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Abstract. A Markov process model for contour curvature is introduced via a stochastic dif-
ferential equation. We analyze the distribution of such curves, and show that its mode is the
Euler spiral, a curve minimizing changes in curvature. To probabilistically enhance noisy and
low contrast curve images (e.g., edge and line operator responses), we combine this curvature
process with the curve indicator random field, which is a prior for ideal curve images. In partic-
ular, we provide an expression for a nonlinear, minimum mean square error filter that requires
the solution of two elliptic partial differential equations. Initial computations are reported,
highlighting how the filter is curvature-selective, even when curvature is absent in the input.

1 Introduction

Images are ambiguous. One unpleasant consequence of this singular fact is that we cannot compute
contours without making assumptions about image structure. Inspired by Gestalt psychology [16],
most previous work has defined this structure as good continuity in orientation, that is to say,
curves with varying orientation—high curvature—are rejected, and, conversely, straighter curves
are enhanced. This is naturally phrased in terms of an energy functional on curves that minimizes
curvature. In this paper, we present a stochastic model that instead aims to enforce good continuation
in curvature, and thus minimizes changes in curvature.

To understand why we believe that good continuation in curvature is important, imagine the
situation of a bug trying to “track” the contour in Fig. 1. Suppose the bug is special in that it
can only “search” for its next piece of contour in a cone in front of it centered around its current
predicted position and direction (i.e., orientation with polarity) [24,6]. This strategy is appropriate
so long as the contour is relatively straight. However, when the bug is on a portion of the contour
veering to the right, it will constantly waste time searching to the left, perhaps even mistracking
completely if the curvature is too large. In estimation terms, the errors of our searching bug are
correlated, a tell-tale clue that the assumption that the contour is straight is biased. A good model
would only lead to an unavoidable “uncorrelated” error. We present a Markov process that models
not only the contour’s direction, but also its local curvature.

It may appear that one may avoid these problems altogether by allowing a higher bound on
curvature. However, this forces the bug to spend more time searching in a larger cone. In stochastic
terms, this larger cone is amounts to asserting that the current (position, direction) state has a
weaker influence on the next state; in other words, the prior on contour shape is weaker (less peaked
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Fig. 1. Mistracking without curvature. A bug (grey dot) attempts to track the contour, “looking” in the
cone of search directions centered around its current direction. At point (a), the curve is straight and the
bug is successful, although at (b), curve is veering to the right and the bug can barely still track. At (c), the
curvature is so high that tracking fails. A better model would explicitly include the curvature of the contour,
giving rise to a “bent” search cone (d) for the bug. The same difficulty arises in contour enhancement, which
is the application considered in this paper.

or broader). But a weaker prior will be less able to counteract a weak likelihood (high noise): it will
not be robust to noise. Thus we must accept that good continuation models based only on contour
direction are forced to choose between allowing high curvature or high noise; they cannot have it
both ways.!

Although studying curvature is hardly new in vision, modeling it probabilistically is. In [3, 25,
15] and [8, 361 fI.], measuring curvature in images was the key problem. In [14], curvature is used
for smooth interpolations, following on the work on elastica in [20,10] and later [18]. The closest
work in spirit to this is relaxation labeling [26], several applications of which include a deterministic
form of curvature [19,11]. Markov random fields for contour enhancement using orientation [17] and
co-circularity [9,21] have been suggested, but these have no complete stochastic model of individual
curves. The explicit study of stochastic but direction-only models of visual contours was initiated
by Mumford [18] and has been an extended effort of Williams and co-workers [22, 23].

This paper is organized as follows. We first introduce a curvature random process and its diffu-
sion equation; we then present example impulse responses, which act like the “bent” search cones.
Second, we relate the mode of the distribution for the curvature process to an energy functional
on smooth curves. Next we review a model of an ideal curve image (e.g., “perfect” edge operator
responses) called the curve indicator random field (CIRF), which was introduced in [2] and theo-
retically developed in [1], but in the context of Mumford’s direction process [18]. Here we apply the
CIRF to the curvature process, and then report a minimum mean square error filter for enhancing
image contours. We conclude with some example computations.

