A Formalization of an Ordered Logical Framework in
Hybrid with Applications to Continuation Machines

Alberto Momigliano! (A.Momigliano@ncs.le.ac.uk) and
Jeff Polakow? (jp@macs.hw.ac.uk)

! Department of Mathematics and Computer Science, University of Leicester, U.K.
2 Department of Computer Science, Heriot-Watt University, Edinburgh, Scotland.

Abstract. We report on work in progress devoted to the formalization of an
Ordered Logical Framework (OLF) based on a two-level architecture [8] in the
Hybrid system. OLF here is a second-order version of ordered linear logic to be
used as a meta-language for the verification of the (meta)theory of deductive
systems. It is implemented as a meta-interpreter on top of the Hybrid system,
which provides the full HOAS language. We apply the framework to the formal
verification of type preservation of a simple continuation machine for Mini-ML.

1 Introduction

How to best encode and formally verify the (meta)theory of languages with variable
binding has attracted much current research. A fair amount of it, however, mainly
concerns questions of syntaz, spanning from named syntax to De Bruijn indexes and
various forms of higher-order abstract syntax (HOAS). While this is a fundamental
issue, which is bound to heavily influence any development, the methodology with which
one encodes judgments is equally important. Indeed, as initially suggested by Martin-
Lof and practiced in the Edinburgh Logical Framework, (full) HOAS naturally leads
to the use of hypothetical and parametric judgments to encode object level “relations-
in-context”. The benefits, as well as the problems, associated with this methodology
are by now well-known and exemplified, for example, in the Twelf project. Briefly,
object-level environments are represented by meta-level (logical) contexts, simplifying
or even making irrelevant a substantial part of bookkeeping jobs, such as weakening
and substitution lemmas. These lemmas, albeit trivial from a mathematical standpoint,
in practice tend to be a bottleneck during formal verification. On the other hand,
reasoning by induction in this setting has been notoriously difficult and only recently
have reasonable solutions, with various degrees of satisfaction, been proposed [21,11,
13].

As successful as these efforts have been for LF, it soon became apparent that some
of the structural properties of the meta-logic were not appropriate to all situations. In
particular, LF is intuitionistic and this imposes on the object level encoding weakening
and contraction properties, which are not always appropriate for the domain under
study; a typical example being when a notion of state is paramount. To fix ideas, let
us consider the case of encoding the static and dynamic semantics of a language with
imperative features, say Mini-ML with references (MLR). While encoding the typing
system with an intuitionistic context is adequate, this does not apply to the represen-
tation of the store. If the store is modeled by a set of assumptions, say contains C V,
where C is a cell and V a value, then linear logic [9] offers the right setting, since up-
dates will consume and add resources. This is one of the motivations for investigating
frameworks based on linear logics such as LLF [4]. On the other hand, work on the
automation of reasoning in such frameworks is still in its infancy [10].

The methodology which enriches, in a conservative way, a logical framework so as
to capture, at the right level of abstraction, different object level phenomena can be

pushed further. In this paper we adopt an ordered logical framework [16], by which we
mean here a second-order, minimal ordered linear logic. Ordered linear logic combines
reasoning with unrestricted (or intuitionistic), linear and ordered hypotheses. Unre-
stricted hypotheses may be used arbitrarily often, or not at all regardless of the order
in which they were assumed. Linear hypotheses must be used exactly once, also with-
out regard to the order of their assumption. Ordered hypotheses must be used exactly
once subject to the order in which they were assumed. We refer to Section 5 for a brief
review of how this has been applied to the theory of programming languages so far.

This additional expressive power allows the possibility of the logic directly handling
the notion of stacks. Stacks of course are ubiquitous when dealing with abstract and
virtual machines; in particular, the operational semantics in the very elegant proof of
type preservation of MLR in loc. cit. is based on a continuation machine. As we detail in
Section 2, this entails the introduction of additional layers of instructions, continuations
and states, and those entities need to be typed further complicating the set-up. The
idea motivating the present paper is that by using OLF, the level of continuations can
be disposed of via internalization in an ordered context. The latter operates as a stack
of continuations to be evaluated.

We implement OLF via the two-level architecture suggested in [11] and adopted
in [13], which we refer to for more details. The basis is the higher-order meta-language
Hybrid [1], within Isabelle HOL, which provides a form of HOAS for the user to repre-
sent object logics. The user level is separated from the infrastructure, in which HOAS
is implemented definitionally via a de Bruijn style encoding. The two-level idea refers
to the separation between the level of specification and of (inductive) meta-reasoning
within a system. Inside the meta-language we develop a specification logic (SL) — in
this case, ordered linear logic — which in turn is used to specify an object-logic (OL),
which, for this paper, will be the static and dynamic semantics of a continuation ma-
chine. This partition solves the problem of meta-reasoning in the presence of negative
occurrences, since hypothetical judgments are now encapsulated within the OL and
therefore not required to be inductive. The architecture is depicted below:

Syntax: lam z. F z, lamx z. E x ...

