
Content-Based Retrieval in Hybrid Peer-to-Peer Networks
Jie Lu

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213
jielu@cs.cmu.edu

Jamie Callan
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213
callan@cs.cmu.edu

ABSTRACT
Hybrid peer-to-peer architectures use special nodes to provide
directory services for regions of the network (“regional directory
services”). Hybrid peer-to-peer architectures are a potentially
powerful model for developing large-scale networks of complex
digital libraries, but peer-to-peer networks have so far tended to
use very simple methods of resource selection and document
retrieval. In this paper, we study the application of content-based
resource selection and document retrieval to hybrid peer-to-peer
networks. The directory nodes that provide regional directory
services construct and use the content models of neighboring
nodes to determine how to route query messages through the
network. The leaf nodes that provide information use content-
based retrieval to decide which documents to retrieve for queries.
The experimental results demonstrate that using content-based
retrieval in hybrid peer-to-peer networks is both more accurate
and more efficient for some digital library environments than
more common alternatives such as Gnutella 0.6.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Retrieval models,
Search process, Selection process.

General Terms
Algorithms, Performance, Experimentation, Design

Keywords
Peer-to-peer, Hybrid, Retrieval, Search, Content-based

1. INTRODUCTION
Peer-to-peer (P2P) computing is a relatively new approach to
federated search of large networks of digital libraries. In P2P
networks the nodes can send and receive information in a way that
makes them both servers and clients. Pure P2P architectures are
completely decentralized; each node can issue requests, respond
to the requests that it can satisfy, or route requests to other nodes.
Hybrid P2P architectures include two types of nodes. There are
leaf nodes which provide information as well as post requests
(“queries”). Leaf nodes can be used to model an individual with
an information need or an information resource (e.g., a digital
library). There are also directory nodes which don’t have
contents of their own but which provide regionally centralized
directory services to the network to improve the routing of

information requests. Directory nodes are also called
“ultrapeers”, “hubs”, or “supernodes” in the research literature.
Each directory node provides directory services for portions of the
network and directory nodes work in a cooperative manner to
cover the whole network.

Early P2P architectures provided federated search by either
relying on a single centralized directory service or employing the
flooding technique in completely decentralized manner (a node
broadcasting query messages to all of its neighbors) to decide how
to route query messages. The former approach suffers from a
single point of failure and has limited scalability, while the latter
approach is less efficient and may overload the network. Hybrid
P2P architectures that use multiple decentralized directory
services were developed to solve these problems. For example,
the Gnutella 0.6 protocol adopts the hybrid P2P architecture [10]
to overcome the weaknesses of the pure P2P architecture in the
Gnutella 0.4 protocol [9].

Although research on information systems using P2P architectures
is very active recently, most recent research focuses on improving
the efficiency, robustness, and load-balancing of distributed
information storage or file-sharing systems [1, 6, 21, 22].
Resource selection and document retrieval in P2P networks have
so far mostly been limited to simple name-based methods:
Matches between query terms and document names or identifiers
are used to determine how to route query messages and which
documents to be retrieved. These techniques may be sufficient for
networks of small digital libraries that use well-known naming
conventions and provide simple services, as is common in music
file-sharing applications. Extending peer-to-peer architectures to
networks of large and complex digital libraries that provide more
sophisticated services requires content-based retrieval.

In this paper, we explore content-based retrieval in P2P networks
that adopt hybrid P2P architectures (“hybrid P2P networks”). In
particular, we apply content-based resource selection and
document retrieval algorithms to hybrid P2P networks. Directory
nodes model the contents of neighboring nodes based on their
resource descriptions or responses to past queries, and use these
models to route query messages (“resource selection”). Leaf
nodes use a probabilistic information retrieval algorithm to
determine which documents to retrieve for queries (“document
retrieval”). In this paper, we show that using content-based
retrieval in hybrid P2P networks can greatly reduce the average
number of query messages per query, and increase Precision while
causing little degradation in Recall.

The following section describes related work. Section 3 presents
in more detail name-based and content-based retrieval in hybrid
P2P networks. Sections 4 and 5 discuss our data resources and
evaluation methodologies. Experimental settings and results are
presented in Section 6 and Section 7. Section 8 concludes.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CIKM’03, November 3-8, 2003, New Orleans, Louisiana, USA.
Copyright 2003 ACM 1-58113-723-0/03/0011…$5.00.

2. RELATED WORK
Many consider Napster to be the first peer-to-peer search system;
it used centralized indexes for routing queries. Centralization
ensured relatively consistent coverage and speed, but also a single
point of failure; few systems have used that model since. Gnutella
was among the first “pure” peer-to-peer architectures. Gnutella
0.4 uses the flooding technique for query routing, which is robust,
but also inefficient and not very scalable [9]. The Gnutella 0.6
protocol [10] adopts the hybrid P2P architecture to overcome the
weaknesses of Gnutella 0.4. For systems using the Gnutella 0.6
[16] and similar protocols [15], leaf nodes generate descriptions
of the identifiers of their own documents, and directory nodes use
these descriptions to select leaf nodes for query routing.
However, only simple name-based query term matching is used
for resource selection and document retrieval. Directory nodes
still use the flooding technique to route query messages to other
directory nodes.

