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ABSTRACT 
Hybrid peer-to-peer architectures use special nodes to provide 
directory services for regions of the network (“regional directory 
services”).  Hybrid peer-to-peer architectures are a potentially 
powerful model for developing large-scale networks of complex 
digital libraries, but peer-to-peer networks have so far tended to 
use very simple methods of resource selection and document 
retrieval.  In this paper, we study the application of content-based 
resource selection and document retrieval to hybrid peer-to-peer 
networks.  The directory nodes that provide regional directory 
services construct and use the content models of neighboring 
nodes to determine how to route query messages through the 
network.  The leaf nodes that provide information use content-
based retrieval to decide which documents to retrieve for queries.  
The experimental results demonstrate that using content-based 
retrieval in hybrid peer-to-peer networks is both more accurate 
and more efficient for some digital library environments than 
more common alternatives such as Gnutella 0.6. 

Categories and Subject Descriptors 
H.3.3 [Information Storage and Retrieval]: Retrieval models, 
Search process, Selection process. 

General Terms 
Algorithms, Performance, Experimentation, Design 

Keywords 
Peer-to-peer, Hybrid, Retrieval, Search, Content-based  

1. INTRODUCTION 
Peer-to-peer (P2P) computing is a relatively new approach to 
federated search of large networks of digital libraries.  In P2P 
networks the nodes can send and receive information in a way that 
makes them both servers and clients.  Pure P2P architectures are 
completely decentralized; each node can issue requests, respond 
to the requests that it can satisfy, or route requests to other nodes.  
Hybrid P2P architectures include two types of nodes.  There are 
leaf nodes which provide information as well as post requests 
(“queries”).  Leaf nodes can be used to model an individual with 
an information need or an information resource (e.g., a digital 
library).  There are also directory nodes which don’t have 
contents of their own but which provide regionally centralized 
directory services to the network to improve the routing of 

information requests.  Directory nodes are also called 
“ultrapeers”, “hubs”, or “supernodes” in the research literature.  
Each directory node provides directory services for portions of the 
network and directory nodes work in a cooperative manner to 
cover the whole network.     

Early P2P architectures provided federated search by either 
relying on a single centralized directory service or employing the 
flooding technique in completely decentralized manner (a node 
broadcasting query messages to all of its neighbors) to decide how 
to route query messages.  The former approach suffers from a 
single point of failure and has limited scalability, while the latter 
approach is less efficient and may overload the network.  Hybrid 
P2P architectures that use multiple decentralized directory 
services were developed to solve these problems.  For example, 
the Gnutella 0.6 protocol adopts the hybrid P2P architecture [10] 
to overcome the weaknesses of the pure P2P architecture in the 
Gnutella 0.4 protocol [9].   

Although research on information systems using P2P architectures 
is very active recently, most recent research focuses on improving 
the efficiency, robustness, and load-balancing of distributed 
information storage or file-sharing systems [1, 6, 21, 22].  
Resource selection and document retrieval in P2P networks have 
so far mostly been limited to simple name-based methods:  
Matches between query terms and document names or identifiers 
are used to determine how to route query messages and which 
documents to be retrieved.  These techniques may be sufficient for 
networks of small digital libraries that use well-known naming 
conventions and provide simple services, as is common in music 
file-sharing applications.  Extending peer-to-peer architectures to 
networks of large and complex digital libraries that provide more 
sophisticated services requires content-based retrieval.   

In this paper, we explore content-based retrieval in P2P networks 
that adopt hybrid P2P architectures (“hybrid P2P networks”).  In 
particular, we apply content-based resource selection and 
document retrieval algorithms to hybrid P2P networks.  Directory 
nodes model the contents of neighboring nodes based on their 
resource descriptions or responses to past queries, and use these 
models to route query messages (“resource selection”).  Leaf 
nodes use a probabilistic information retrieval algorithm to 
determine which documents to retrieve for queries (“document 
retrieval”).  In this paper, we show that using content-based 
retrieval in hybrid P2P networks can greatly reduce the average 
number of query messages per query, and increase Precision while 
causing little degradation in Recall.   

The following section describes related work.  Section 3 presents 
in more detail name-based and content-based retrieval in hybrid 
P2P networks.  Sections 4 and 5 discuss our data resources and 
evaluation methodologies.  Experimental settings and results are 
presented in Section 6 and Section 7.  Section 8 concludes.   
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2. RELATED WORK 
Many consider Napster to be the first peer-to-peer search system; 
it used centralized indexes for routing queries.  Centralization 
ensured relatively consistent coverage and speed, but also a single 
point of failure; few systems have used that model since.  Gnutella 
was among the first “pure” peer-to-peer architectures.  Gnutella 
0.4 uses the flooding technique for query routing, which is robust, 
but also inefficient and not very scalable [9].  The Gnutella 0.6 
protocol [10] adopts the hybrid P2P architecture to overcome the 
weaknesses of Gnutella 0.4.  For systems using the Gnutella 0.6 
[16] and similar protocols [15], leaf nodes generate descriptions 
of the identifiers of their own documents, and directory nodes use 
these descriptions to select leaf nodes for query routing.  
However, only simple name-based query term matching is used 
for resource selection and document retrieval.  Directory nodes 
still use the flooding technique to route query messages to other 
directory nodes.         