2 A Brownian Motion in Curvature

Recall that a planar curve is a function taking a parameter ¢t € R to a point (z(t),y(t)) in the plane
R2. Tts direction is defined as § = arg(# ++/—1 7), where the dot denotes differentiation with respect

! Observe in the road-tracking examples in [6] how all the roads have fairly low curvature. While this is
realistic in flat regions such as the area of France considered, others, more mountainous perhaps, have
roads that wind in the hillsides.



to the arc-length parameter ¢ (2 +§? = 1 is assumed). Curvature  is equal to 9, the rate of change
of direction.

Now we introduce a Markov process that results from making curvature a Brownian motion.
Let R(t) = (X,Y,0, K)(t) be random?, with realization r = (z,y,6,x) € R?> x S x R. Consider the
following stochastic differential equation:

X=cosO, Y=sinO, ©O=K, dK=odW,

where 0 = o is the “standard deviation in curvature change” (see §3) and W denotes standard
Brownian motion. The corresponding Fokker-Plank partial differential equation (PDE), describing
the diffusion of a particle’s probability density, is
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where p = p(z,y,0,k,t) = p(R(t) = r|R(0) = rg), the conditional probability density that the
particle is located at r at time ¢ given that it started at ro at time 0. Observe that this PDE describes
probability transport in the (cos ), sin 8, k, 0)-direction at point r = (z,y, 8, k), and diffusion in . An
extra decay term [18,22] is also included to penalize length (see §3). We have solved this parabolic
equation by first analytically integrating the time variable and then discretely computing the solution
to the remaining elliptic PDE. Details will be reported in [1]. See Fig. 2 for example time-integrated
transition densities.

Ko: -0.2 -0.1 0 0.1 0.2

Fig. 2. Curvature diffusions for various initial curvatures. For all cases the initial position of the particle
is an impulse centered vertically on the left, directed horizontally to the right. Shown is the time integral
of the transition density of the Markov process in curvature (1), integrated over direction § and curvature
k; therefore, the brightness displayed at position (x,y) indicates the expected time that the particle spent
in (z,y). (Only a linear scaling is performed for displays in this paper; no logarithmic or other nonlinear
transformation in intensity is taken.) Observe that the solution “veers” according to curvature, as sought in
the Introduction. Contrast this with the straight search cone in Fig. 3. The PDE was solved on a discrete
grid of size 32 x 32 x 32 x 5, with o+ = 0.01 and an exponential decay of characteristic length A = 10 (see
§3 for length distribution).

2 Capitals will often be used to denote random variables, with the corresponding letter in lower case denoting
a realization. However, capitals are also used to denote operators later in the paper.



3 What is the Mode of the Distribution of the Curvature Random
Process?

To get more insight into our random process in curvature, consider one of the simplest aspects of its
probability distribution: its mode. First, let us consider the situation for Mumford’s direction-based
random process in® R? x S, or

X =cosB, Y =sin®, dO = o, dW,

where o, is the “standard deviation in curvature” and W is standard Brownian motion. This process
has the following Fokker-Plank diffusion equation:
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where p = p(z,y,0,t) is the transition density for time ¢. As Mumford has shown [18], the mode of
the distribution of this direction process is described by elastica, or planar curves that minimize the
following functional:

/(om2 + B)dt, (3)

where o and [ are nonnegative constants. With such an elegant expression for the mode of the
Mumford process, we ask: Is there a corresponding functional for the curvature process? If so, what
is its form?

&~
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Fig. 3. Solutions to Mumford’s diffusion. Equation (2) was integrated over time and then solved for a slightly
blurred impulse on a 80 x 80 x 44 grid, with parameters o, = 1/24, A\ = 100, and at discrete directions 0 (left)
and 4 (right). Depicted is the integral over 8, cropped slightly. The method used [1] responds accurately at all
directions. Note that these responses are straight, analogous the search cone described in the Introduction.
Given their initial direction, particles governed by the direction process move roughly straight ahead, in
contrast to those described by our curvature process (Fig. 2).

To answer these questions, we follow a line of analysis directly analogous to Mumford [18]. First,
we discretize our random curve into N subsections. Then we write out the distribution and observe
the discretization of a certain integral that will form our desired energy functional.