JXTA Search is a distributed search system designed for P2P
networks [23]. It also uses the hybrid P2P architecture. Directory
nodes (“hubs”) in JXTA Search are dedicated nodes that
efficiently route queries from the leaf nodes that post queries
(“consumers”) to the leaf nodes that provide information
(“information providers”). The information needed by a directory
node to route a query is the descriptions that the information
providers register with the directory node. The descriptions
describe information providers themselves as well as the kinds of
queries they can handle. In theory directory nodes can cooperate
with each other and queries can also be routed to other directory
nodes. However, the cooperation mechanism is yet to be defined.

The problem of content-based retrieval in pure P2P architectures
is addressed by [5]. Each node tries to collect compact summaries
of all other nodes’ inverted indexes. A node uses a TF.IDF
algorithm to decide which nodes to contact for information
requests based on the summaries it collects. Because no special
resources are dedicated to support directory services in pure P2P
architectures, it is somewhat inefficient for each node to collect
and store information about the contents of all other nodes,
especially in dynamic P2P networks.

There have been attempts to extend and improve the Gnutella 0.4
protocol to enable efficient search and retrieval in pure P2P
architectures. For example, [14] proposes that a node use the past
query responses from its neighbors to help it decide how to route
new query messages. Each node in the network builds a run-time
profile for each of its neighbors. The profile keeps the most
recent past queries the neighboring node answered. These
profiles are used to select those nodes that are most likely to have
documents relevant to a new query by comparing the query with
past queries in the profiles. This approach improves local query
routing, but still makes it difficult to reliably find relevant
information in distant parts of the network.

The problem of routing queries in peer-to-peer networks is
essentially a problem of resource selection. There has been
considerable prior research on resource selection for distributed
information retrieval, for example CORI [3], gGlOSS [7, 8] and
Kullback-Leibler (K-L) divergence-based algorithms [24].
Although algorithms for resource selection in distributed IR were
developed for the case of a single directory service only, they
might be extended to the case of multiple directory services.

Resource selection algorithms need a resource description of each
digital library in order to decide which libraries are more likely to
satisfy the user’s information need given the query. Maintaining
resource descriptions for many digital libraries is time and space
consuming, which may be a more serious problem in P2P
networks. Pruning techniques have been explored to reduce the
storage costs associated with content-based retrieval [4, 19].
Index or content pruning can reduce storage costs significantly
while causing only minor losses in retrieval accuracy.

Although real applications of P2P file-sharing systems have
reached network sizes of hundreds of thousands of nodes sharing
millions of documents, the attempts to evaluate the performance
of retrieval activities in P2P networks have had far smaller scales.
For example, [5] evaluated content-based retrieval on a P2P
network of no more than 400 nodes. The total number of
documents and queries used in the experiments were 91,775 and
407 respectively. The network size used by [14] for evaluation
was 100 nodes with a total of 22,531 documents and 400 queries.
Evaluation of retrieval performance in P2P networks with more
realistic settings requires a testbed of larger scale.

The prior research suggests that i) hybrid P2P networks are robust
and (sometimes) scalable, ii) hybrid P2P architectures can better
support the complicated functionality required for content-based
retrieval and efficient query routing, iii) existing solutions in
distributed IR could be adapted to content-based retrieval in
hybrid P2P networks, iv) pruning techniques could be used to
reduce the storage costs at directory services, and v) a larger
testbed with more realistic settings is needed to evaluate content-
based retrieval in large-scale P2P networks.

3. RETRIEVAL IN HYBRID P2P
NETWORKS
Our reason for studying content-based retrieval in hybrid P2P
networks is to enhance the functionality of regional directory
services (directory nodes) to improve efficiency and accuracy. To
improve the efficiency of query routing a node must selectively
route query messages to a subset of its neighboring nodes instead
of using the flooding technique. In order to do that without
sacrificing retrieval accuracy the neighboring nodes selected must
be those that are most likely to respond to the query. This
requires either full or partial knowledge of the contents that each
node can provide (for leaf node) or cover (for directory node).
The knowledge of the contents could be represented by language
models, which could be obtained either by asking the neighboring
nodes to provide them directly or by learning from their responses
to past queries. Different approaches could be used to develop
different resource selection algorithms in hybrid P2P networks.

Although hybrid P2P architectures don’t prohibit leaf nodes from
conducting resource selection, resource selection usually occurs
only at directory nodes because they consume additional resources
such as time and space. In this paper, we only explore the
resource selection conducted by directory nodes.

In this section we first introduce the name-based retrieval used in
the Gnutella 0.6 protocol and how to extend it to support content-
based retrieval. Then the resource selection and document
retrieval algorithms for content-based retrieval in hybrid P2P
networks are presented.

Most of the algorithms presented here require the query matching
rule, which defines the number of query terms that need to be

matched for a query. Depending on the algorithms, query terms
are matched against document names, collection vocabularies, or
document contents, which are described in more detail below.

3.1 Name-Based Retrieval
For the name-based retrieval used in the Gnutella 0.6 protocol,
both resource selection and document retrieval are name-based, in
which query terms are matched against document names.

3.1.1 Name-Based Resource Selection (NBRS)
Resource selection in the Gnutella 0.6 protocol is limited to
directory nodes selecting neighboring leaf nodes in order to route
query messages. When a leaf node issues a query, it routes the
query to the directory node it connects to. The directory node
looks up the query terms in the hash tables sent by neighboring
leaf nodes for matches and only routes the query to those leaf
nodes that satisfy the query matching rule. The hash table of a
leaf node is generated by hashing all the individual terms from the
names of its documents. The directory node broadcasts the query
to all of its neighboring directory nodes (“flooding”).

