy. Our main contributions are: (1) We propose BoW and
carefully derive its cost functions, which dynamically choose the
best strategy; (2) We show that BoW has numerous desirable fea-
tures: it can work with most serial clustering methods as a plugged-
in clustering subroutine, it balances the cost for disk accesses and
network accesses, achieving a very good tradeoff between the two,
it uses no user-defined parameters (thanks to our reasonable de-
faults), it matches the clustering quality of the serial algorithm, and
it has near-linear scale-up; and finally, (3) We report experiments
on real and synthetic data with billions of points, using up to 1, 024
cores in parallel. To the best of our knowledge, our Yahoo! web
is the largest real dataset ever reported in the database subspace
clustering literature. Spanning 0.2 TB of multi-dimensional data,
it took only 8 minutes to be clustered, using 128 cores.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data mining; D.1.3 [Concurrent
Programming]: Parallel programming

General Terms
Algorithms, Design, Performance, Experimentation.
∗Work performed during Mr. Cordeiro’s visit to the Carnegie Mel-
lon University.
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1. INTRODUCTION
Given a very large dataset of moderate-to-high dimensional el-

ements, how could one cluster them? Numerous successful, serial
subspace clustering algorithms for data in five or more dimensions
exist in literature. See [14] for a recent survey. However, the ex-
isting algorithms are impractical for datasets spanning Terabytes
and Petabytes (e.g., Twitter crawl: > 12 TB, Yahoo! operational
data: 5 Petabytes [10]). In such cases, the data are already stored
on multiple disks, since the largest modern disks are 1-2TB. Just
to read a single Terabyte of data (at 5GB/min on a single modern
eSATA disk) one takes more than 3 hours! Thus, parallelism is not
another option – it is by far the best choice. Nevertheless, good,
serial clustering algorithms and strategies are still extremely valu-
able, because we can (and should) use them as ‘plug-ins’ for paral-
lel clustering. Naturally, the best algorithm is the one that combines
(a) a fast, scalable serial algorithm and (b) makes it run efficiently
in parallel. This is exactly what our proposed method does.
Examples of applications with Terabytes of data in five or

more dimensions abound: weather monitoring systems and climate
change models, where we want to record wind speed, temperature,
rain, humidity, pollutants, etc; social networks like Facebook TM,
with millions of nodes, and several attributes per node (gender, age,
number of friends, etc); astrophysics data, such as the SDSS (Sloan
Digital Sky Survey), with billions of galaxies and attributes like
red-shift, diameter, spectrum, etc.
This paper focuses on the problem of finding subspace clusters

in very large moderate-to-high dimensional data, that is, having
typically more than 5 axes. Our method uses MapReduce, and
can treat as plug-in most of the serial clustering methods. The ma-
jor research challenges addressed are (a) how to minimize the I/O
cost, taking into account the already existing data partition (e.g., on
disks), and (b) how to minimize the network cost among process-
ing nodes. Any of them may be a bottleneck. So, we propose the
Best of both Worlds – BoW method, that automatically spots the
bottleneck and picks a good strategy. Our main contributions are:

1. Algorithm design and analysis: we propose BoW, a novel,
adaptive method to automatically pick the best of two strate-
gies and proper parameters for it, one of the strategies uses a
novel sampling-and-ignore idea to shrink the network traffic;

2. Effectiveness, scalability and generality: we show that BoW
can work with most serial clustering methods as a plugged-in
clustering subroutine, it balances the cost for disk accesses
and network accesses, achieving a very good tradeoff be-
tween the two, it uses no user defined parameters (thanks
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Figure 1: Results on real data from Twitter. Time vs. # of machines (MapReduce reducers), in log-log scale. ∼ 700 MapReduce
mappers used for all runs. Left: the upcoming ParC (yellow down-triangles) and SnI (dark-green butterflies) approaches. The latter
uses our sampling-and-ignore idea; Right: the same, including BoW (in red up-triangles). BoW uses cost-based optimization to pick
the winning method and proper parameters for it, and thus practically over-writes the respective curve on the graph.

to our defaults), and it maintains the serial clustering quality,
with near-linear scale-up;

3. Experiments: we report experiments on real and synthetic
data of billions of points, using up to 1, 024 cores in parallel.

Figure 1 shows an example of BoW’s results on real data. It plots
the wall-clock-time versus the number of machines (MapReduce
reducers), in log-log scales. The data consists of the top 10 eigen-
vectors of the adjacency matrix of the Twitter (http://twitter.com/)
graph, which represents ∼ 62 million users and their relationships.
The eigenvectors span ∼ 14GB. The full details are in Section 5.
Figure 1(a) shows the results for two of the best approaches we
studied: the first, in yellow down-triangles, processes the whole
dataset, while the second, in dark-green ’butterfly’ glyphs, uses our
proposed sampling-and-ignore idea. Notice that there is no univer-
sal winner, with a cross-over point at about 30 machines for this
setting. Figure 1(b) shows exactly the same results, this time in-
cluding the wall-clock time of our BoW, in red up-triangles. Notice
that BoW locks onto the best of the two alternatives, hence its name
‘Best of both Worlds’. This is due to our upcoming cost-estimation
formulas (Eq. (4) and (5)), which help BoW to pick the best alter-
native and set proper parameters for the chosen environment, while
requiring nimble computational effort. Furthermore, notice that the
two curves in Figure 1(a) intersect at a narrow angle, which means
that the optimal curve has a smooth plateau, and thus the cost is
rather robust wrt small variations of the environment parameters
(like effective network bandwidth, disk transfer rate, file size, etc.).
We report experiments on real and synthetic, large datasets, in-