)) Semantics: typing I';- - ofl I T,
Object logic evaluation -; 2 Fex I
]]) Sequent calculus: I'; 2 >, G,
| Specification logic prog clauses, induction on height
) Meta-language: “Datatype”
Hybrid for a A-calculus
Tactics/Simplifier
Isabelle/Hol HOL induction

We can view the two-level approach as a way of “fast prototyping” HOAS logical
frameworks (the “next 700 -” syndrome). We can implement and experiment with a SL
quickly, easily and in a way compatible with induction and tactical theorem proving.
In particular, we do not need to develop a new unification algorithm, but we rely on
the one provided by the proof assistant. The price to pay is the additional layer where
we explicitly reference provability and thus require a sort of meta-interpreter (the SL
logic) to explicitly encode it. This indirectness can be alleviated by defining simple
tactics, but in the end this is no substitute for implementing a logical framework from
first principles.

Our long term goal is investigating the meta-theory of languages with imperative
features, starting with the formal verification of the proof of type preservation for
MLR. This paper sets the project going by implementing the framework and testing it

with type preservation of the CPM for pure Mini-ML only. For the sake of conciseness,
we will restrict ourselves to semantics of call-by-name A-calculus. Further, although
the implementation handles all of second-order Olli (the uniform fragment of ordered
linear logic) [16], we will elide references to the (unordered) linear context and linear
implication, and to the ordered left implication, as they do not play any role in this
case-study.

The paper is organized as follows: in the next Section 2 we introduce, at an informal
level, the continuation machine. Section 3 recalls some basic notions of Hybrid and its
syntax representing techniques. In Section 4 we introduce the two-level architecture,
describing the SL (4.1) and the OL (4.2); this is followed by the formal verification
of the proof of type preservation (4.3). We conclude with a few words on related and
future work (Section 5). We use a pretty-printed version of Isabelle HOL concrete
syntax; a rule (a sequent) with conclusion C' and premises Hi ... H,, is represented
as [Hy;...;H, | = C. A type declaration is m :: [t1,...t,] = t. Isabelle HOL
connectives are represented via the usual logical notation, in particular implication is
D. Free variables (upper-case) are implicitly universally quantified, the sign = (Isabelle
meta-equality) is used for equality by definition. The keyword M C-Theorem denotes
a machine-checked theorem, while Inductive introduces an inductive relation. We have
tried to use the same notation for mathematical and formalized judgments.

2 A Continuation Machine

We assume a standard version of Mini-ML constructed using higher-order abstract
syntax [15]. Values are distinguished from terms by an asterisk; so lam is a term while
lam™ is a value.

Expressions ex=lamz.e|ejes|v

Values vie=lam*z.e|z

We define the continuation machine as follows:

Instructions i =eve|returnv | app; v es
Continuations K »=init | K;\z.4
Machine States s »=K ¢ i| answerv

We use the following transition rules for machine states:

st_init : init ¢ returnv — answerv
st return :: K;Az.i ¢ returnv — K ¢ i[v/z]
stlam : K ¢ ev(lamz.e) — K ¢ return(lam*z. ¢)
st.app @ K o ev(ejes) — K;Azj.app;xies ¢ evep
st.appl : K ¢ app, (lam"z.e)es — K ¢ eveles/x]

In order to prove type preservation of this machine we need to consider sequences of
transitions by taking the reflexive-transitive closure —* of the above relation. Further
we add typing judgments for expressions, values, instructions and continuations [4].
We report here only the last two, but their complete encoding can be found in Subsec-
tion 4.2.

Ty 7 =71 TbFees: 7 I'Fee:T I'Fyv:T
ofI_app, ——ofl ev ——ofI return
I'-; appyvies: T I'Fieve: T I'; returnv : 7
Lembii:T I'rFek K:7— 1
of K _init of K _cont
IrFginit: 7 — 7 b Kidx.i: 11 — T2

Theorem 1 (Subject Reduction).
Koi —* answerv and I'F;i:17 and I'btg K:1 — 19 implies -+, v: 7.

Proof. By induction on the length of the execution path using inversion properties of
the typing judgments.

3 The Hybrid Meta-Language

We briefly recall that the theory Hybrid [1] provides support for a deep embedding of
higher order abstract syntax within Isabelle HOL. In particular, it provides a model of
the the untyped A-calculus with constants. Let con denote a suitable type of constants.
The model comprises a type expr together with functions

CON :: con = expr $$:: expr = expr = expr
VAR :: nat = expr lambda :: (expr = expr) = expr

and two predicates proper :: expr = bool and abstr :: (expr = expr) = bool. The ele-
ments of expr which satisfy proper are in one-one correspondence with the terms of the
untyped A-calculus modulo a-equivalence. The function CON is the inclusion of con-
stants into terms, VAR is the enumeration of an infinite supply of free variables, and $$
is application. The function lambda is declared as a binder and we write lambda (Av. e).
For this data to faithfully represent the syntax of the un-typed A-calculus, it must be
that CON, VAR, $$ are injective on proper expressions, and furthermore, lambda is in-
jective on some suitable subset of expr = expr. This cannot the whole of expr = expr
for cardinality reasons. The predicate abstr identifies those functions which are suffi-
ciently parametric to be realized as the body of a A-term, and lambda is injective on
these. Hybrid is implemented in a definitional style using a translation into de Bruijn
notation. The type expr is defined by the grammar