3.1.2 Name-Based Document Retrieval (NBDR)
Document retrieval at a leaf node is also name-based. Given a
query, a node generates a query hit message to include those of its
documents whose names satisfy the query matching rule.

3.2 Match-Based Retrieval
Match-based retrieval is a simple extension of Gnutella 0.6’s
name-based retrieval in order to support content-based retrieval.
We implemented it as a comparison to the content-based retrieval
presented in Section 3.3.

3.2.1 Match-Based Leaf Node Selection (MBLNS)
To support content-based retrieval, if we still use the simple
resource selection algorithm based on query term matching, the
contents instead of the names of the documents need to be
checked for matching. The set of all the documents a leaf node
provides in the network is referred to as the node’s collection in
this paper. The vocabulary of a leaf node is the set of all the
unique terms that occur in this node’s collection. For Match-
Based Leaf Node Selection, each directory node uses the
vocabularies of its neighboring leaf nodes to check query terms
and route query messages to those leaf nodes that satisfy the query
matching rule.

3.2.2 Random Match-Based Leaf Node Selection
(RMBLNS)
If a directory node connects too many leaf nodes, it would be
inefficient for the directory node to route query messages to all of
the leaf nodes that satisfy the query matching rule because there
might be a lot of them. To improve efficiency, the directory node
can randomly select up to a threshold some neighboring nodes
that satisfy the query matching rule and route query messages to
them. Because the directory node using match-based resource
selection cannot estimate which leaf nodes are more likely to have
relevant documents for the given query, this approach is expected
to degrade the retrieval accuracy.

3.3 Content-Based Retrieval
Content-based resource selection and document retrieval
algorithms use the content models of nodes to select nodes and
retrieve documents that are most likely to satisfy the user’s
information need. We use resource selection and document

retrieval algorithms based on statistical language models and
Kullback-Leibler (K-L) divergence [20, 24], as discussed below.

3.3.1 Content-Based Leaf Node Selection (CBLNS)
Resource selection based on Boolean term matching may lead to
too few or too many query messages. If we also consider term
frequency information, then it is possible to use advanced
algorithms to calculate the likelihood that a node will satisfy the
user’s information need and select nodes based on their ranked
likelihood scores. In this paper, we adapt a K-L divergence-
based resource selection method [24] to leaf node selection. The
likelihood that a leaf node will satisfy the user’s information need
given a query is calculated by the negative of the K-L divergence
between query Q and the collection of documents C from the leaf
node as:

∑
∈ −+

−=
Qq GqCq

Qq
QqCQKL

)|(P)1()|(P

)|(P
log)|(P),(

λλ
 (1)

where P(q | Q) is the query language model, P(q | C) is the
collection language model, and P(q | G) is the background
language model used for smoothing. Because P(q | Q) is
independent of any node’s collection C, the ranking of leaf nodes
based on KL(Q, C) scores is equivalent to ranking based on
S(Q,C) scores calculated as:

∑
∈

−+=
Qq

GqCqCQS)}|(P)1()|(Plog{),(λλ (2)

A directory node uses S(Q,C) scores to rank its neighboring leaf
nodes and routes query messages to top-ranked nodes up to a
threshold number.

The only information needed to construct the resource
descriptions used by Equation 2 is term and term frequency
information of a node’s collection. The full resource description
of a leaf node is thus defined as all the unique terms that occur in
this node’s collection and the corresponding collection term
frequencies. For selection based on the full resource descriptions
of leaf nodes, the collection language model P(q | C) is calculated
using the full resource description. Content-Based Leaf Node
Selection using full resource descriptions is referred to as
CBLNS-F in our experiments.

When P2P networks include complex resources such as digital
libraries with large collections, maintaining the full resource
descriptions of leaf nodes at a directory node is space inefficient.
Zipf’s Law states that a term’s frequency is roughly proportional
to the reverse of its position in the list of all the terms ranked by
term frequencies in the collection. From Zipf’s Law it is not
difficult to infer that the number of terms that occur only once in
the collection is approximately half the size of the collection’s
vocabulary. Thus if we discard those single-occurrence terms, we
could reduce the sizes of resource descriptions by half. The
pruned resource description of a leaf node is defined here as all
the unique terms that occur more than once in the node’s
collection, and the corresponding collection term frequencies.
For selection based on the pruned resource descriptions of leaf
nodes, the collection language model P(q | C) is calculated using
the pruned resource description. Content-Based Leaf Node
Selection using pruned resource descriptions is referred to as
CBLNS-P in our experiments.

3.3.2 Content-Based Directory Node Selection
(CBDNS)
Similar to Content-Based Leaf Node Selection, a directory node
could also ask its neighboring directory nodes to provide the
resource descriptions for the contents of the portions of the
network that each directory node covers in order to conduct
directory node selection for query routing. The resource
description of a directory node is the union of all the resource
descriptions of the leaf nodes it connects to. If a directory node
connects to many leaf nodes, then its resource description is very
large, even after pruning single-occurrence terms. Instead of
obtaining the resource descriptions directly from its neighboring
directory nodes, the directory node learns a content model for
each neighboring directory node by recording the query terms of
past queries that the neighboring node has responded to. The
content model learned is restricted to a small size. When the
model size reaches its limit, it deletes a third of the terms in the
model in ascending order of their frequencies to make room for
new terms.