JXTA Search is a distributed search system designed for P2P 
networks [23].  It also uses the hybrid P2P architecture.  Directory 
nodes (“hubs”) in JXTA Search are dedicated nodes that 
efficiently route queries from the leaf nodes that post queries 
(“consumers”) to the leaf nodes that provide information 
(“information providers”).  The information needed by a directory 
node to route a query is the descriptions that the information 
providers register with the directory node.  The descriptions 
describe information providers themselves as well as the kinds of 
queries they can handle.  In theory directory nodes can cooperate 
with each other and queries can also be routed to other directory 
nodes.  However, the cooperation mechanism is yet to be defined. 

The problem of content-based retrieval in pure P2P architectures 
is addressed by [5].  Each node tries to collect compact summaries 
of all other nodes’ inverted indexes.  A node uses a TF.IDF 
algorithm to decide which nodes to contact for information 
requests based on the summaries it collects.  Because no special 
resources are dedicated to support directory services in pure P2P 
architectures, it is somewhat inefficient for each node to collect 
and store information about the contents of all other nodes, 
especially in dynamic P2P networks. 

There have been attempts to extend and improve the Gnutella 0.4 
protocol to enable efficient search and retrieval in pure P2P 
architectures.  For example, [14] proposes that a node use the past 
query responses from its neighbors to help it decide how to route 
new query messages.  Each node in the network builds a run-time 
profile for each of its neighbors.  The profile keeps the most 
recent past queries the neighboring node answered.  These 
profiles are used to select those nodes that are most likely to have 
documents relevant to a new query by comparing the query with 
past queries in the profiles.  This approach improves local query 
routing, but still makes it difficult to reliably find relevant 
information in distant parts of the network.   

The problem of routing queries in peer-to-peer networks is 
essentially a problem of resource selection.  There has been 
considerable prior research on resource selection for distributed 
information retrieval, for example CORI [3], gGlOSS [7, 8] and 
Kullback-Leibler (K-L) divergence-based algorithms [24].  
Although algorithms for resource selection in distributed IR were 
developed for the case of a single directory service only, they 
might be extended to the case of multiple directory services. 

Resource selection algorithms need a resource description of each 
digital library in order to decide which libraries are more likely to 
satisfy the user’s information need given the query.  Maintaining 
resource descriptions for many digital libraries is time and space 
consuming, which may be a more serious problem in P2P 
networks.  Pruning techniques have been explored to reduce the 
storage costs associated with content-based retrieval [4, 19].  
Index or content pruning can reduce storage costs significantly 
while causing only minor losses in retrieval accuracy.   

Although real applications of P2P file-sharing systems have 
reached network sizes of hundreds of thousands of nodes sharing 
millions of documents, the attempts to evaluate the performance 
of retrieval activities in P2P networks have had far smaller scales.  
For example, [5] evaluated content-based retrieval on a P2P 
network of no more than 400 nodes.  The total number of 
documents and queries used in the experiments were 91,775 and 
407 respectively.  The network size used by [14] for evaluation 
was 100 nodes with a total of 22,531 documents and 400 queries.  
Evaluation of retrieval performance in P2P networks with more 
realistic settings requires a testbed of larger scale.   

The prior research suggests that i) hybrid P2P networks are robust 
and (sometimes) scalable, ii) hybrid P2P architectures can better 
support the complicated functionality required for content-based 
retrieval and efficient query routing, iii) existing solutions in 
distributed IR could be adapted to content-based retrieval in 
hybrid P2P networks, iv) pruning techniques could be used to 
reduce the storage costs at directory services, and v) a larger 
testbed with more realistic settings is needed to evaluate content-
based retrieval in large-scale P2P networks.  

3.  RETRIEVAL IN HYBRID P2P 
NETWORKS 
Our reason for studying content-based retrieval in hybrid P2P 
networks is to enhance the functionality of regional directory 
services (directory nodes) to improve efficiency and accuracy.  To 
improve the efficiency of query routing a node must selectively 
route query messages to a subset of its neighboring nodes instead 
of using the flooding technique.  In order to do that without 
sacrificing retrieval accuracy the neighboring nodes selected must 
be those that are most likely to respond to the query.  This 
requires either full or partial knowledge of the contents that each 
node can provide (for leaf node) or cover (for directory node).  
The knowledge of the contents could be represented by language 
models, which could be obtained either by asking the neighboring 
nodes to provide them directly or by learning from their responses 
to past queries.  Different approaches could be used to develop 
different resource selection algorithms in hybrid P2P networks.      

Although hybrid P2P architectures don’t prohibit leaf nodes from 
conducting resource selection, resource selection usually occurs 
only at directory nodes because they consume additional resources 
such as time and space.  In this paper, we only explore the 
resource selection conducted by directory nodes. 