cluding the Yahoo! web one.1 To the best of our knowledge, the
Yahoo! web is the largest real dataset for which results have ever
been reported in the database clustering literature for data in five or
more axes. Although spanning 0.2 TB of multi-dimensional data,
BoW took only 8 minutes to cluster it, using 128 cores. We also
report experiments using 1, 024 cores, the highest such number in
the clustering literature for moderate-to-high dimensional data.
Notice that BoW is tailored to subspace clustering and can han-

dle most serial algorithms as plug-ins, since the only required API
is that the serial algorithm should return clusters of points in hyper-
rectangles, which we shall refer to as β-clusters. Subspace cluster-
ing methods spot clusters that exist only in subspaces of the origi-
nal, d-dimensional space (i.e., spaces formed by subsets of the orig-
inal axes or linear combinations thereof). Thus, the natural shape
of the clusters in the original space facilitates their representation
with hyper-rectangles, as the points of each cluster spread linearly
1 Provided by Yahoo! Research (www.yahoo.com).

through several irrelevant axes (original axes or linear combina-
tions thereof) in the original space. For that reason, many serial,
subspace clustering methods (e.g., CLIQUE [5], FPC/CFPC [19],
MrCC [8], P3C [17] and STATPC [16]) return clusters in hyper-
rectangles, and adapting others to work with BoW tends to be fa-
cilitated by the clusters’ natural shape. Nevertheless, besides fo-
cusing on subspace clustering and moderate-to-high dimensional
data, BoW also works with traditional clustering methods and low
dimensional data, if the plug-in returns clusters in hyper-rectangles.
The remaining of the paper comprises: related work (Section 2);

proposed techniques (Sections 3 and 4); experiments (Section 5)
and conclusions (Section 6). Table 1 lists the used symbols.

Table 1: Table of symbols.
Symbols Definitions

dS A d-dimensional dataset.
d Dimensionality of dataset dS.
η Cardinality of dataset dS. η =

∣
∣dS

∣
∣

k Number of clusters in dataset dS.
r Number of reducers for parallel run.
m Number of mappers for parallel run.
Fs Database file size in bytes.
Ds Disk transfer rate in bytes/sec.
Ns Network transfer rate in bytes/sec.
Dr Dispersion ratio.
Rr Reduction ratio.
Sr Sampling ratio.

start_up_cost(t) Start-up cost for t MapReduce tasks.
plug_in_cost(s) Serial clustering cost wrt the data size s.

2. RELATED WORK
2.1 Subspace Clustering
Clustering methods for data in five or more dimensions, known

as subspace clustering methods, usually follow one of two ap-
proaches: density-based and k-means-based. A recent survey is
found in [14]. Density-based methods assume that a cluster is a
data space region in which the element distribution is dense. Each
region may have an arbitrary shape and the elements inside it may
be arbitrarily distributed. A cluster is separated from the others
by regions of low density, whose points are considered as noise.
The algorithms use own heuristics to identify dense and non-dense
regions, usually relying on user-defined density thresholds. Exam-
ples of such algorithms are CLIQUE [5], COPAC [1], P3C [17], 4C
[6], FIRES [13], FPC/CFPC [19], STATPC [16] and MrCC [8].



Methods like k-means start by picking k space positions as clus-
ters centroids, selected either by own heuristics or randomly. Clus-
tering is achieved by an iterative process that assigns each point to
its closest center, constantly improving the centers according to the
points assigned to each cluster. The process stops when a quality
criterion is satisfied or when a maximum number of iterations is
achieved. Some of these methods are: PROCLUS [4], ORCLUS
[3], PkM [2], CURLER [18] and LWC/CLWC [7].
Despite the several desirable properties found in existent meth-

ods, currently no subspace clustering algorithm is able to handle
very large datasets in feasible time, and interesting datasets span
way over the existing method’s limits (e.g., Twitter crawl: > 12
TB, Yahoo! operational data: 5 Petabytes [10]). For data that do
not fit even on a single disk, parallelism is mandatory, and thus
we must re-think, re-design and re-implement existing serial algo-
rithms in order to allow for parallel processing.

2.2 MapReduce
MapReduce is a programming framework [9] to process large-

scale data in a massively parallel way. MapReduce has two major
advantages: the programmer is oblivious of the details related to
the data storage, distribution, replication, load balancing, etc.; and
furthermore, it adopts the familiar concept of functional program-
ming. The programmer must specify only two functions, a map
and a reduce. The typical framework is as follows [15]: (a) the
map stage passes over the input file and outputs (key, value) pairs;
(b) the shuffling stage transfers the mappers’ output to the reducers
based on the key; (c) the reduce stage processes the received pairs
and outputs the final result. Due to its scalability, simplicity and
the low cost to build large clouds of computers, MapReduce is a
very promising tool for large scale data analysis, something already
reflected in academia (see [12] [11] for examples).

3. PROPOSEDMAIN IDEAS – REDUCING
BOTTLENECKS

The major research problems for clustering very large datasets
with MapReduce are: (a) how to minimize the I/O cost, and (b)
how to minimize the network cost among processing nodes. Should
we split the data points at random, across machines? What should
each node do, and how should we combine the results? Do we
lose accuracy (if any), compared to a serial algorithm on a huge-
memory machine?
Our proposed method answers all these questions, by careful de-

sign and by adaptively trading-off disk delay and network delay.
In a nutshell, our proposed method BoW is a hybrid between two

methods that we propose next: the ParC method and the SnI. The
former does data partitioning and merges the results; the latter does
some sampling first, to reduce communication cost at the expense
of higher I/O cost. Next, we describe each proposal in detail.