Initially, directory nodes have empty content models for
neighboring directory nodes, so queries are routed using the
flooding technique. Directory nodes learn content models by
observing which queries each neighboring directory node
responds to. Given a new query, the directory node computes
scores for its neighboring directory nodes using Equation 2, for
the neighbors whose models match at least one query term. The
query is routed to the top-ranked directory nodes, up to a
threshold number; if too few directory nodes are ranked, the
flooding technique fills out the set. In addition, the directory
node randomly selects 1 more neighboring directory node. This
random perturbation is used to make the algorithm more robust.

3.3.3 Content-Based Document Retrieval (CBDR)
When a leaf node receives a query message, it uses a K-L
divergence retrieval algorithm [20] to rank the documents of its
collection and generate a query hit message, returning information
about the 50 top-ranked documents that satisfy the query
matching rule. The query terms are matched against the contents
of the documents in this node’s collection.

4. TESTBED
The behavior of resource selection and document retrieval
algorithms in hybrid P2P networks was evaluated using a
simulator. The simulator was a version of the JavaSim network
simulator [13] extended by colleagues to simulate simple peer-to-
peer networks [2], and further extended by us to support name-
based, match-based, and content-based retrieval in hybrid P2P
networks.

There has been no standard data for evaluating the performance of
content-based retrieval in P2P networks, so we developed one
based on the TREC WT10g web test collection, which is a 10
gigabyte, 1.69 million document subset of the VLC2 collection
[11]. We briefly describe below how we used the WT10g
collection to generate the contents, topology, and queries for

simulating retrieval in hybrid P2P networks. Table 4.1
summarizes some statistics for the testbed.

4.1 Contents
The WT10g data was divided into 11,485 collections based on
document URLs. 2,500 collections were randomly selected for
use in the experiments described in this paper. The total number
of documents in these 2,500 collections was 1,421,088. The
HTML title fields of the documents were used as document names
during tests of name-based retrieval algorithms. Each of the
2,500 collections defined a leaf node in a hybrid P2P network
[18].

4.2 Topology
Directory nodes can use many criteria to determine which leaf
nodes to include in a directory; for example, a directory might
cover a specific geographic region or type of content. Grouping
documents that have similar content improves resource selection
accuracy and reduces the number of resources searched [3, 24], so
the research reported here focused on directory nodes that cover
specific types of content.

A similarity-based soft clustering algorithm [17] was used to
organize leaf nodes by topic; twenty-five clusters were created,
and leaf nodes that covered multiple topics could appear in
multiple clusters. Each cluster defined the contents of a single
directory node in the hybrid P2P network (i.e., which leaf nodes
were served by the directory node).

The connections between directory nodes were generated
randomly. Each directory node could have no more than 7 and no
less than 1 directory node neighbors. A directory node had on
average 4 directory node neighbors.

4.3 Queries
The number of queries provided by NIST for the TREC WT10g
web test collection is far from enough to be used in studies on
content-based retrieval in P2P networks. Although web logs from
search engines could provide a large amount of queries, there is
no way to guarantee that there are relevant documents in the
WT10g collection for these queries. One way to generate a large
amount of queries in a controlled manner is to extract key terms
from the documents in the WT10g collection and use them as
queries. Prior research shows that 85% of the queries posted at
web search engines have 3 or less query terms [12], so for most
documents, we should only extract a few key terms as queries.
We tried a variety of approaches to rank and extract key terms
from the documents. The best approach (judged manually) was to
use the combination of the unigram document language model
with linear interpolation, the bigram document language model,
and some heuristic rules to rank document terms or term pairs for
use as query terms. We describe this approach in more detail
below.

The unigram document language model with linear interpolation
considers the probability Pemp(t | d) that a term occurs in a
document as a linear interpolation of the probability Pcore(t | d)
that the term is generated by the unigram document language
model, and the probability P(t | background) that the term is
generated by the background (general English) model:

) | P()1() | (P) | (P coreemp backgroundtdtdt λλ − += (3)

where λ is the smoothing weight in this mixture model.

Table 4.1. Summary statistics for the test data.
 min avg max

Number of documents for a collection 8 568 26,505
Number of collections for a cluster 10 376 1,008
Number of clusters a collection belongs to 1 4 12

Pemp(t | d) is calculated by maximum likelihood estimation with
simple Laplacian smoothing. P(t | background) is calculated
based on the term frequency of term t in the entire collection of
WT10g. Pcore(t | d) is the probability we use to evaluate how
important a term is to the document. It is calculated based on an
algorithm described in [25].

The bigram document language model approach uses P(t1, t2 | d)
to measure the importance of a “phrase” (two terms occurring
next to each other in the document) to the document. It is
calculated as a mixture of maximum likelihood estimates:

)|(

)|,(
)|(P5.0

)|(

)|,(
)|(P5.0)|,(P

2

21
2

1

21
121 dtc

dttc
dt

dtc

dttc
dtdtt += (4)

where c(•) denotes count, P(t1 | d) and P(t2 | d) are smoothed
maximum likelihood estimates of the probabilities that document
d generates terms t1 and t2 respectively, and c(t1, t2 | d) / c(t1 | d)
and c(t1, t2 | d) / c(t2 | d) are un-smoothed empirical estimates of
P(t2 | t1, d) and P(t1 | t2, d) respectively.