In this section we first introduce the name-based retrieval used in 
the Gnutella 0.6 protocol and how to extend it to support content-
based retrieval.  Then the resource selection and document 
retrieval algorithms for content-based retrieval in hybrid P2P 
networks are presented.   

Most of the algorithms presented here require the query matching 
rule, which defines the number of query terms that need to be 



matched for a query.      Depending on the algorithms, query terms 
are matched against document names, collection vocabularies, or 
document contents, which are described in more detail below.   

3.1 Name-Based Retrieval    
For the name-based retrieval used in the Gnutella 0.6 protocol, 
both resource selection and document retrieval are name-based, in 
which query terms are matched against document names. 

3.1.1 Name-Based Resource Selection (NBRS) 
Resource selection in the Gnutella 0.6 protocol is limited to 
directory nodes selecting neighboring leaf nodes in order to route 
query messages.  When a leaf node issues a query, it routes the 
query to the directory node it connects to.  The directory node 
looks up the query terms in the hash tables sent by neighboring 
leaf nodes for matches and only routes the query to those leaf 
nodes that satisfy the query matching rule.  The hash table of a 
leaf node is generated by hashing all the individual terms from the 
names of its documents.  The directory node broadcasts the query 
to all of its neighboring directory nodes (“flooding”). 

3.1.2 Name-Based Document Retrieval (NBDR) 
Document retrieval at a leaf node is also name-based.  Given a 
query, a node generates a query hit message to include those of its 
documents whose names satisfy the query matching rule.      

3.2 Match-Based Retrieval 
Match-based retrieval is a simple extension of Gnutella 0.6’s 
name-based retrieval in order to support content-based retrieval.  
We implemented it as a comparison to the content-based retrieval 
presented in Section 3.3.    

3.2.1 Match-Based Leaf Node Selection (MBLNS) 
To support content-based retrieval, if we still use the simple 
resource selection algorithm based on query term matching, the 
contents instead of the names of the documents need to be 
checked for matching.  The set of all the documents a leaf node 
provides in the network is referred to as the node’s collection in 
this paper.  The vocabulary of a leaf node is the set of all the 
unique terms that occur in this node’s collection.  For Match-
Based Leaf Node Selection, each directory node uses the 
vocabularies of its neighboring leaf nodes to check query terms 
and route query messages to those leaf nodes that satisfy the query 
matching rule.   

3.2.2 Random Match-Based Leaf Node Selection 
(RMBLNS)  
If a directory node connects too many leaf nodes, it would be 
inefficient for the directory node to route query messages to all of 
the leaf nodes that satisfy the query matching rule because there 
might be a lot of them.  To improve efficiency, the directory node 
can randomly select up to a threshold some neighboring nodes 
that satisfy the query matching rule and route query messages to 
them.  Because the directory node using match-based resource 
selection cannot estimate which leaf nodes are more likely to have 
relevant documents for the given query, this approach is expected 
to degrade the retrieval accuracy.   

3.3 Content-Based Retrieval 
Content-based resource selection and document retrieval 
algorithms use the content models of nodes to select nodes and 
retrieve documents that are most likely to satisfy the user’s 
information need.  We use resource selection and document 

retrieval algorithms based on statistical language models and 
Kullback-Leibler (K-L) divergence [20, 24], as discussed below.   

3.3.1 Content-Based Leaf Node Selection (CBLNS) 
Resource selection based on Boolean term matching may lead to 
too few or too many query messages. If we also consider term 
frequency information, then it is possible to use advanced 
algorithms to calculate the likelihood that a node will satisfy the 
user’s information need and select nodes based on their ranked 
likelihood scores.   In this paper, we adapt a K-L divergence-
based resource selection method [24] to leaf node selection.  The 
likelihood that a leaf node will satisfy the user’s information need 
given a query is calculated by the negative of the K-L divergence 
between query Q and the collection of documents C from the leaf 
node as: 

∑
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where P(q | Q) is the query language model, P(q | C) is the 
collection language model, and P(q | G) is the background 
language model used for smoothing.  Because P(q | Q) is 
independent of any node’s collection C, the ranking of leaf nodes 
based on KL(Q, C) scores is equivalent to ranking based on 
S(Q,C) scores calculated as: 
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A directory node uses S(Q,C) scores to rank its neighboring leaf 
nodes and routes query messages to top-ranked nodes up to a 
threshold number. 

The only information needed to construct the resource 
descriptions used by Equation 2 is term and term frequency 
information of a node’s collection.  The full resource description 
of a leaf node is thus defined as all the unique terms that occur in 
this node’s collection and the corresponding collection term 
frequencies.   For selection based on the full resource descriptions 
of leaf nodes, the collection language model P(q | C) is calculated 
using the full resource description.  Content-Based Leaf Node 
Selection using full resource descriptions is referred to as 
CBLNS-F in our experiments.   