3.1 Parallel Clustering – ParC
The ParC algorithm has three steps: (1) appropriately partition

the input data and assign each data partition to one machine, (2)
each machine finds clusters in its assigned partition, named as β-
clusters, and, (3) merge the β-clusters found to get the final clusters.
We considered three options for data partitioning, shortly de-

scribed as follows due to space limitations: (a) random data par-
titioning: elements are assigned to machines at random, striving
for load balance; (b) address-space data partitioning: eventually,
nearby elements in the data space often end up in the same ma-
chine, trading-off load balance to achieve better merging of the β-
clusters; and (c) arrival order or ‘file-based’ data partitioning: the

first several elements in the collection go to one machine, the next
batch goes to the second, and so on, achieving perfect load bal-
ance. The rationale is that it may also facilitate the merging of the
β-clusters, because data elements that are stored consecutively on
the disk, may also be nearby in address space, due to locality: For
example, galaxy records from the Sloan Digital Sky Survey (SDSS)
are scanned every night with smooth moves of the telescope, and
thus galaxies close in (2-d) address space, often result in records
that are stored in nearby locations on the disk.
Notice one observation: we performed an extensive experimen-

tal evaluation of the three partitioning approaches, which is omitted
here due to space limitations. The file-based data partitioning was
the fastest approach in our evaluation, still providing highly accu-
rate results. Thus, the file-based approach is considered and used as
the default strategy for the rest of this paper. Notice, however, that
our methods work with the three partitioning approaches described,
and, potentially, work with any user-defined partitioning strategy.
As described in Section 2.2, a MapReduce-based application

has at least two modules: the map and the reduce. Our ParC
method partitions the data through MapReducemappers and does
the clustering in MapReduce reducers. The final merging is per-
formed serially, since it only processes the clusters descriptions,
which consist of a tiny amount of data and processing. Figure
2a (2b will be explained latter) illustrates the process. It starts in
phase P1 with m mappers reading the data in parallel from the
MapReduce distributed file system. In this phase, each mapper
receives a data element at a time, computes its key, according to
the data partition strategy used, and outputs a pair 〈key, point〉.
All elements with the same key are forwarded in phase P2 to be
processed together, by the same reducer, and the elements with dis-
tinct keys are processed apart, by distinct reducers.
In phase P3, each reducer receives its assigned set of elements

and normalizes them to a unitary hyper-cube. Each reducer then ap-
plies the plugged-in serial clustering algorithm over the normalized
elements, aiming to spot β-clusters. For each β-cluster found, the
reducer outputs, in phase P4, a pair 〈key, cluster_description〉.
The key concatenates the reducer identification and a cluster iden-
tification. The reducer identification is the input key. The clus-
ter identification is a sequential number according to the or-
der in which the β-cluster was found in the corresponding re-
ducer. A β-cluster description consists of the unnormalized min-
imum/maximum bounds of the cluster in each dimension, defining
a hyper-rectangle in the data space. Notice that this is a tiny amount
of data, amounting to two float values per axis, per β-cluster.
The final phase P5 is performed serially, as it processes only

the tiny amount of data (β-clusters’ bounds) received from phase
P4, and not the data elements themselves. Phase P5 merges all
β-clusters pairs that overlap in the data space. Checking if two β-
clusters overlap refers to checking if two hyper-rectangles overlap
in a d-dimensional space.

3.2 Sample-and-Ignore – SnI
The first algorithm, ParC, reads the dataset once, aimed at min-

imizing disk accesses, which is the most common strategy used
by serial algorithms to shrink computational costs. However, this
strategy does not address the issue of minimizing the network traf-
fic: in the shuffle phase of the ParC algorithm (phase P2 of Figure
2a), almost all of the records have to be shipped over the network,
to the appropriate reducer. How can we reduce this network traffic?
Our main idea is to exploit the skewed distribution of cluster

sizes that typically appears in real datasets: Most of the elements
usually belong to a few large clusters, and these are exactly the el-
ements that we try to avoid processing. Thus, we propose SnI, a
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Figure 2: Which one is best? Parallel run overview for ParC (left) and SnI (right - with sampling). ParC executes the map (P1), shuffle
(P2) and reduce (P3) phases once, on the full dataset. SnI uses sampling (phases S1-S4) to get rough cluster estimates and then uses
phases S5-S9 to cluster the remaining points (see section 3.2 for details). Their clustering qualities are similar (see Section 5). The
winning approach depends on the environment; BoW uses cost-based optimization to automatically pick the best.

Phase I – sampling 

 (a) – input dataset (b) – clusters in sample 

Phase II – look for the clusters not found in the sample 

(a)  
 
– input dataset,  
   excluding the space 
   of clusters from 
   Phase I 

(b) – reducer 1 (c) – reducer 2 

(d) – merging (e) – final clusters 

Figure 3: Multi-phase Sample-and-Ignore (SnI) Method.
Phase-I finds clusters on a sample of the input data. Phase-II
ignores elements that fall within any previously found cluster
and finds clusters using the remaining elements only.