The way to combine the unigram document language model and
the bigram document language model is that any two top-ranked
terms that appear to be a “phrase” in the top-ranked “phrases” of
the document are replaced by this “phrase”.

Other heuristic rules include:
• The k-stem stemmer is used because the stemmed terms it

generates are easier for people to understand, and because
stemming a term more than once does not change it further;

• Single-character terms are eliminated because it is rare to have
single-character query terms;

• Terms that begin with numbers are eliminated;
• Terms that belong to a set of web-specific stopwords such as

“please”, “thank”, “previous” and “next” are eliminated; and
• Terms occurring in the title of the document are emphasized by

a weight of 1.5.

No query had more than 6 terms. Most queries had 2-3 terms.
Table 4.2 shows randomly selected examples of the automatically-
generated queries for different query lengths [18]. 15,000 queries
were randomly selected from the automatically-generated queries
to be used in our experiments.

For each query, a leaf node was randomly chosen to issue the
query on the condition that the node didn’t have the document
used to generate that query.

5. EVALUATION METHODOLOGY
For content-based retrieval in P2P networks, both the retrieval
accuracy and the efficiency of query routing are very important, so
the performance of different resource selection and document

retrieval algorithms in hybrid P2P networks is measured by the
retrieval accuracy and the efficiency of query routing.

5.1 Measuring Retrieval Accuracy
It is expensive to obtain relevance judgments for so many
automatically-generated queries. Instead, we used the retrieval
results from a single large collection as the baseline, and
measured how well the P2P network could reproduce this
baseline. The single large collection was the subset of the WT10g
used to define leaf node contents in the P2P network (Section
4.1), and agreement was measured over the top 50 documents
retrieved for each query. Although this methodology is not ideal,
it is not unreasonable because distributed retrieval systems are not
yet better than the “single collection” baseline (e.g., [3]).

Accuracy was measured with modified forms of set-based Recall
and Precision, defined as follows:

||

||
Recall

A

r=)5(
||

||
Precision

R

r=)6(

where R is the set of the documents returned by retrieval in the
P2P network, A is the set of (up to 50) top-ranked documents
returned by retrieval using the single WT10g-subset collection,
and r is the intersection of R and A. |• | denotes the size of the set.

Our use of set-based forms of Recall and Precision focuses
attention on how well content-based retrieval in hybrid P2P
networks returns the “right” documents for a query, and ignores
the problem of merging the results from different information
providers to create an integrated ranked list of documents (“result
merging”). Result-merging is an important problem, but it was
outside the scope of the research reported in this paper.

The harmonic mean of Recall and Precision (F-Score), computed
as shown below, was also used to measure retrieval accuracy.

)
Precision

1

Recall

1
(/2Score-F += (7)

5.2 Measuring Query Routing Efficiency
The efficiency of query routing was measured by the average
number of query messages routed for each query in the network.

6. EXPERIMENTAL SETTINGS
A series of experiments was conducted to study several
combinations of resource selection and document retrieval
algorithms for retrieval in hybrid P2P networks (Table 6.1).

As in the Gnutella protocol, each message had a time-to-live
(TTL) field that determined the maximum number of times it
could be relayed in the network. The TTL was decreased by 1
each time the message was routed to a node. When the TTL
reached 0, the message was no longer routed. The initial TTL was
set to 4 for query messages routed to directory nodes. With 25
directory nodes and 4 neighboring directory nodes on average for
each directory node, messages with a TTL of 4 could reach almost
all the directory nodes in the network using the flooding
technique, which provided good coverage but could be very
inefficient. For query messages routed to leaf nodes by directory
nodes, the TTL was set to 1 because leaf nodes were not supposed
to further route query messages.

Table 4.2. Randomly selected sample queries of different
lengths.

Length Terms
1 sdtech
2 malignant hyperthermia
3 cardiac surgery; anesthesia
4 trade remedy; nafta law
5 drug drive collision police investigate
6 quarter company revenue increase sybase cash

Table 6.2 shows the parameter values used in our experiments for
different algorithms. The meanings of these parameters are:
• rm (ratio of matched query terms): the percentage of the query

terms that need to be matched for resource selection and
document retrieval. It defines the query matching rule. For
example, the value of 100% means that all the query terms of a
query need to be matched.

• rs (ratio of selected leaf nodes): the maximum percentage of the
neighboring leaf nodes that can be selected by a directory node
for query routing, which is used by Random Match-Based Leaf
Node Selection (RMBLNS) and Content-Based Leaf Node
Selection (CBLNS-F and CBLNS-P).

• ns (number of selected directory nodes): the maximum number
of the neighboring directory nodes that can be selected by a
directory node for query routing, which is used by Content-
Based Directory Node Selection (CBDNS).

• ms (model size): the maximum number of the terms that are
recorded in a directory node’s content model learned from past
queries, which is used by Content-Based Directory Node
Selection (CBDNS).

• λ (smoothing weight): the smoothing parameter used in
Equation 2 by content-based retrieval.