3 R? x S is also called (,,6)-space, the unit tangent bundle, and orientation space [13].



Suppose our random curve from the curvature process has length 7', distributed with the ex-
ponential density p(T) = A~!exp(—A~'T), and independent of the shape of the contour. Each
step of the N-link approximation to the curve has length At := T/N. Using the definition of the
t-derivatives, for example,

_dx

. X1 — X,
X = lim i

dt  Noew T/N
we can make the approximation X;1; ~ X; + AtX. Recalling the stochastic differential equation
(1), we therefore let the curvature process be approximated in discrete time by

Xiy1 = X; + Atcos6;, Yit1 =Y + AtsinO;, Oi11 = 0; + AtK;,

wherei = 1,..., N. Because Brownian motion has independent increments whose standard deviation
grows with the square root v/ At of the time increment At, the change in curvature for the discrete
process becomes

K1 = K; + VAt g,

where {¢;} is an independent and identically distributed set of 0-mean, Gaussian random variables
of standard deviation o = 0. Let the discrete contour be denoted by

I'v = {(X:,Y:,60,,K;) :i=0,... ,N}.

Given an initial point py = (o, yo, 6o, ko), the probability density for the other points is

P(Ilpo) = A7 exp(=A7'T) - (Vo) N exp (‘ > ) :
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which, by substitution, is proportional to

1 [(Kip1 — K 2 1

i

Kit1—FKi

We immediately recognize ~*3;

as an approximation to 4 = i, and so we conclude that
(I |po) = p(I|po) ox e FU) as N — oo,

where the energy E(I") of (continuous) curve I' is

B(I) = / (ak? + B)dt, )

where a = (20%)~! and 8 = A71.

Maximizers of the distribution p(I") for the curvature random process are planar curves that
minimize of the energy functional E(I"). Such curves are known as Euler spirals, and have been
studied recently in [14]. A key aspect of the Euler spiral functional (4) is that it penalizes changes
in curvature, preferring curves with slowly varying curvature. In contrast, the elastica functional (3)
penalizes curvature itself, and therefore allows only relatively straight curves, to the dismay of the
imaginary bug of the Introduction.



4 Filtering and the Curve Indicator Random Field

Given our stochastic shape model for contours, we now introduce the curve indicator random field
(CIRF), which naturally captures the notion of an ideal curve image, and provides a precise definition
for the kind of output we would like from an edge operator, for example. Roughly, this random field is
non-zero-valued along the true contours, and zero-valued elsewhere. The actually measured edge/line
map is then viewed as an imperfect CIRF, corrupted by noise, blur, etc. The goal of filtering, then,
is to estimate the true CIRF given the imperfect one. For completeness, we review the theory of the
CIRF now; proofs and more details can be found in [1].

4.1 Definitions

For generality, we shall define the curve indicator random field for any continuous-time Markov
process R;,0 < ¢t < T taking values in a finite (or at most countable) set Z of cardinality |Z|. As in
83, the random variable T is exponentially-distributed with mean value A > 0, and represents the
length of a contour. To ensure the finiteness of the expressions that follow, we assume A < co. Sites
or states within Z will be denoted ¢ and j. (Think of Z as a discrete approximation to the state
space R = R? x S x R where the curvature random process takes values.) Let 1{condition} denote
the (indicator) function that takes on value 1 if condition is true, and the value 0 otherwise. With
these notations we define the curve indicator random field V for a single curve to be

T
v, ;=/ 1R, = i}dt, Viel.
0

Observe that V; is the (random) amount of time that the Markov process spent in state i. In
particular, V; is zero unless the Markov process passed through site i. In the context of Brownian
motion or other symmetric processes, V' is variously known as the occupation measure or the local
time of Ry [4,5].

Generalizing to multiple curves, we pick a random number A, Poisson distributed with average

value N. We then choose A independent copies Rg), cee R,Eﬁ) of the Markov process R;, with
independent lengths T7,... ,Tyr, each distributed as T'. To define the (multiple curve) CIRF, we
take the superposition of the single-curve CIRFs V1), ... VN for the N curves.

Definition 1. The curve indicator random field U is defined to be

N N T,
U= Vi = Z/O 1{R" = i}dt,, VieT.
n=1 n=1

Thus U; is the total amount of time that all of the Markov processes spent in site i. Again, observe
that this definition satisfies our desiderata for an ideal edge/line map: (1) non-zero value where the
contours are, and (2) zero-value elsewhere. The probability distribution of U will become our prior
for inference.

4.2 Statistics of the Curve Indicator Random Field

Probabilistic models in vision and pattern recognition have been specified in a number of ways. For
example, Markov random field models [7] are specified via clique potentials and Gaussian models



are specified via means and covariances. Here, instead of providing the distribution of the curve
indicator random field itself, we report its moment generating functional, from which all moments
can be computed straightforwardly.