parallel clustering algorithm that consists of: (a) a novel sample-
and-ignore preprocessing step; and (b) the ParC algorithm from
Section 3.1. The sample-and-ignore step works on a small dataset
sample, spots the major clusters and ignores their members in the
follow-up steps. It significantly reduces the amount of data moved
in the shuffling phases of SnI, with consequent savings for the net-
work traffic, as well as the I/O cost for the intermediate results and
processing cost for the receiving reduce tasks. Notice one point: the
proposed sample-and-ignore idea is an alternative general strategy
that can improve many clustering methods, and not only ParC.
The SnI method is defined in Algorithm 1 and the process is

illustrated in Figure 2b. At a high-level, in Phase I (steps S1-S4 in
the figure, and lines 1-3 in the algorithm) the method samples the
input data and builds an initial set of clusters. In the second phase
(steps S5-S9 in the figure, and lines 4-8 in the algorithm) , the input
data is filtered, so that we only include unclassified elements, that
is, those that do not belong to any of the clusters found in Phase I.
These unclassified elements are then clustered using ParC.
Figure 3 illustrates the SnI approach over a toy dataset, assuming

that we have r = 2 reducers available for parallel processing. The
top part of the figure shows Phase-I. First, in Phase-I (a) the input
dataset is read in parallel by m map tasks, each mapper passes the
input elements to the same reducer with some probability, for ex-
ample, 0.5 for the case shown in the figure. A single reducer builds
clusters using the sample elements in Phase-I (b). In this case two
clusters were found and are denoted by the gray boxes around the
elements. The summary descriptors of the clusters found in Phase-
I, i.e., the minimum/maximum limits of the clusters wrt each di-
mension, are passed to Phase-II. In Phase-II (a), m mappers per-
form a second pass over the data, this time filtering out elements
that fall in the clusters found in Phase-I, which are denoted by the



black boxes. The elements that do not fall into clusters are passed
to the two reducers available, as shown in Phase-II (b) and (c), in
which we assume that the used partitioning strategy divided the el-
ements into ‘black points’ and ‘white points’. Each reducer finds
new clusters, denoted by the points surrounded by dotted boxes. In
Phase-II (d), the clusters found by the reducers are merged with the
clusters from the sampling phase using the same merging strategies
used in ParC. The global set of clusters, with three clusters repre-
sented in Phase-II (e) by distinct gray levels, is the final output.
The main benefit of the SnI approach is realized in the shuf-

fle/reduce stages. In Phases S2 and S3 of Figure 2b, only a small
sample is shuffled and processed by a receiving reducer. In Phases
S6 and S7 of Figure 2b, only the non-ignored elements may need to
be shuffled through the network to other machines and processed.
This means that most elements belonging to the major clusters spot-
ted in the sample are ignored, never being shuffled through the net-
work nor processed by a reducer. Compared to the ParC algorithm,
SnI significantly minimizes the network cost and the reducers pro-
cessing, at the cost of reading the whole dataset twice. In other
words, ParC does a single pass over the data, but almost all of the
records have to be shipped over the network (phase P2 of Figure
2a), to the appropriate reducer. On the other hand, SnI minimizes
the shuffle/reduce cost, at the expense of reading the data one extra
time. What approach is the best? The answer is given in Section 4.

Algorithm 1 : Multi-phase Sample-and-Ignore (SnI) Method.
Input: dataset dS; sampling ratio Sr;
Output: clusters;
1: // Phase 1 – Sample
2: m mappers read the data and send the elements to one reducer
with probability Sr;

3: one reducer uses plug-in to find clusters in ∼ η.Sr received
elements, and passes clusters descriptions tom mappers;

4: // Phase 2 – Ignore
5: mmappers read the data, ignore the elements from the clusters
found in the sample and send the rest to r reducers, according
to the data partition approach used;

6: r reducers use the plug-in to find clusters in the received ele-
ments, and send the clusters descriptions to one machine;

7: one machine merges the clusters received and the ones from
the sample, let the merged result be clusters;

8: return clusters

4. PROPOSED COST-BASED
OPTIMIZATION

We propose an adaptive, hybrid method named BoW (Best of
both Worlds) that exploits the advantages of the previously de-
scribed approaches, ParC and SnI, taking the best of them. There is
no universal winner, since it depends on the environment and on the
data characteristics. See Figure 1 and Section 5 for a complete ex-
planation. Therefore, the main question here is: When should our
sampling-and-ignore idea be used and when should it be avoided?
ParC runs the map, shuffle and reduce phases only once on the
whole dataset. SnI reduces the amount of data to be shipped to and
processed by the reducers, at the cost of a second pass on the input
data (in the map phase). We propose a cost-based optimization that
uses analytics models to estimate the running time of each cluster-
ing strategy. BoW picks the one with the lowest estimated cost.
The environmental parameters required by BoW are presented in

Table 2. They describe the hardware characteristics (i.e., the specs
of the available MapReduce cluster), the total amount of data to

be processed, and the cost estimate for the plugged-in serial clus-
tering method. Setting the value for Fs is straightforward. Ds,
Ns and start_up_cost(t) are inferred by analyzing the cloud of
computers’ logs, while plug_in_cost(s) is defined based on the
plugged-in method’s original time complexity analysis and/or ex-
periments, or measured by the user in a simple experiment. Notice:
each machine in the cloud may run many MapReduce tasks (map-
pers and/or reducers) in parallel, sharing the machine’s disks and
network connection. So,Ns andDs are expected to be smaller than
the effective network bandwidth and disk transfer rate respectively.

Table 2: Environmental parameters
Parameter Meaning Explanation

Fs data file size Size of the dataset
(bytes) to be clustered.

Ds disk speed Average bytes/sec. that
(bytes/sec.) a MapReduce task

(mapper or reducer) can
read from local disks.

Ns network speed Average bytes/sec. that
(bytes/sec.) a MapReduce task

(mapper or reducer)
can read from other

computers in the cloud.
start_up_cost(t) start-up cost Average time to start-up

(seconds) t MapReduce tasks
(mappers or reducers).

plug_in_cost(s) plug-in cost Average time to run
(seconds) the plugged-in serial

method over s data
bytes on a standard
computer in the cloud.