When P2P networks include complex resources such as digital 
libraries with large collections, maintaining the full resource 
descriptions of leaf nodes at a directory node is space inefficient.  
Zipf’s Law states that a term’s frequency is roughly proportional 
to the reverse of its position in the list of all the terms ranked by 
term frequencies in the collection.  From Zipf’s Law it is not 
difficult to infer that the number of terms that occur only once in 
the collection is approximately half the size of the collection’s 
vocabulary.  Thus if we discard those single-occurrence terms, we 
could reduce the sizes of resource descriptions by half. The 
pruned resource description of a leaf node is defined here as all 
the unique terms that occur more than once in the node’s 
collection, and the corresponding collection term frequencies.  
For selection based on the pruned resource descriptions of leaf 
nodes, the collection language model P(q | C) is calculated using 
the pruned resource description.  Content-Based Leaf Node 
Selection using pruned resource descriptions is referred to as 
CBLNS-P in our experiments.   



3.3.2 Content-Based Directory Node Selection 
(CBDNS)  
Similar to Content-Based Leaf Node Selection, a directory node 
could also ask its neighboring directory nodes to provide the 
resource descriptions for the contents of the portions of the 
network that each directory node covers in order to conduct 
directory node selection for query routing.  The resource 
description of a directory node is the union of all the resource 
descriptions of the leaf nodes it connects to.  If a directory node 
connects to many leaf nodes, then its resource description is very 
large, even after pruning single-occurrence terms.  Instead of 
obtaining the resource descriptions directly from its neighboring 
directory nodes, the directory node learns a content model for 
each neighboring directory node by recording the query terms of 
past queries that the neighboring node has responded to.  The 
content model learned is restricted to a small size.  When the 
model size reaches its limit, it deletes a third of the terms in the 
model in ascending order of their frequencies to make room for 
new terms.  

Initially, directory nodes have empty content models for 
neighboring directory nodes, so queries are routed using the 
flooding technique.  Directory nodes learn content models by 
observing which queries each neighboring directory node 
responds to.  Given a new query, the directory node computes 
scores for its neighboring directory nodes using Equation 2, for 
the neighbors whose models match at least one query term.  The 
query is routed to the top-ranked directory nodes, up to a 
threshold number; if too few directory nodes are ranked, the 
flooding technique fills out the set.  In addition, the directory 
node randomly selects 1 more neighboring directory node.  This 
random perturbation is used to make the algorithm more robust.          

3.3.3 Content-Based Document Retrieval (CBDR) 
When a leaf node receives a query message, it uses a K-L 
divergence retrieval algorithm [20] to rank the documents of its 
collection and generate a query hit message, returning information 
about the 50 top-ranked documents that satisfy the query 
matching rule.  The query terms are matched against the contents 
of the documents in this node’s collection.   

4. TESTBED 
The behavior of resource selection and document retrieval 
algorithms in hybrid P2P networks was evaluated using a 
simulator.  The simulator was a version of the JavaSim network 
simulator [13] extended by colleagues to simulate simple peer-to-
peer networks [2], and further extended by us to support name-
based, match-based, and content-based retrieval in hybrid P2P 
networks.   

There has been no standard data for evaluating the performance of 
content-based retrieval in P2P networks, so we developed one 
based on the TREC WT10g web test collection, which is a 10 
gigabyte, 1.69 million document subset of the VLC2 collection 
[11].  We briefly describe below how we used the WT10g 
collection to generate the contents, topology, and queries for 

simulating retrieval in hybrid P2P networks.  Table 4.1 
summarizes some statistics for the testbed. 

4.1 Contents 
The WT10g data was divided into 11,485 collections based on 
document URLs.  2,500 collections were randomly selected for 
use in the experiments described in this paper.  The total number 
of documents in these 2,500 collections was 1,421,088.  The 
HTML title fields of the documents were used as document names 
during tests of name-based retrieval algorithms.  Each of the 
2,500 collections defined a leaf node in a hybrid P2P network 
[18]. 

4.2 Topology 
Directory nodes can use many criteria to determine which leaf 
nodes to include in a directory; for example, a directory might 
cover a specific geographic region or type of content.  Grouping 
documents that have similar content improves resource selection 
accuracy and reduces the number of resources searched [3, 24], so 
the research reported here focused on directory nodes that cover 
specific types of content. 

A similarity-based soft clustering algorithm [17] was used to 
organize leaf nodes by topic; twenty-five clusters were created, 
and leaf nodes that covered multiple topics could appear in 
multiple clusters.  Each cluster defined the contents of a single 
directory node in the hybrid P2P network (i.e., which leaf nodes 
were served by the directory node). 

The connections between directory nodes were generated 
randomly.  Each directory node could have no more than 7 and no 
less than 1 directory node neighbors.  A directory node had on 
average 4 directory node neighbors.   