The Gnutella 0.6 protocol doesn’t specify how many query terms
need to be matched for the query matching rule of name-based
retrieval. It is left to be defined by each implementation of the
Gnutella 0.6 protocol. We ran name-based retrieval with two
values for parameter rm (ratio of matched query terms): 100%
and 50%. Because name-based resource selection and document
retrieval only use the title fields of the documents, which are
usually short and hence difficult for all of the query terms to
match, the value of 100% for rm may lead to too few query
messages and retrieved documents (i.e., low Recall). However,
the Precision could be higher than that using 50% for rm. In
contrast, for match-based and content-based methods the query

terms are matched against a node’s vocabulary for resource
selection or a document’s content for document retrieval. It is
much easier to match all the query terms and in fact, there may be
too many of such matches. To avoid too many query messages,
rm (ratio of matched query terms) for match-based and content-
based methods was set to 100%.

For parameter rs (ratio of selected leaf nodes), the values of 1.0%
and 2.5% indicate that a directory node could route query
messages to up to 1.0% and 2.5% of its neighboring leaf nodes for
Content-Based Leaf Node Selection and Random Matched-Based
Leaf Node Selection respectively. The choice of 1.0% for rs in
Content-Based Leaf Node Selection was quite greedy. Because
the maximum number of leaf nodes a directory node connected to
was 1,008 (Table 4.1), a directory node could route query
messages to a very small amount of leaf nodes. This would
greatly reduce the number of query messages, but may lead to
lower Recall. Our experiments show that Content-Based Leaf
Node Selection with 1.0% for rs gives satisfactory retrieval
performance in the hybrid P2P network. The value of 2.5% was
selected for rs in Random Match-Based Leaf Node Selection to
yield similar average number of query messages per query as
Content-Based Leaf Node Selection in order to compare their
Precision and Recall on the same basis.

λ (smoothing weight) was set to 0.2 empirically.

Since a directory node had 4 neighboring directory nodes on
average, the number of neighboring directory nodes it selected for
query routing should be smaller than 4 using Content-Based
Directory Node Selection. Otherwise, there would be little
difference compared with using the flooding technique. We set ns
(number of selected directory nodes) to 2. Directory nodes were
also allowed to select one additional neighboring directory node
randomly, to increase robustness, thus a directory node could
route query messages to up to 3 of its neighboring directory nodes
using Content-Based Directory Node Selection.

ms (model size) was 750 terms. When the model size reached its
limit, a third of the terms in the model were discarded, in
ascending order of their frequencies, to make room for new terms.
Some experimental results not shown in this paper indicate that
retrieval accuracy doesn’t improve much as the model size is
increased, so we chose 750 for simulation efficiency reasons.

7. EXPERIMENTAL RESULTS
Table 7.1 shows the experimental results for retrieval accuracy
and query routing efficiency using different resource selection and
document retrieval algorithms for federated search of a hybrid
P2P network. Set-based Precision and Recall were measured
based on comparing the retrieval results from the collections in

Table 6.1. Combinations of resource selection and document retrieval algorithms tested in the experiments.

Resource Selection and
Document Retrieval Algorithms

Directory Selects
Leaf

Directory Selects
Directory

Leaf Selects
Leaf

Leaf Selects
Directory

Leaf Retrieves
Document

NBRS + NBDR NBRS Flooding N/A Flooding NBDR

MBLNS + CBDR MBLNS Flooding N/A Flooding CBDR

RMBLNS + CBDR RMBLNS Flooding N/A Flooding CBDR

CBLNS-F + CBDR CBLNS-F Flooding N/A Flooding CBDR

CBLNS-P + CBDR CBLNS-P Flooding N/A Flooding CBDR

MBLNS + CBDNS + CBDR MBLNS CBDNS N/A Flooding CBDR

CBLNS-F + CBDNS + CBDR CBLNS-F CBDNS N/A Flooding CBDR

CBLNS-P + CBDNS + CBDR CBLNS-P CBDNS N/A Flooding CBDR

Table 6.2. Parameter values used in the experiments.
Resource Selection and

Document Retrieval
Algorithms

rm rs ns ms λ

NBRS + NBDR 1 100% N/A N/A N/A N/A
NBRS + NBDR 2 50% N/A N/A N/A N/A
MBLNS + CBDR 100% N/A N/A N/A N/A

RMBLNS + CBDR 100% 2.5% N/A N/A N/A
CBLNS-F + CBDR 100% 1.0% N/A N/A 0.2
CBLNS-P + CBDR 100% 1.0% N/A N/A 0.2

MBLNS + CBDNS + CBDR 100% N/A 2 750 0.2
CBLNS-F + CBDNS + CBDR 100% 1.0% 2 750 0.2
CBLNS-P + CBDNS + CBDR 100% 1.0% 2 750 0.2

the P2P network with those from the single WT10g-subset
collection, as stated in Equations 5 and 6. The retrieval accuracy
results (Table 7.1) are Recall averaged over all queries and
Precision averaged over those queries that returned a non-zero
number of retrieved documents.

The results show that content-based retrieval in the hybrid P2P
network had much higher Precision and a smaller average number
of query messages per query than name-based retrieval with the
query matching rule that required at least half of the query terms
to be matched. This means that content-based resource selection
algorithms were more effective at selecting nodes that were likely
to satisfy the user’s information need, and the content-based
document retrieval algorithm was more likely to retrieve relevant
documents than name-based approaches. Although name-based
retrieval with the query matching rule that required all the query
terms to be matched was very efficient and had comparable
Precision as content-based retrieval, the Recall was much lower.
The higher F-score value of content-based retrieval confirmed that
content-based retrieval had higher retrieval accuracies than name-
based retrieval. Overall, content-based retrieval was more
accurate and efficient than name-based retrieval in the hybrid P2P
network.