Two other parameters are used, shown in Table 3. We provide
reasonable default values for them based on empirical evaluation.
Notice one important observation: As is the common knowledge in
database query optimization, at the cross-over point of two strate-
gies, the wall-clock-time performances usually create flat plateaus,
being not much sensitive to parameter variations. This occurs in our
setting, and the results in Figures 1a, 7a and 7d exemplify it (no-
tice the log-log scale). Thus, tuning exact values to our parameters
barely affects BoW’s results and the suggested values are expected
to work well in most cases.

Table 3: Other parameters
Param. Meaning Explanation Our

defaults
Dr dispersion Ratio of data transferred in 0.5

ratio the shuffling through the
network relative to the total
amount of data involved.

Rr reduction Ratio of data that does not 0.1
ratio belong to the major clus-

ters found in the sampling
phase of SnI relative to
the full data size Fs.

The following lemmas and proofs define the equations of our
cost-based optimization. First, we give the expected costs for the
map, shuffle and reduce phases wrt the number of mappers and/or
reducers available and to the data size involved. Then, we infer the
costs for: ParC, that minimizes disk accesses, and; SnI, that aims



at shrinking the network cost. For clarity, consider again Figure 2
that provides a graphical overview of the parallel execution of both
methods, as well as their expected cost equations.

LEMMA 1. Map Cost – the expected cost for the map phase of
the parallel clustering approaches is a function of the number of
mappers m used and the involved data size s, given by:

costM(m, s) = start_up_cost(m) +
s

m
.
1

Ds
(1)

PROOF. In the map phase, m mappers are started-up at the cost
of start_up_cost(m). The majority of the extra time spent is re-
lated to reading the input data from disk. s bytes of data will be
read in parallel bym mappers, which are able to readDs bytes per
second each. Thus, the total reading time is given by: s

m
. 1
Ds
.

LEMMA 2. Shuffle Cost – the expected shuffle cost is a function
of the number of reducers r to receive the data and the amount of
data to be shuffled s, which is given by:

costS(r, s) =
s.Dr

r
.
1

Ns
(2)

PROOF. The majority of the shuffling cost is related to shipping
the data between distinct machines through the network. When-
ever possible, MapReduce minimizes this cost by assigning re-
duce tasks to the machines that already have the required data in
local disks. Dr is the ratio of data actually shipped between dis-
tinct machines relative to the total amount of data processed. Thus,
the total amount of data to be shipped is s.Dr bytes. The data will
be received in parallel by r reducers, each one receiving in average
Ns bytes per second. Thus, the total cost is given by: s.Dr

r
. 1
Ns
.

LEMMA 3. Reduce Cost – the expected cost for the reduce
phase is a function of the number of reducers r used for parallel
processing and the size s of the data involved, which is given by:

costR(r, s) = start_up_cost(r) + s

r
.
1

Ds
+

plug_in_cost(s
r
) (3)

PROOF. In the reduce phase, r reducers are started-up at cost
start_up_cost(r). After the start-up process, the reducers will
read from disk s bytes in parallel at the individual cost of Ds

bytes per second. Thus, the total reading time is s
r
. 1
Ds
. Finally,

the plugged-in serial clustering method will be executed in parallel
over partitions of the data, whose average sizes are s

r
. Therefore,

the approximate clustering cost is plug_in_cost( s
r
).

LEMMA 4. ParC Cost – the expected cost for ParC is:

costC = costM(m,Fs) + costS(r, Fs) + costR(r, Fs) (4)
PROOF. The parallel processing for ParC is: (i)mmappers pro-

cess Fs bytes of data in the map phase; (ii) Fs bytes of data are
shuffled to r reducers in the shuffling phase; (iii) Fs bytes of data
are analyzed in the reduce phase by r reducers, and; (iv) a single
machine merges all the β-clusters found. The last step has negligi-
ble cost, as it performs simple computations over data amounting
to two float values per β-cluster, per dimension. Thus, summing
the costs of the three initial phases leads to the expected cost.

LEMMA 5. SnI Cost – the expected cost for SnI is:

costCs = 2 . costM(m,Fs) +

costS(1, Fs.Sr) + costR(1, Fs.Sr) +

costS(r, Fs.Rr) + costR(r, Fs.Rr) (5)
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Figure 4: All our variants give top quality results. 10 million
dataset; quality vs. number r of reducers, for ParC, SnI and
BoW. All methods match the quality of the serial clustering
method (top left), for all values of r, like 1, 024.

PROOF. SnI runs two complete map, shuffle and reduce phases.
In both map phases, the full dataset is processed by m mappers,
at combined cost: 2 . costM(m,Fs). In the first shuffle phase,
a data sample of size Fs.Sr bytes is shuffled to a single reducer,
at cost costS(1, Fs.Sr). The reduce cost to process this sample
is: costR(1, Fs.Sr). Rr is the ratio of data that does not belong
to the major clusters, the ones found in the sampling phase, rela-
tive to Fs. That is, Fs.(1 − Rr) bytes are ignored in the Second
Phase of SnI, while Fs.Rr bytes of data are not ignored, being pro-
cessed after clustering the sample. Also, both second shuffle and
reduce phases involve r reducers. Thus, their combined costs are:
costS(r, Fs.Rr) + costR(r, Fs.Rr). The costs for shipping and
processing β-clusters descriptions is negligible, since the involved
amount of data and processing is extremely small.