4.3 Queries 
The number of queries provided by NIST for the TREC WT10g 
web test collection is far from enough to be used in studies on 
content-based retrieval in P2P networks.  Although web logs from 
search engines could provide a large amount of queries, there is 
no way to guarantee that there are relevant documents in the 
WT10g collection for these queries.  One way to generate a large 
amount of queries in a controlled manner is to extract key terms 
from the documents in the WT10g collection and use them as 
queries.  Prior research shows that 85% of the queries posted at 
web search engines have 3 or less query terms [12], so for most 
documents, we should only extract a few key terms as queries.  
We tried a variety of approaches to rank and extract key terms 
from the documents.  The best approach (judged manually) was to 
use the combination of the unigram document language model 
with linear interpolation, the bigram document language model, 
and some heuristic rules to rank document terms or term pairs for 
use as query terms.  We describe this approach in more detail 
below. 

The unigram document language model with linear interpolation 
considers the probability Pemp(t | d) that a term occurs in a 
document as a linear interpolation of the probability Pcore(t | d) 
that the term is generated by the unigram document language 
model, and the probability P(t | background) that the term is 
generated by the background (general English) model: 

) | P()1() | (P  ) | (P coreemp backgroundtdtdt λλ −  +=             (3) 

where λ is the smoothing weight in this mixture model.   

Table 4.1.  Summary statistics for the test data. 
 min avg max 

Number of documents for a collection 8 568 26,505 
Number of collections for a cluster 10 376 1,008 
Number of clusters a collection belongs to 1 4 12 
 



Pemp(t | d) is calculated by maximum likelihood estimation with 
simple Laplacian smoothing.  P(t | background) is calculated 
based on the term frequency of term t in the entire collection of 
WT10g.  Pcore(t | d) is the probability we use to evaluate how 
important a term is to the document.  It is calculated based on an 
algorithm described in [25]. 

The bigram document language model approach uses P(t1, t2 | d) 
to measure the importance of a “phrase” (two terms occurring 
next to each other in the document) to the document.  It is 
calculated as a mixture of maximum likelihood estimates: 
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where c(• ) denotes count, P(t1 | d) and P(t2 | d) are smoothed 
maximum likelihood estimates of the probabilities that document 
d generates terms t1 and t2 respectively, and  c(t1, t2 | d) / c(t1 | d) 
and c(t1, t2 | d) / c(t2 | d) are un-smoothed empirical estimates of 
P(t2  | t1,  d) and P(t1  | t2,  d) respectively. 

The way to combine the unigram document language model and 
the bigram document language model is that any two top-ranked 
terms that appear to be a “phrase” in the top-ranked “phrases” of 
the document are replaced by this “phrase”.   

Other heuristic rules include: 
•  The k-stem stemmer is used because the stemmed terms it 

generates are easier for people to understand, and because 
stemming a term more than once does not change it further; 

•  Single-character terms are eliminated because it is rare to have 
single-character query terms; 

•  Terms that begin with numbers are eliminated; 
•  Terms that belong to a set of web-specific stopwords such as 

“please”, “thank”, “previous” and “next” are eliminated; and 
•  Terms occurring in the title of the document are emphasized by 

a weight of 1.5. 

No query had more than 6 terms.  Most queries had 2-3 terms.  
Table 4.2 shows randomly selected examples of the automatically-
generated queries for different query lengths [18].  15,000 queries 
were randomly selected from the automatically-generated queries 
to be used in our experiments.   

For each query, a leaf node was randomly chosen to issue the 
query on the condition that the node didn’t have the document 
used to generate that query.     

5. EVALUATION METHODOLOGY 
For content-based retrieval in P2P networks, both the retrieval 
accuracy and the efficiency of query routing are very important, so 
the performance of different resource selection and document 

retrieval algorithms in hybrid P2P networks is measured by the 
retrieval accuracy and the efficiency of query routing. 

5.1 Measuring Retrieval Accuracy 
It is expensive to obtain relevance judgments for so many 
automatically-generated queries.  Instead, we used the retrieval 
results from a single large collection as the baseline, and 
measured how well the P2P network could reproduce this 
baseline.  The single large collection was the subset of the WT10g 
used to define leaf node contents in the P2P network (Section 
4.1), and agreement was measured over the top 50 documents 
retrieved for each query.  Although this methodology is not ideal, 
it is not unreasonable because distributed retrieval systems are not 
yet better than the “single collection” baseline (e.g., [3]).   

Accuracy was measured with modified forms of set-based Recall 
and Precision, defined as follows: 

||

||
Recall

A

r=     )5(                   
||

||
Precision

R

r=     )6(  

where R is the set of the documents returned by retrieval in the 
P2P network, A is the set of (up to 50) top-ranked documents 
returned by retrieval using the single WT10g-subset collection, 
and r is the intersection of R and A.  |• | denotes the size of the set. 

Our use of set-based forms of Recall and Precision focuses 
attention on how well content-based retrieval in hybrid P2P 
networks returns the “right” documents for a query, and ignores 
the problem of merging the results from different information 
providers to create an integrated ranked list of documents (“result 
merging”).  Result-merging is an important problem, but it was 
outside the scope of the research reported in this paper. 