Compared with Match-Based Leaf Node Selection, Random
Match-Based Leaf Node Selection greatly improved the efficiency
of query routing, at the cost of reducing Recall. Although the
difference in Precision was negligible (1.9%), the relative
performance loss for Recall was very large (42.0%). If low Recall
is not a major concern, then Random Match-Based Leaf Node
Selection may be an efficient alternative to content-based resource
selection algorithms for retrieval in hybrid P2P networks.

Using Content-Based Leaf Node Selection based on either the full
resource descriptions or the pruned resource descriptions of leaf
nodes could significantly improve the efficiency of query routing
without degrading the Recall much, compared with Match-Based
Leaf Node Selection. The increase in Precision indicated that
using term frequency information made Content-Based Leaf Node
Selection more effective at restricting the query routing only to
those leaf nodes that were very likely to satisfy the user’s
information need. The slight drop in Recall was because query
messages were routed to much fewer leaf nodes and so relevant
documents from leaf nodes not selected were missed. The F-score
values of Content-Based Leaf Node Selection and Match-Based
Leaf Node Selection were comparable, which indicated that these

two resource selection algorithms gave comparable retrieval
accuracies.

Compared with using the full resource descriptions of leaf nodes,
using the pruned resource descriptions of leaf nodes didn’t change
the accuracies much. However, the storage costs at directory
nodes were greatly reduced. In our experiments, the average size
of the resource selection index (the index that was generated from
the resource descriptions of leaf nodes’ collections) at a directory
node was 81.29 MB with the full resource descriptions while it
was only 37.49 MB with the pruned resource descriptions. The
percentage of the disk space reduced for storing the resource
selection index was 53.9% on average for a directory node.

Using Content-Based Directory Node Selection in addition to
Content-Based Leaf Node Selection could further improve the
query routing efficiency without degrading the retrieval
accuracies.

These results demonstrate that i) content-based retrieval is more
accurate and more efficient for some hybrid P2P networks of
digital libraries than Gnutella 0.6’s name-based retrieval, and ii)
content-based resource selection algorithms are more accurate and
more efficient for content-based retrieval in hybrid P2P networks,
compared with simple match-based resource selection algorithms.

8. CONCLUSIONS AND FUTURE WORK
This paper studies the use of content-based resource selection and
document retrieval algorithms in hybrid peer-to-peer networks.
Each leaf node is modeled as a digital library running an effective
content-based text retrieval algorithm, and each directory node is
modeled as a content-based resource selection service covering a
set of digital libraries. Experimental results demonstrate that
content-based resource selection and text retrieval algorithms are
far more accurate and efficient than the name-based retrieval and
flooding methods that are currently more common. In particular,
the average number of network messages per query is reduced
substantially without reducing Recall, and set-based Precision and
F-Score are both substantially higher.

Research results are only as credible as the data upon which they
are based. The results reported here are based upon a new peer-
to-peer testbed [18] created from the TREC WT10g dataset,
which is widely available to the research community. The testbed
contains over a million documents, 2500 leaf nodes (“digital
libraries”), 25 directory services, and tens of thousands of queries.
Although it is still small when compared to “real world” peer-to-
peer networks, and the digital libraries are also relatively small on
average, this testbed is one of the largest to be used so far for
research on peer-to-peer systems. We hope to see more research
on larger-scale peer-to-peer networks in the future.

Large-scale peer-to-peer networks have emerged during the last
few years as an effective method of providing federated search
across very large networks of very simple digital libraries. Peer-
to-peer networks are an appealing architecture upon which to
provide federated search across much larger and more
sophisticated digital libraries but, as shown in this paper, the
simple query-routing and information retrieval methods used in
current peer-to-peer networks won’t suffice. In particular, name-
based retrieval is not sufficient when digital libraries are large or
when file-naming conventions are uncertain.

We view peer-to-peer networks as a particular type of distributed
information retrieval environment, albeit one that has unique
characteristics. It is likely that other techniques developed for

Table 7.1. The accuracy and efficiency of different algorithms
tested in the experiments.

Resource Selection and
Document Retrieval

Algorithms
Precision Recall F-Score

Avg Num
of Query
Messages
Per Query

NBRS + NBDR 1 70.97% 4.98% 0.0931 71

NBRS + NBDR 2 21.88% 28.85% 0.2489 479

MBLNS + CBDR 62.12% 33.76% 0.4375 540

RMBLNS + CBDR 60.94% 19.59% 0.2965 122

CBLNS-F + CBDR 71.82% 29.65% 0.4197 116

CBLNS-P + CBDR 72.21% 29.42% 0.4181 114

MBLNS + CBDNS + CBDR 62.31% 32.49% 0.4271 457

CBLNS-F + CBDNS + CBDR 71.95% 28.46% 0.4079 85

CBLNS-P + CBDNS + CBDR 72.42% 28.48% 0.4088 83

distributed information retrieval would also be effective in peer-
to-peer networks. For example, directory nodes could use query-
based sampling to automatically discover the contents of leaf
nodes by posting queries and observing the documents returned,
and result-merging algorithms could be used to merge the ranked
lists of documents returned by different digital libraries into a
single, integrated ranked list.