Notice one observation: when our algorithms are executed, the
number of distinct key values to be sorted by the MapReduce
framework is tiny; it is always the number r of reducers used only.
Each reducer handles a single key, so it does not need to do sorting.
Thus, the sorting cost is negligible for our approaches. The I/O and
network costs are the real bottlenecks. The wall-clock time results
in all of our experiments (see Section 5) confirm this assertion.
Algorithm 2 describes the main steps of BoW. In summary, ParC

executes the map, shuffle and reduce phases once, involving the
full dataset. SnI runs these phases twice, but involving less data.
What is the fastest approach? It depends on your environment.
BoW takes the environment description as input and uses cost-based
optimization to automatically choose the fastest, prior to the real
execution. Provided that the clustering accuracies are similar for
both approaches (see Section 5 for a complete explanation), BoW
actually picks the ‘Best of both Worlds’.

Algorithm 2 : The Best of bothWorlds – BoW method.
Input: dataset dS; environmental parameters (Table 2);

other parameters (Table 3); number of reducers r;
number of mappersm; sampling ratio Sr;

Output: clusters;
1: compute costC from Equation 4;
2: compute costCs from Equation 5;
3: if costC > costCs then
4: clusters = result of SnI for dS; // use sampling-and-ignore
5: else clusters = result of ParC for dS; // use no sampling
6: end if
7: return clusters
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Figure 5: Near-linear scale-up wrt the number of reducers. Expected behavior: our method starts with near-linear scale-up, and then
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Figure 6: Linear scale-up on db size: wall-clock time vs. data
size. Random samples from YahooEig, up to 1.4 billion points.
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5. EXPERIMENTAL RESULTS
In this section, we describe the experiments performed. We

aimed at answering the following questions:
Q1 How much (if at all) parallelism affects the cluster’s quality?
Q2 How does our method scale-up?
Q3 How accurate are our cost-based optimization equations?
All experiments were done using the Hadoop2 implementation

for the MapReduce framework, on two Hadoop clusters: M45
by Yahoo! and DISC/Cloud by Parallel Data Lab in CMU. M45
is one of the top 50 supercomputers in the world totaling 400 ma-
chines (3, 200 cores), 1.5 PB of storage and 3.5 TB of main mem-
ory. DISC/Cloud has 512 cores, distributed in 64 machines, 1TB of
RAM and 256 TB of raw disk storage. We used the real and syn-
thetic datasets described in Table 4, which are detailed as follows.

• YahooEig: The top 6 eigenvectors from the adjacency ma-
trix of one of the largest web graphs. The web graph was
crawled by Yahoo! 3 in 2002 and contains 1.4 billion nodes
and 6.6 billion edges. The eigenvectors amount to 0.2 TB.

• TwitterEig: The top 10 eigenvectors from the adjacency
matrix of the Twitter 4 graph, that represents 62million users
and their relationships. Eigenvectors amount to 0.014 TB.

• Synthetic: A group of datasets with sizes varying from
100 thousand up to 100 million 15-dimensional points, con-
taining 10 clusters each. We created clusters following stan-
dard procedures used by most of the clustering algorithms

2 www.hadoop.com
3 www.yahoo.com
4 http://twitter.com/

cited in Section 2, including the plugged-in serial method
used in our experiments. All clusters follow normal distribu-
tions with random means and random standard deviations in
at least 50% of the axes, spreading through at most 15% of
these axes domains. In other axes, all clusters have uniform
distribution, spreading through the whole axes domains.

Table 4: Summary of datasets. TB: TeraBytes
Dataset # of Points # of Axes File Size

YahooEig 1.4 billion 6 0.2 TB
TwitterEig 62 million 10 0.014 TB
Synthetic up to 100 million 15 up to 0.014 TB

As our real world datasets have 6 and 10 axes, we chose the
MrCC algorithm as the serial clustering method for the plug-in in
all experiments. MrCC is one state-of-the-art clustering method for
medium-dimensionality data. Its original code was used.
Notice one observation: to evaluate how much (if at all) paral-

lelism affects the serial clustering quality, the ideal strategy is to
use as ground truth the clustering results obtained by running the
plugged-in algorithm serially on any dataset, synthetic or real, and
to compare these results to the ones obtained with parallel process-
ing. But, for most of our large datasets, to run a serial algorithm
(MrCC or, potentially, any other clustering method for moderate-
to-high dimensionality data) is an impractical task – it would re-
quire impractical amounts of main memory and/or take a very long
time. Thus, in practice, the Synthetic datasets are the only ones
from which we have clustering ground truth, and they were used to
evaluate the quality of all tested techniques in all experiments.
For a fair comparison with the plugged-in serial algorithm, the

quality is computed following the same procedure used in its orig-
inal publication. That is, the quality is computed by comparing the
results provided by a technique to the ground truth, based on the
averaged precision and recall of all clusters.
The file-based data partitioning strategy used may provide dis-

tinct quality results wrt the order in which the input data is phys-
ically stored. Obviously, the best results appear when the data is
totally ordered, i.e., the elements of each cluster are sequentially
stored in the data file. On the other hand, when the elements are
randomly positioned in the file, the qualities are similar to the ones
obtained when using the random data partitioning. For a fair analy-
sis, we built each dataset from the Synthetic group considering
an average case, i.e., 50% of the elements from the totally ordered
case were randomly repositioned throughout the data file.
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Figure 7: Top: TwitterEig; Bottom: Synthetic, 100 million. Time vs. # of reducers, in log-log scale. ∼ 700 mappers always.
Left column: BoW’s ability to pick the winner, among ParC (yellow down-triangles) and SnI (dark-green butterflies). BoW (red up-
triangles) gets the best of both, always picks the winning strategy, and thus practically over-writes the winner’s curve. Middle/right
columns: accuracy of our Equations 4 and 5; In all cases, the light-green hour-glass shapes stand for our formulas; Notice how close
they are to the actual measurements (ParC in yellow triangles and SnI in dark-green butterflies).