Before doing so, we need to develop more Markov process theory. We first define the inner product
(a,b) = > ..z aib;. The generator of the Markov process R; is the |Z| x |Z| matrix L = (I;;), and is
the instantaneous rate of change of the probability transition matrix P(t) = (p;;)(t) for R;. For the
curvature process, we let L be a discretization of the partial differential operator on the right hand
side of (1), or

2 02 0 0
L~ % 2 cosOa—x —sin Ga—y ~ Ko (curvature process),
and for the direction process, L is the discretization of the corresponding operator in (2), or
2 9? 0 0
~ % 502~ ©08 0% — sin06—y (direction process).

To include the exponential distribution over T' (the lifetime of each particle), we construct a killed
Markov process with generator Q = L — A~1I. (Formally, we do this by adding a single “death”
state M to the discrete state space Z. When ¢ > T', the process enters th and it cannot leave.) Slightly
changing our notation, we shall now use R; to mean the killed Markov process with generator (). The
Green’s function matrix G' = (g;;) of the Markov process is the matrix fooo eQtdt = fooo P(t)et/Adt,
where P(t) = el (e# denotes the matrix exponential of matrix A). The (i, j)-entry g;; in the Green’s
function matrix G represents the expected amount of time that the Markov process spent in j before
death, given that the process started in i. One can show that G = —Q~!. Given a vector ¢ € RIZI
having sufficiently small entries ¢;, we define the Green’s function matrix G(c) with spatially-varying
“creation” ¢ as the Green’s function matrix for the killed Markov process with extra killing —c¢, i.e.,
having generator Q(c) := @ + diagc, where diagc is a diagonal matrix with the entries of vector ¢
along the diagonal; in particular, G(c) = —Q(c)™! = —(Q + diagc)~!.

Recalling that each Markov process RS), - ,Rg\\/f) is distributed as Ry, let the joint distribution
of the initial and final states of R; be

P{Ry =i, Rr— = j} = pigi;vj, Vi,j € Z,

where p = (p;) and v = (v;) are vectors in RIZ! weighting initial and final states, respectively, and
f(T—) is the limit of f(t) for ¢ approaching T from below. Therefore, vectors p and v must satisfy the
normalization constraint (u, Gv) = 1. For general purpose contour enhancement, we typically have
no a-priori preference for the start and end locations of each contour, and so we set these vectors
proportional to the constant vector 1 = (1,...,1). For example, by setting u = |Z|711,v = A 711,
the normalization constraint is satisfied.

The following key theoretical result is used in this paper but is developed in [1], and is most
closely related to the work of Dynkin [4].

Proposition 1. The moment generating functional of the curve indicator random field U is

Eexp(c,U) = exp(u, N(G(c) — G)v).

While this result may seem abstract, it is actually very useful. Let G* denote the transpose of G.
From Prop. 1 we obtain the first two cumulants of the CIRF [2]:



Corollary 1. Suppose the p = |Z|~'1,v = A11. The mean of the curve indicator random field U
is BU; = N\|Z|71,Vi € I. The covariance matriz of U is covU = NAZ|~1(G + G*).

Several “columns” of the covariance matrix for the curvature process are illustrated in Fig. 4, by
taking its impulse response for several positions, directions and curvatures. In addition, using Prop. 1

# F

Ko: 0.2 0 -0.1

Fig. 4. Impulse responses of the covariance matrix for the curve indicator random field for the curvature
process. Impulses are located at the center of each image, directed at discrete direction 4 out of 32, with 5
curvatures. Parameters are o; = 0.01, A = 10.

one can compute the higher-order cumulants of U, and they are generally not zero, which shows that
the curve indicator random field is non-Gaussian [1]. Despite that, its moment generating functional
has a tractable form that we shall directly exploit next.

5 Minimum Mean Square Error Filtering

Instead of the unknown random field U, what we actually observe is some realization m of a random
field M of (edge or line) measurements. Given m, we seek that approximation @ of U that minimizes
the mean square error (MMSE), or

@2 argmin K, ||u — U||%,

where E,, the denotes taking an expectation conditioned on the measurement realization m. It is
well-known that the posterior mean is the MMSE estimate

i=TEnU,

but in many interesting, non-Gaussian, cases this is extremely difficult to compute. In our context,
however, we are fortunate to be able to make use of the moment generating functional to simplify
computations.

