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and Partial Differential Equations
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From its earliest roots in Gestalt psychology, thinking about perceptual organization has
been predominantly discrete in nature. For example, in one standard grouping demonstra-
tion, a subject is presented with a stimulus consisting of perhaps a dozen dots, and the
theoretical task is to explain why the subject chose one particular partitioning of the dots
among the finite set of possibilities. In illusory contour perception as well, the stimulus is
a number of inducing endpoints, where one seek to understand the (perceptual) selection
of one of a finite set of arrangements. The “units” of perceptual organization here (dots,
endpoints) are discrete, and typically few in number. Artificial intelligence has reinforced
this view, where the units of perceptual organization become the “atoms” of LISP programs
and symbol manipulation. Modern graph theoretic models of perceptual organization in
computer vision have entrenched this discrete thinking, even to the extent that the formal
task of perceptual organization has become identified with the grouping of a finite set of
(fixed) entities.

Unfortunately, natural images are ambiguous, and not only in terms of the groupings of
discrete units: even the existence or absence of these units is uncertain. In contour perception
and enhancement, which we consider here, this ambiguity implies that the true space of
“units” is the uncountably infinite set of all possible curve groups; explicitly enumerating
them is unthinkable. To us this suggests that a continuum or field model is more appropriate,
and therefore we work to bring perceptual organization closer to signal processing. Here
we outline our framework for contour organization and then describe a rapid but accurate

method for solving a partial differential equation used in contour filtering.

*Contact via e-mail: jonas.august@yale.edu, zucker-steven@cs.yale.edu



Framework. Our random field inference framework for contour organization begins with
a Markov process model for each contour. Mumford, Williams and co-workers imagined a
particle at R; (in the space of positions (z, y) and directions #) whose direction is slightly per-
turbed at each time instant ¢ before taking its next step forward. The particle’s probability
density p(z,y, 0, 1) diffuses according to: % = @p, where () := %2% —Cos 06% —sin 06% -2t
is the generator of directed Markov process R;, o bounds the orientation perturbations and
A is the mean of the contour length 7. In our framework the Markov process R; models
all image contours, some observed without corruption of any sort (e.g., no noise or blur),
some poorly observed (e.g., medical images), and some invisible (e.g., occluded contours,
Mumford’s original application). Indeed, the particular (stationary) Markov process con-
tour model is unspecified at the level of our framework; more exotic processes, which include
scale [Williams, Thornber] or curvature x [August, Zucker|, can be used as well. At this
level of generality, the Markov process R; takes on values (“states”) 7 in state space Z, e.g.
i=(z,y,0) ori=(z,y,0,k). A natural image will have an unknown (e.g., Poisson) number
N of contours, Rgll), . ,Rgﬂ), which are i.i.d. with lengths Ti,... ,Ty.

So far we have only described the individual contours, but we know of them only through
a (spatially distributed) field of measurements M = M; from an image (e.g., orientation-
selective edge operator responses), which are corrupted due to noise and blur. To cope with

such ambiguity, we suggest that contour organization be formalized as the estimation of an

ideal field U = U; of assertions of local contour existence:

Definition 1 The curve indicator random field (CIRF) U = Uj is:

N T,
U; = Z/O R = i}dt,, i€l
n=1

In words, U; is the (random) amount of time that particles spent in state 4, and so non-
zero values of U; indicate that a contour passed through ¢ (Fig. 1). Unlike for Markov
random fields where computationally intensive Monte-Carlo procedures predominate and
exact results are rare, for the CIRF we have analytically derived the following result (subject
to a uniformity condition on contour endpoints):

Proposition 1 The k-th (joint) cumulant of the CIRF at sites i1,... i is proportional
t0 Y Girjo * " * Gin_1jus Where gi; is the expected amount of time the process Ry spent in state
j gwen that it started in i, or G = (g;;) = —Q™!, and the sum is over all permutations

jl,... ,jk Ofil,... ,ik.



Fig. 1: Observe the similarity
of natural images (top: “Lenna,”
angiogram, ice cracks on Jupiter
moon Europa) to random sam-
ples of the curve indicator ran-
dom field (CIRF) for a directed

Markov process in (z,y,6) (bot-

tom: various parameter settings

of CIRF). The CIRF acts as a \
prior for contour organization in

our framework.

As the cumulants define the moments, and the moments characterize the distribution, this

Vs

results provides complete knowledge of the prior distribution P(U). Given the measurement
field M, our goal is to compute that approximation % of the CIRF U that minimizes the

mean square error (MMSE):
i := argmin Ey||u — U||> = By U,

where [E;; is the expectation operator conditioned on M. Assuming that the likelihood
P(M|U) is local and conditionally independent, and that U is approximately a binary field,

we have derived the following nonlinear filter:

Result 1 A MMSE estimate of the CIRF U given measurements M 1is:
EyU; = fib;,  such that (Q +diage)f +v=0, (Q"+ diage)b+ vy =0,

where f = (f;), b = (b;), diagc is a diagonal operator, c is a vector dependent on M, ~y is a

constant field over I, and QQ* is the transpose of Q.

Observe that solving for f and b requires solving two linear partial differential equations
(PDEs). Nonetheless, this filter is nonlinear, and in two ways. First, the output at i is
the product f;b;, analogous to the source/sink product in Williams’ and Jacobs’ stochastic
completion fields (SCFs). Second, the input comes in as a perturbation of an operator ) or
@, and so, for example, f = (I — Gdiagc) 'Gy = Y 72 (G diagc)* G, since the Green’s
operator G = —Q~!. If we interpret SCFs with field-like inputs ¢ (outside of the original



Fig. 2: Spatial PDE Qh + w = 0 was solved
for a slightly blurred impulse h, with parame-
ters 0 = 1/24,\ = 100, Az = Ay = 1, and at
discrete directions 4 (top) and 0 (bottom) of
44. Depicted is the integral over . Our direct
method is isotropic (right), producing a more
focused result at discrete direction 4 than does
the first-order method (left).

e

discrete context of illusory contour endpoints of Mumford, Williams and co-workers), then

our filter produces the SCF if we stop this sum at £k = 1. The other terms, polynomial in ¢
at all orders k, make this a (nonlinear) Volterra filter.

A direct method for applying Green’s operator. Observe that the above infinite
sum for f applying the Green’s operator to a field w to compute a field h = Gw. For
the directed Markov process in (z,y, §)-space, Williams and co-workers applied Green’s op-
erator by (numerically) solving the spatio-temporal diffusion equation % = @p and then
(numerically) integrating over time. Here, by applying the Laplace transform (w.r.t time)
analytically, and then (numerically) solving the simpler spatial (elliptic) PDE Qh + w = 0,
we eliminate the time dimension, and can solve this PDE directly. In particular, by assuming

periodic boundary conditions we can take the discrete Fourier transform (DFT) to obtain a

tridiagonal system (solvable in linear time):

m n o? m n
Hmn — —f? /\_1 Hmn - Hmn = Wmn

where the DFTs of h, w, resp., are H,,, , s and Wy, ,, ; at frequencies (m, n, f) out of (M, N, F)
total frequencies. This method is more accurate (essentially double precision) than using
first-order differencing (Fig. 2), and much faster than the recent isotropic wavelet technique of
Zweck and Williams. We are currently using this direct method to implement our nonlinear

filter for contour organization, and results on natural images will be reported in [August,
Ph.D. Thesis, 2001].