The following values were used for the environmental parame-
ters: Fs: the data file size; Ds: 40MB/sec; Ns: 20MB/sec;
start_up_cost(t): 0.1t; plug_in_cost(s): 1.4E−7s. They were
measured by experiments on the M45 machines and on the serial
plug-in to represent the environment employed. Details on this pro-
cedure are not shown due to space limitation. All experiments in-
volving BoW used these parameters and the M45 machines.
The results on quality and wall-clock time shown for all experi-

ments are averages of 10 distinct runs. All experiments used a sam-
ple size of ∼ 1 million, i.e., Sr = 1 million

η
, and, in all cases, the

number of mappersm used was automatically chosen by Hadoop.

5.1 Quality of results
This section intends to answer question Q1: How much (if at

all) does the parallelism affect the clustering quality? Figure 4
shows the quality results obtained by ParC, SnI and BoW over our
Synthetic dataset with 10 million elements. All tested meth-
ods presented top quality, even for large numbers of reducers, like
1, 024. Notice, that the serial execution quality of the plugged-in
clustering method is the one obtained when using a single reducer
(r = 1, extreme left in the plot). Similar results were observed
with the other Synthetic datasets, not shown for brevity.
An interesting observation is that the quality may decrease for

small datasets, when using a large number of reducers. The obvious
reason is that, in those cases, we are partitioning a small amount of
data through a large number of reducers, which actually receive too
little data, not enough to represent the main data patterns. This fact
was confirmed in all our experiments, and they lead us to recom-
mend at least∼ 150k points per reducer in average, i.e., r ≤ η

150k
.

Thus, based on our experiments, the answer to question Q1 is:
as long as you have enough data, parallelism barely affects the ac-
curacy, even for large numbers of reducers, like 1, 024. BoW found
top quality clusters in little time from all our very large datasets.

5.2 Scale-up results
This section intends to answer question Q2: How does our

method scale-up? Scale-up results with different numbers of reduc-

ers are in Figure 5. Here we used the TwitterEig eigenvectors
and the Synthetic dataset with 100 million points. The plots
show X-axes as the number of reducers r, and the Y-axes as the rel-
ative performance with n reducers compared to that with 1 reducer
(TwitterEig) or 4 reducers (Synthetic). A fixed number of
mappers m =∼ 700 was used. The results shown are the aver-
age of 10 distinct runs. We picked 4 reducers for our Synthetic
dataset, as the running time for one reducer was impractical. Notice
that our method achieves near-linear scale-up.
The scale-up results with different data sizes are in Figure 6.

The YahooEig dataset is used. Random samples of the data with
increasing sizes, up to the full dataset (1.4 billion elements) were
generated to perform this experiment. We plot wall clock time vs.
data size. The wall-clock time shown is the average time of 10
distinct runs. Fixed numbers of reducers and mappers (r = 128
and m =∼ 700) were used. As shown, our method has desired
scalability, scaling-up linearly with the data size.
It took only ∼ 8 minutes to cluster the full dataset, which

amounts to 0.2 TB! Let’s provide some context to this result by
characterizing the time taken at different stages in the process: (a)
the mappers took 47 seconds to read the data from disks; (b) 65 sec-
onds were taken to shuffle the data; and (c) the reduce stage took
330 seconds. To estimate the time taken by the serial method in
item (c), we clustered a random sample of the YahooEig dataset,
of size Fs

r
= 0.2 TB

128
, by running the plug-in on a single machine

(one core), similar to the ones of the used cloud of computes. The
serial clustering time was 192 seconds. This indicates that the plug-
in took ∼ 43% of the total time, being the main bottleneck.
Similar scale-up results were obtained for all other datasets, not

shown here due to the space limitation.

5.3 Accuracy of our cost equations
Here we refer to question Q3, by checking BoW’s ability to

pick the correct alternative and the accuracy of our cost formulas,
(Eq. (4) and (5)) from Section 4. The results for the TwitterEig
and Synthetic (with 100 million points) datasets are shown in



the top and bottom lines of Figure 7, respectively. The six plots
give the wall-clock time (average of 10 runs) versus the number of
reducers r, in log-log scales. The left column ((a) and (d)) shows
that BoW, in red up-triangles, consistently picks the winning strat-
egy among the two alternatives: ParC (yellow down-triangles) and
SnI (dark-green butterflies), that uses our sample-and-ignore idea.
For both datasets, BoW gives results so close to the winner, that
its curve practically overwrites the winner’s curve; the only over-
head of BoW is the CPU time required to run the cost equations,
which is negligible. The next two columns of Figure 7 illustrate the
accuracy of our cost formulas. Light-green hour-glasses refer to
our theoretical prediction; yellow triangles stand for ParC (middle
column), and dark-green butterflies stand for SnI (right column).
Notice: the theory and the measurements usually agree very well.
All other datasets gave similar results, omitted for brevity.

6. CONCLUSIONS
Given a very largemoderate-to-high dimensionality dataset, how

could one cluster its points? For data that don’t fit even on a single
disk, parallelism is mandatory. The bottlenecks are then: I/O cost
and network cost. Our main contributions are:

1. Algorithm design and analysis: We proposed BoW and care-
fully derived its cost functions that allow the automatic, dy-
namic trade-off between disk delay and network delay;

2. Effectiveness, scalability and generality: We showed that
BoW has many desirable features: it can work with most se-
rial methods as a plugged-in clustering subroutine (the only
API: clusters described by hyper-rectangles), it balances the
cost for disk accesses and network accesses, achieving a very
good tradeoff between the two, it uses no user defined pa-
rameters (thanks to our defaults) and it matches the serial
algorithm’s clustering accuracy with near-linear scale-up;

3. Experiments: We report experiments on real and synthetic
data of billions of points, using up to 1, 024 cores in parallel.