Before developing our MMSE estimator, we must define our likelihood function p(M|U). First
let H; be the binary random variable taking the value 1 if one of the contours passed through (or



“hit”) site 4, and 0 otherwise, and so H is a binary random field on Z. In this paper we consider
conditionally independent, local likelihoods: p(M|H) = p(M;|Hy) - - - p(M || |H|z)). Following [6, 24],
we consider two distributions over measurements at site i: pon(M;) := p(M;|H; = 1) and pog(M;) :=
p(M;|H; = 0). It follows [24] that In p(M |H) = >, In(pon (M;) /post (M;)) H;. Now let T be the average
amount of time spent by the Markov processes in a site, given that the site was hit; observe that
U;/7 and H; are therefore equal on average. This suggests that we replace H with U/ above to
generate a likelihood in U, in particular,

Don (M)

Inp(M|U) ~ ) ¢;U; = (c,U), where ¢; =c¢;(M;) =7 'In )
o) ; ) (M) ot (M;)

As shown in [1], the posterior mean in this case becomes

Bnli ~ e (Bexp(@U)(@) = Nfibi,  VieT 6
where f = (f1,..., f 1)) is the solution to the forward equation
(Q +diage)f +v =10 (6)
and b= (by,... ,bjz|) is the solution to the backward equation
(Q* + diagc)b+pu = 0. (7)

Note that equations (6) and (7) are linear systems in RIZ!; however, since Q = L — A~!, where the
generator L is the discretization of an (elliptic) partial differential operator, we view the forward
and backward equations as (linear) elliptic partial differential equations, by replacing L with its
undiscretized counterpart, and ¢, f, b, 4, and v with corresponding (possibly generalized) functions
on a continuum, such as R% x S for the direction process, or R? x S x R for the curvature process.

Observe that two nonlinearities arise in this posterior mean in equation (5). First, there is a
product of the forward and backward solutions.* Second, although both the forward and backward
equations are linear, they represent nonlinear mappings from input (¢) to output (f or b). For
example, it follows that f = (I — Gdiage)™'Gv = Y r (G diag ¢)* G, i.e., f is a polynomial—and
thus nonlinear—function of the input c.

5.1 Example Computations

We have implemented a preliminary version of the CIRF posterior mean filter. For our initial exper-
imentation, we adopted a standard additive white Gaussian noise model for the likelihood p(M|U).
As a consequence, we have ¢(m) = yym — 72, a simple transformation of the input m, where v; and
~v2 = 3 are constants. The direction-dependent input m was set to the result of logical/linear edge
and line operators [12]. The output of the logical/linear operator was linearly interpolated to a many
directions as necessary. For direction-only filtering, this input interpolation was sufficient, but not
for the curvature-based filtering, as curvature was not directly measured in the image; instead, the
directed logical/linear response was simply copied over all curvature values, i.e., the input m was

* This is analogous to the source/sink product in the stochastic completion field [22].



constant as a function of curvature. The limit of the invertibility of ) + diagc and its transpose was
used to set 1 [1]. The technique used to solve the forward and backward CIRF equations for the
curvature process in (z,y, 8, k) will be reported in [1], and are a generalization of the method used for
the forward and backward CIRF equations for the Mumford (direction) process in (z,y, ) [1], which
is also used here. Parameter settings were N’ = 1, = |Z|~'1,v = A~11. The direction-process based
CIRF was solved on a grid the size of the given image but with 32 directions. For the curvature-based
CIRF filtering, very few curvatures were used (3 or 5) in order to keep down computation times in
our unoptimized implementation. Unless we state otherwise, all filtering responses (which are fields
over either discrete (z,y,6)-space or discrete (z,y,0, k)-space) are shown summed over all variables
except (z,y).