The harmonic mean of Recall and Precision (F-Score), computed 
as shown below, was also used to measure retrieval accuracy. 
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1
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1
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5.2 Measuring Query Routing Efficiency 
The efficiency of query routing was measured by the average 
number of query messages routed for each query in the network.   

6. EXPERIMENTAL SETTINGS 
A series of experiments was conducted to study several 
combinations of resource selection and document retrieval 
algorithms for retrieval in hybrid P2P networks (Table 6.1). 

As in the Gnutella protocol, each message had a time-to-live 
(TTL) field that determined the maximum number of times it 
could be relayed in the network.  The TTL was decreased by 1 
each time the message was routed to a node.  When the TTL 
reached 0, the message was no longer routed.  The initial TTL was 
set to 4 for query messages routed to directory nodes.  With 25 
directory nodes and 4 neighboring directory nodes on average for 
each directory node, messages with a TTL of 4 could reach almost 
all the directory nodes in the network using the flooding 
technique, which provided good coverage but could be very 
inefficient.  For query messages routed to leaf nodes by directory 
nodes, the TTL was set to 1 because leaf nodes were not supposed 
to further route query messages. 

Table 4.2.  Randomly selected sample queries of different 
lengths. 

Length Terms 
1 sdtech 
2 malignant hyperthermia 
3 cardiac surgery; anesthesia 
4 trade remedy; nafta law 
5 drug  drive  collision  police  investigate 
6 quarter  company  revenue  increase  sybase  cash 

 



Table 6.2 shows the parameter values used in our experiments for 
different algorithms.  The meanings of these parameters are:    
•  rm (ratio of matched query terms): the percentage of the query 

terms that need to be matched for resource selection and 
document retrieval.  It defines the query matching rule.  For 
example, the value of 100% means that all the query terms of a 
query need to be matched.   

•  rs (ratio of selected leaf nodes): the maximum percentage of the 
neighboring leaf nodes that can be selected by a directory node 
for query routing, which is used by Random Match-Based Leaf 
Node Selection (RMBLNS) and Content-Based Leaf Node 
Selection (CBLNS-F and CBLNS-P). 

•  ns (number of selected directory nodes): the maximum number 
of the neighboring directory nodes that can be selected by a 
directory node for query routing, which is used by Content-
Based Directory Node Selection (CBDNS). 

•  ms (model size): the maximum number of the terms that are 
recorded in a directory node’s content model learned from past 
queries, which is used by Content-Based Directory Node 
Selection (CBDNS). 

•  λ (smoothing weight): the smoothing parameter used in 
Equation 2 by content-based retrieval. 

The Gnutella 0.6 protocol doesn’t specify how many query terms 
need to be matched for the query matching rule of name-based 
retrieval.  It is left to be defined by each implementation of the 
Gnutella 0.6 protocol.  We ran name-based retrieval with two 
values for parameter rm (ratio of matched query terms): 100% 
and 50%.  Because name-based resource selection and document 
retrieval only use the title fields of the documents, which are 
usually short and hence difficult for all of the query terms to 
match, the value of 100% for rm may lead to too few query 
messages and retrieved documents (i.e., low Recall).  However, 
the Precision could be higher than that using 50% for rm.  In 
contrast, for match-based and content-based methods the query 

terms are matched against a node’s vocabulary for resource 
selection or a document’s content for document retrieval.  It is 
much easier to match all the query terms and in fact, there may be 
too many of such matches.  To avoid too many query messages, 
rm (ratio of matched query terms) for match-based and content-
based methods was set to 100%. 

For parameter rs (ratio of selected leaf nodes), the values of 1.0% 
and 2.5% indicate that a directory node could route query 
messages to up to 1.0% and 2.5% of its neighboring leaf nodes for 
Content-Based Leaf Node Selection and Random Matched-Based 
Leaf Node Selection respectively.  The choice of 1.0% for rs in 
Content-Based Leaf Node Selection was quite greedy.  Because 
the maximum number of leaf nodes a directory node connected to 
was 1,008 (Table 4.1), a directory node could route query 
messages to a very small amount of leaf nodes.  This would 
greatly reduce the number of query messages, but may lead to 
lower Recall.  Our experiments show that Content-Based Leaf 
Node Selection with 1.0% for rs gives satisfactory retrieval 
performance in the hybrid P2P network.  The value of 2.5% was 
selected for rs in Random Match-Based Leaf Node Selection to 
yield similar average number of query messages per query as 
Content-Based Leaf Node Selection in order to compare their 
Precision and Recall on the same basis.   

λ (smoothing weight) was set to 0.2 empirically.   

Since a directory node had 4 neighboring directory nodes on 
average, the number of neighboring directory nodes it selected for 
query routing should be smaller than 4 using Content-Based 
Directory Node Selection.  Otherwise, there would be little 
difference compared with using the flooding technique.  We set ns 
(number of selected directory nodes) to 2.  Directory nodes were 
also allowed to select one additional neighboring directory node 
randomly, to increase robustness, thus a directory node could 
route query messages to up to 3 of its neighboring directory nodes 
using Content-Based Directory Node Selection.   

ms (model size) was 750 terms.  When the model size reached its 
limit, a third of the terms in the model were discarded, in 
ascending order of their frequencies, to make room for new terms.  
Some experimental results not shown in this paper indicate that 
retrieval accuracy doesn’t improve much as the model size is 
increased, so we chose 750 for simulation efficiency reasons.   