To the best of our knowledge, the Yahoo! web is the largest real
dataset ever reported in the database subspace clustering literature.
BoW clustered its 0.2TB in only 8 minutes, with 128 cores!
Finally, notice that BoW is a hard-clustering method and, as well

as any other method of this type, it may not be the best solution for
data with many overlapping clusters. So, we report an idea for fu-
ture work: to extend BoW’s merging stage to return soft-clustering
results, allowing any data point to belong to two or more clusters.
In our opinion, soft-clustering is a promising idea, but there are
several issues involved, which are out of the scope of this paper.

7. ACKNOWLEDGMENTS
This material is based upon work supported by FAPESP (São

Paulo State Research Foundation), CAPES (Brazilian Coordination
for Improvement of Higher Level Personnel), CNPq (Brazilian Na-
tional Council for Supporting Research), Microsoft Research, the
National Science Foundation (NSF), under award CCF-1019104,
the Qatar National Fund, under award NPRP 09-1114-1-172 in the
QCloud project, the Gordon and Betty Moore Foundation, in the
eScience project, the Defense Threat Reduction Agency, accom-
plished under contract No. HDTRA1-10-1-0120, and the Army
Research Laboratory, accomplished under Cooperative Agreement
Number W911NF-09-2-0053. The views and conclusions con-
tained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or
implied, of the Army Research Laboratory, the U.S. Government,
the National Science Foundation, or other funding parties. The U.S.

Government is authorized to reproduce and distribute reprints for
Government purposes notwithstanding any copyright notation here
on. We also thank the member companies of the PDL Consortium
(including APC, EMC, Facebook, Google, HP Labs, Hitachi, IBM,
Intel, Microsoft Research, NEC Labs, NetApp, Oracle, Panasas,
Riverbed, Samsung, Seagate, STEC, Symantec, and VMware) for
their interest, insights, feedback, and support.

8. REFERENCES
[1] E. Achtert, C. Böhm, H.-P. Kriegel, P. Kröger, and A. Zimek.

Robust, complete, and efficient correlation clustering. In
SDM, USA, 2007.

[2] P. K. Agarwal and N. H. Mustafa. k-means projective clus-
tering. In PODS, pages 155–165, Paris, France, 2004. ACM.

[3] C. Aggarwal and P. Yu. Redefining clustering for high-di-
mensional applications. IEEE TKDE, 14(2):210–225, 2002.

[4] C. C. Aggarwal, J. L. Wolf, P. S. Yu, C. Procopiuc, and J. S.
Park. Fast algorithms for projected clustering. SIGMOD
Rec., 28(2):61–72, 1999.

[5] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Au-
tomatic subspace clustering of high dimensional data for data
mining applications. SIGMOD Rec., 27(2):94–105, 1998.

[6] C. Böhm, K. Kailing, P. Kröger, and A. Zimek. Computing
clusters of correlation connected objects. In SIGMOD, pages
455–466, NY, USA, 2004.

[7] H. Cheng, K. A. Hua, and K. Vu. Constrained locally
weighted clustering. PVLDB, 1(1):90–101, 2008.

[8] R. L. F. Cordeiro, A. J. M. Traina, C. Faloutsos, and
C. Traina Jr. Finding clusters in subspaces of very large,
multi-dimensional datasets. In ICDE, pages 625–636, 2010.

[9] J. Dean and S. Ghemawat. Mapreduce: Simplified data
processing on large clusters. OSDI, 2004.

[10] U. Fayyad. A data miner’s story – getting to know the grand
challenges. In Invited Innovation Talk, KDD, 2007: Slide 61.
Available at: http://videolectures.net/kdd07_fayyad_dms/.

[11] U. Kang, C. Tsourakakis, A. P. Appel, C. Faloutsos, and
J. Leskovec. Radius plots for mining tera-byte scale graphs:
Algorithms, patterns, and observations. SDM, 2010.

[12] U. Kang, C. Tsourakakis, and C. Faloutsos. Pegasus: A
peta-scale graph mining system - implementation and
observations. ICDM, 2009.

[13] H.-P. Kriegel, P. Kröger, M. Renz, and S. Wurst. A generic
framework for efficient subspace clustering of high-dimen-
sional data. In ICDM, pages 250–257, USA, 2005.

[14] H.-P. Kriegel, P. Kröger, and A. Zimek. Clustering
high-dimensional data: A survey on subspace clustering,
pattern-based clustering, and correlation clustering. ACM
TKDD, 3(1):1–58, 2009.

[15] R. Lämmel. Google’s mapreduce programming model –
revisited. Science of Computer Programming, 70:1–30, 2008.

[16] G. Moise and J. Sander. Finding non-redundant, statistically
significant regions in high dimensional data: a novel
approach to projected and subspace clustering. In KDD,
pages 533–541, 2008.

[17] G. Moise, J. Sander, and M. Ester. Robust projected
clustering. Knowl. Inf. Syst., 14(3):273–298, 2008.

[18] A. K. H. Tung, X. Xu, and B. C. Ooi. Curler: finding and
visualizing nonlinear correlation clusters. In SIGMOD, pages
467–478, New York, NY, USA, 2005.

[19] M. L. Yiu and N. Mamoulis. Iterative projected clustering by
subspace mining. IEEE TKDE, 17(2):176–189, Feb. 2005.