For our first example, we considered a blood cell image (Fig. 5, top). To illustrate robustness,
noise was added to a small portion of the image that contained two cells (top left), and was processed
with the logical/linear edge operator at the default settings®. The result was first filtered using the
CIRF posterior mean based on Mumford’s direction process (top center). Despite using two very
different bounds on curvature, the direction-based filtering cannot close the blood cell boundaries
appropriately. In contrast, the CIRF posterior mean with the curvature process (top right) was
more effective at forming a complete boundary. To illustrate in more detail, we plotted the filter
responses for the direction-based filter at o, = 0.025 for 8 of the 32 discrete directions in the
middle of Fig. 5. The brightness in each of the 8 sub-images is proportional to the response for
that particular direction as a function of position (z,y). Observe the over-straightening effect shown
by the elongated responses. The curvature filter responses were plotted as a function of direction
and curvature (bottom). Despite the input having been constant as a function of curvature, the
result shows curvature selectivity. Indeed, one can clearly see in the k > 0 row (Fig. 5, bottom) that
the boundary of the top left blood cell is traced out in a counter-clockwise manner. In the k < 0
row, the same cell is traced out in the opposite manner. (Since the parameterization of the curve
is lost when forming its image, we cannot know which way the contour was traversed; our result is
consistent with both ways.) The response for the lower right blood cell was somewhat weaker but
qualitatively similar. Unlike the direction-only process, the curvature process can effectively deal
with highly curved contours.

For our next example, we took two sub-images of a low-contrast angiogram (top of Fig. 6;
sub-images from left and top right of original). The first sub-image (top left) contained a straight
structure, which was enhanced by our curvature-based CIRF filter (summed responses at top right).
The distinct responses at separate directions and curvatures show curvature selectivity as well, since
the straight curvature at 45° had the greatest response (center). The second sub-image (bottom
left) of a loop structure also produced a reasonable filter response (bottom right); the individual
responses (bottom) also show some curvature selectivity.

As argued in the Introduction, the bug with a direction-only search cone would mistrack on a
contour as curvature builds up. To make this point computationally, we consider an image (top left of
Fig. 7) of an Euler spiral extending from a straight line segment.® Observe that the contour curvature
begins at zero (straight segment) and then builds up gradually. To produce a 3-dimensional input
to our direction-based filter, this original (2-d) image was copied to all directions (i.e., m(z,y,0) =

5 Code and settings available at http://www.ai.sri.com/leei/loglin.html.

6 We used formula (16.7) of Kimia et al [14], and created the plot in Mathematica with all parameters 0,
except v = 0.1 (Kimia et al’s notation). The resulting plot was grabbed, combined with a line segment,
blurred with a Gaussian, and then subsampled.
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Fig. 5. Curvature filtering of a blood cell image (see text).
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Fig. 6. Curvature filtering for an angiogram (see text).



image(z, y), for all §). Similarly, the image was copied to all directions and curvatures to produce a
4-d input to the curvature-based filter. For this test only, our 2-dimensional outputs were produced
by taking, at each position (z,y), the maximum response over all directions (for the direction-based
filtering) or over all directions and curvatures (for the curvature-based filtering). The direction-
based CIRF posterior mean (with parameters o, = 0.025, A = 10, with 64 directions) was computed
(center), showing an undesirable reduction in response as curvature built up. The curvature-based
CIRF posterior mean (right, with parameters o; = 0.05,A = 10,64 directions, and 7 curvatures
(0,£0.05,£0.1,4+0.15)) shows strong response even at the higher curvature portions of the contour.
To test robustness, 0-mean Gaussian noise of standard deviation 0.4 was added (bottom left) to the
image (0 to 1 was the signal range before adding noise). The results (bottom center and right) show
that the curvature-based filter performs better in high curvature regions despite noise.

Original Direction CIRF Curvature CIRF

Fig. 7. Filtering an Euler spiral without noise (top) and with noise (bottom). The original images are on
the left; the result after filtering using the curve indicator random field based on Mumford’s direction-
based Markov process (center) and our curvature-based Markov process (right). Notice that the direction
CIRF result tends to repress the signal at high curvatures, while the curvature process has more consistent
performance, even at higher curvatures. See text for details.

Computations were conveniently performed using the Python scripting language with numerical
extensions in a GNU/Linux environment.

6 Conclusion

In this paper we introduced a new stochastic model for contour curvature to more faithfully capture
the shape of image curves. Whereas most contour models penalize large curvatures, our curvature



Markov process allows highly curving contours, and only penalizes changes in curvature. The cur-
vature process can be used directly in the curve indicator random field [2, 1] to construct a prior for
curve images. To enhance noisy images of contours, we present a nonlinear filter (details in [1]) that
approximates the posterior mean of the curve indicator random field. Our initial computations show
that the filter responds well along smooth contours, even those having large curvature.
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