7. EXPERIMENTAL RESULTS 
Table 7.1 shows the experimental results for retrieval accuracy 
and query routing efficiency using different resource selection and 
document retrieval algorithms for federated search of a hybrid 
P2P network.  Set-based Precision and Recall were measured 
based on comparing the retrieval results from the collections in 

Table 6.1.  Combinations of resource selection and document retrieval algorithms tested in the experiments. 

Resource Selection and 
Document Retrieval Algorithms 

Directory Selects  
Leaf 

Directory Selects  
Directory 

Leaf Selects        
Leaf 

Leaf Selects 
Directory 

Leaf Retrieves 
Document 

NBRS + NBDR NBRS Flooding N/A Flooding NBDR 

MBLNS + CBDR MBLNS Flooding N/A Flooding CBDR 

RMBLNS + CBDR RMBLNS Flooding N/A Flooding CBDR 

CBLNS-F + CBDR CBLNS-F Flooding N/A Flooding CBDR 

CBLNS-P + CBDR CBLNS-P Flooding N/A Flooding CBDR 

MBLNS + CBDNS + CBDR MBLNS CBDNS N/A Flooding CBDR 

CBLNS-F + CBDNS + CBDR CBLNS-F CBDNS N/A Flooding CBDR 

CBLNS-P + CBDNS + CBDR CBLNS-P CBDNS N/A Flooding CBDR 

 

Table 6.2.  Parameter values used in the experiments. 
Resource Selection and 

Document Retrieval 
Algorithms 

rm rs ns ms λ  

NBRS + NBDR 1 100% N/A N/A N/A N/A 
NBRS + NBDR 2 50% N/A N/A N/A N/A 
MBLNS + CBDR 100% N/A N/A N/A N/A 

RMBLNS + CBDR 100% 2.5% N/A N/A N/A 
CBLNS-F + CBDR 100% 1.0% N/A N/A 0.2 
CBLNS-P + CBDR 100% 1.0% N/A N/A 0.2 

MBLNS + CBDNS + CBDR 100% N/A 2 750 0.2 
CBLNS-F + CBDNS + CBDR 100% 1.0% 2 750 0.2 
CBLNS-P + CBDNS + CBDR 100% 1.0% 2 750 0.2 

 



the P2P network with those from the single WT10g-subset 
collection, as stated in Equations 5 and 6.  The retrieval accuracy 
results (Table 7.1) are Recall averaged over all queries and 
Precision averaged over those queries that returned a non-zero 
number of retrieved documents. 

The results show that content-based retrieval in the hybrid P2P 
network had much higher Precision and a smaller average number 
of query messages per query than name-based retrieval with the 
query matching rule that required at least half of the query terms 
to be matched.  This means that content-based resource selection 
algorithms were more effective at selecting nodes that were likely 
to satisfy the user’s information need, and the content-based 
document retrieval algorithm was more likely to retrieve relevant 
documents than name-based approaches.  Although name-based 
retrieval with the query matching rule that required all the query 
terms to be matched was very efficient and had comparable 
Precision as content-based retrieval, the Recall was much lower.  
The higher F-score value of content-based retrieval confirmed that 
content-based retrieval had higher retrieval accuracies than name-
based retrieval.  Overall, content-based retrieval was more 
accurate and efficient than name-based retrieval in the hybrid P2P 
network.   

Compared with Match-Based Leaf Node Selection, Random 
Match-Based Leaf Node Selection greatly improved the efficiency 
of query routing, at the cost of reducing Recall.  Although the 
difference in Precision was negligible (1.9%), the relative 
performance loss for Recall was very large (42.0%).  If low Recall 
is not a major concern, then Random Match-Based Leaf Node 
Selection may be an efficient alternative to content-based resource 
selection algorithms for retrieval in hybrid P2P networks. 

Using Content-Based Leaf Node Selection based on either the full 
resource descriptions or the pruned resource descriptions of leaf 
nodes could significantly improve the efficiency of query routing 
without degrading the Recall much, compared with Match-Based 
Leaf Node Selection.  The increase in Precision indicated that 
using term frequency information made Content-Based Leaf Node 
Selection more effective at restricting the query routing only to 
those leaf nodes that were very likely to satisfy the user’s 
information need.  The slight drop in Recall was because query 
messages were routed to much fewer leaf nodes and so relevant 
documents from leaf nodes not selected were missed.  The F-score 
values of Content-Based Leaf Node Selection and Match-Based 
Leaf Node Selection were comparable, which indicated that these 

two resource selection algorithms gave comparable retrieval 
accuracies.       