In our studies, resource selection occurred only at directory nodes.
For future research we would like to study the performance of
networks where leaf nodes also have the ability to conduct
resource selection, for example for local “neighborhood” search.
We would also like to develop a framework for resource selection
at directory nodes that integrates selection of leaf nodes and
selection of directory nodes, rather than treating them as separate
problems, as is now common.

The work reported here didn't consider the communication costs
associated with sending resource descriptions from leaf nodes to
directory nodes, but these costs could be significant in low-
bandwidth environments (e.g., nodes connected by modems).
Prior research on using sampled and pruned resource descriptions
in more traditional distributed information retrieval environments
[3, 19] suggests that more compact resource descriptions could
also be used for resource selection in peer-to-peer environments,
but this remains an item for future work.

ACKNOWLEDGMENTS
This material is based on work supported by NSF grant IIS-
0096139. Any opinions, findings, conclusions or
recommendations expressed in this material are the authors', and
do not necessarily reflect those of the sponsor.

REFERENCES
[1] K. Aberer. P-Grid: A self-organizing access structure for

P2P information systems, In Proc. of the 6th International
Conference on Cooperative Information Systems, 2001.

[2] A. Asvanund, R. Krishnan, M.D. Smith, R. Telang, S. Bagla,
and M. Kapadia. Intelligent club management in peer-to-
peer petworks. In Workshop on Economics of Peer-to-Peer
Systems, 2003.

[3] J. Callan. Distributed information retrieval. W. B. Croft,
editor, Advances in information retrieval, chapter 5, pages
127-150. Kluwer Academic Publishers, 2000.

[4] D. Carmel, D. Cohen, R. Fagin, E. Farchi, M. Herscovici, Y.
S. Maarek and A. Soffer. Static index pruning for
information retrieval systems. In Proc. of the 24th Annual
International ACM SIGIR Conference on Research and
Development in Information Retrieval, 2001.

[5] F. Cuenca-Acuna and T. Nguyen. Text-based content search
and retrieval in ad hoc p2p communities. Technical Report
DCS-TR-483, Rutgers University, 2002.

[6] F. Dabek, M. Kaashoek, D. Karger, R. Morris, I. Stoica.
Wide-area cooperative storage with CFS. In Proc. of the18th
ACM Symposium on Operating Systems Principles, 2001.

[7] L. Gravano and H. Garcia-Molina. Generalizing GlOSS to
vector-space databases and broker hierarchies. In U. Dayal,
P. Gra and S. Nishio, editors, VLDB’95, Proc. of 21th
International Conference on Very Large Data Bases, pages
78-89, 1995.

[8] L. Gravano, H. Garcia-Molina and A. Tomasic. The
effectiveness of GlOSS for the text database discovery
problem. In R. T. Snodgrass and M. Winslett, editors, Proc.
of the 1994 ACM SIGMOD International Conference on
Management of Data, pages 126-137, 1994.

[9] The Gnutella protocol specification v0.4. http://
www9.limewire.com/developer/gnutella_protocol_0.4.pdf.

[10] The Gnutella protocol specification v0.6. http://rfc-
gnutella.sourceforge.net.

[11] D. Hawking. Overview of the TREC-9 web track. In Proc.
of the 9th Text Retrieval Conference (TREC-9), 2000.

[12] M. Jansen, A. Spink and T. Saracevic. Real Life, real users,
and real needs: A study and analysis of user queries on the
web. Information Processing and Management, 36(2).

[13] Javasim. http://javasim.ncl.ac.uk/.

[14] V. Kalogeraki, D. Gunopulos and D. Zeinalipour-Yazti. A
local search mechanism for peer-to-peer networks. In Proc.
of the 11th International Conference on Information
Knowledge Management, 2002.

[15] KaZaA. http://www.kazaa.com.

[16] Limewire. http://www.limewire.com.

[17] K. Lin and R. Kondadadi. A similarity-based soft clustering
algorithm for documents. In Proc. of the 7th International
Conference on Database Systems for Advanced Applications,
2001.

[18] J. Lu and J. Callan. Peer-to-peer testbed definitions:
trecwt10g-2500-bysource-v1 and trecwt10g-query-bydoc-v1.
http://hartford.lti.cs.cmu.edu/callan/Data, 2003.

[19] J. Lu and J. Callan. Pruning long documents for distributed
information retrieval. In Proc. of the 11th International
Conference on Information Knowledge Management, 2002.

[20] P. Ogilvie and J. Callan. Experiments using the Lemur
toolkit. In Proc. of the 10th Text Retrieval Conference
(TREC-10), 2001.

[21] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S.
Shenker. A scalable content-addressable network. In Proc.
of the ACM SIGCOMM’01 Conference, 2001.

[22] C. Tang, Z. Xu and M. Mahalingam. Efficient information
retrieval in peer-to-peer networks. In Proc. of HotNets-I,
ACM SIGCOMM, 2002.

[23] S. Waterhouse. JXTA Search: Distributed search for
distributed networks. Technical report, Sun Microsystems
Inc., 2001.

[24] J. Xu and W. B. Croft. Cluster-based language models for
distributed retrieval. In Proc. of the 22nd Annual
International ACM SIGIR Conference on Research and
Development in Information Retrieval, 1999.

[25] Y. Zhang, W. Xu and J. Callan. Exact maximum likelihood
estimation for word mixtures. In Workshop on Text
Learning of the 9th International Conference on Machine
Learning (TextML’ 2002), 2002.