Compared with using the full resource descriptions of leaf nodes, 
using the pruned resource descriptions of leaf nodes didn’t change 
the accuracies much.  However, the storage costs at directory 
nodes were greatly reduced.  In our experiments, the average size 
of the resource selection index (the index that was generated from 
the resource descriptions of leaf nodes’ collections) at a directory 
node was 81.29 MB with the full resource descriptions while it 
was only 37.49 MB with the pruned resource descriptions.  The 
percentage of the disk space reduced for storing the resource 
selection index was 53.9% on average for a directory node.   

Using Content-Based Directory Node Selection in addition to 
Content-Based Leaf Node Selection could further improve the 
query routing efficiency without degrading the retrieval 
accuracies. 

These results demonstrate that i) content-based retrieval is more 
accurate and more efficient for some hybrid P2P networks of 
digital libraries than Gnutella 0.6’s name-based retrieval, and ii) 
content-based resource selection algorithms are more accurate and 
more efficient for content-based retrieval in hybrid P2P networks, 
compared with simple match-based resource selection algorithms.   

8. CONCLUSIONS AND FUTURE WORK 
This paper studies the use of content-based resource selection and 
document retrieval algorithms in hybrid peer-to-peer networks.  
Each leaf node is modeled as a digital library running an effective 
content-based text retrieval algorithm, and each directory node is 
modeled as a content-based resource selection service covering a 
set of digital libraries.  Experimental results demonstrate that 
content-based resource selection and text retrieval algorithms are 
far more accurate and efficient than the name-based retrieval and 
flooding methods that are currently more common.  In particular, 
the average number of network messages per query is reduced 
substantially without reducing Recall, and set-based Precision and 
F-Score are both substantially higher.   

Research results are only as credible as the data upon which they 
are based.  The results reported here are based upon a new peer-
to-peer testbed [18] created from the TREC WT10g dataset, 
which is widely available to the research community.  The testbed 
contains over a million documents, 2500 leaf nodes (“digital 
libraries”), 25 directory services, and tens of thousands of queries.  
Although it is still small when compared to “real world” peer-to-
peer networks, and the digital libraries are also relatively small on 
average, this testbed is one of the largest to be used so far for 
research on peer-to-peer systems.  We hope to see more research 
on larger-scale peer-to-peer networks in the future. 

Large-scale peer-to-peer networks have emerged during the last 
few years as an effective method of providing federated search 
across very large networks of very simple digital libraries.  Peer-
to-peer networks are an appealing architecture upon which to 
provide federated search across much larger and more 
sophisticated digital libraries but, as shown in this paper, the 
simple query-routing and information retrieval methods used in 
current peer-to-peer networks won’t suffice.  In particular, name-
based retrieval is not sufficient when digital libraries are large or 
when file-naming conventions are uncertain. 

We view peer-to-peer networks as a particular type of distributed 
information retrieval environment, albeit one that has unique 
characteristics.  It is likely that other techniques developed for 

Table 7.1.  The accuracy and efficiency of different algorithms 
tested in the experiments. 

Resource Selection and 
Document Retrieval 

Algorithms 
Precision Recall F-Score 

Avg Num 
of Query 
Messages 
Per Query 

NBRS + NBDR 1 70.97% 4.98% 0.0931 71 

NBRS + NBDR 2 21.88% 28.85% 0.2489 479 

MBLNS + CBDR 62.12% 33.76% 0.4375 540 

RMBLNS + CBDR 60.94% 19.59% 0.2965 122 

CBLNS-F + CBDR 71.82% 29.65% 0.4197 116 

CBLNS-P + CBDR 72.21% 29.42% 0.4181 114 

MBLNS + CBDNS + CBDR 62.31% 32.49% 0.4271 457 

CBLNS-F + CBDNS + CBDR 71.95% 28.46% 0.4079 85 

CBLNS-P + CBDNS + CBDR 72.42% 28.48% 0.4088 83 
 



distributed information retrieval would also be effective in peer-
to-peer networks.  For example, directory nodes could use query-
based sampling to automatically discover the contents of leaf 
nodes by posting queries and observing the documents returned, 
and result-merging algorithms could be used to merge the ranked 
lists of documents returned by different digital libraries into a 
single, integrated ranked list.           

In our studies, resource selection occurred only at directory nodes.  
For future research we would like to study the performance of 
networks where leaf nodes also have the ability to conduct 
resource selection, for example for local “neighborhood” search.  
We would also like to develop a framework for resource selection 
at directory nodes that integrates selection of leaf nodes and 
selection of directory nodes, rather than treating them as separate 
problems, as is now common.   

The work reported here didn't consider the communication costs 
associated with sending resource descriptions from leaf nodes to 
directory nodes, but these costs could be significant in low-
bandwidth environments (e.g., nodes connected by modems).  
Prior research on using sampled and pruned resource descriptions 
in more traditional distributed information retrieval environments 
[3, 19] suggests that more compact resource descriptions could 
also be used for resource selection in peer-to-peer environments, 
but this remains an item for future work. 
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