expr ::= CON con | VAR var | BND bnd | expr $$ expr | ABS expr

The translation of terms is best explained by example. Let Tp = AV;. AVL. V) V3
be an expression in the concrete syntax of the A-calculus. This is rendered in Hy-
brid as Ty = lambda (A v;. (lambda (Avs. (v1 $$ VAR 3)))) where Av; is Isabelle HOL’s
meta-abstraction. The function lambda :: (ezpr = expr) = expr is defined so as
to map any function satisfying abstr to a corresponding proper de Bruijn expres-
sion. The expression Ty is reduced by higher order rewriting to the de Bruijn term
ABS (ABS (BND 1 $$ VAR 3)). Given these definitions, the essential properties of Hy-
bridexpressions can be proved as theorems from the properties of the underlying de
Bruijn representation.

With this in place we recall how to represent the fragment of Mini-ML in question
in Hybrid. First, we need constants for object-level constructors. Thus, we declare these
constants (for example cApp) to belong to con and then make the following definitions:

Q :: [exp,exp| = exp lam :: (exp = exp) = exp
€1 @ ey = CON cAPP $$ e1 $$ eo lam z. F . = CON cABS $$ lambda (Az. E x)

where lam is indeed an Isabelle HOL binder. As shown in [1], it is now possible to
prove the freeness properties of constructors, for example:

[abstr E; abstr E'| = (lamz. Ex =lamz. E' z) = (E = E')

We also need to introduce values val and instructions instr and related constructors,
but not continuations. We only show their types glossing over the definitions:

lam* :: [exp, exp] = val app: :: [val, exp] = instr
ev ::exp = instr return :: val = instr

4 Two-level Architecture

After having introduced the HOAS syntax of our case study, we move to encoding the
specification and the object logic. They will be defined via Isabelle HOL’s inductive
definitions and data-types. However, hypothetical judgments are encapsulated in a
database of Prolog-like rules and need not be inductive. Reasoning is conducted in the
SL: inversion principles are derived by the elimination rules associated to the definition
of provability and of program clause and complete induction on the height of the
derivation is used to simulate structural induction.

4.1 Encoding the Specification Logic

We introduce our specification logic, which corresponds to the aforementioned fragment
of second-order Olli [16]:

Atoms A a countably infinite set of atomic formulae
Goals G:=A|A-G|A—>G|G NG| T |Vz. G
Program Clauses P:=VY(A— [G1,...,Gn];[G),...,G)])

where a clause V(A «— [G1,...,Gn] ;5 [GY, ..., G} is meant to represent the logical
compilation of the universal closure of formula G,,, — ... = G; —» G, —»...» G} —» A.
We choose this “compilation” to emphasize that the operational semantics of proof
search will solve subgoals from innermost to outermost. Our sequents have the form

where IT contains the program clauses, which are unrestricted (i.e. can be used an
arbitrary number of times); I" contains unrestricted atoms; {2 contains ordered atoms;
and G is the formula to be derived. The derivation rules will be completely determined
by the structure of the goal. We have the usual right sequent rules to break down the
goal. For atomic goals, we have two initial sequent rules, for the leaves of the derivation,
and a single backchaining rule which simultaneously chooses a program formula to focus
upon and derives all the ensuing sub-goals.

7initn —il‘litr
F;A—>HA FLAFR;~—>HA
rA; Q2 —n G I'RA —n G
—R —R
2 —pA—-G ;92 —pA->G
F;_Q—U]Gl F;_Q—U]Gz F;Q—>UG[G,/$]
AR Tr V%
;02— Gi NG r;9Q—npgT ;02 —pVe. G
F;~—>HG1...F;-—>HGm F;\Ql—U]G/l...F;_Qn—UjG;L
backchain

r;02,...1 —ng A

where A «— [G1...Gy];; [GY ... G)] is an instance of a program clause in I7. Note

that the backchain rule assumes that every program clause must be placed to the left
of the ordered context. This assumption is valid for our fragment of the logic because
it only contains right ordered implications (—) and the ordered context is restricted to
atomic formulae. Furthermore, the ordering of the {2;, in the conclusion of the rule, is
forced by our compilation of the program clauses.

The above logical language can be encoded with the Isabelle HOL datatype:
datatype oo ::=tt | (atm) | atm — oo | oo with oo | atm — oo | all (prpr = 00)

where (_) coerces atoms into propositions. The universal quantifier is intended to range
over all proper Hybrid terms. In analogy with logic programming, it will be left implicit
in clauses.

The encoding of provability is inspired by [11] and is more general of the above
calculus, as it can also handle left ordered implication. Given an inductive definition of
a predicate for order-preserving split of a context (osplit {2 21, {2r), the above sequent
calculus is defined with three mutually inductive definitions:

I';; 21, G :: [atm list, atm list, nat, oo] = bool
I' >, Goals :: [atm list, nat, oo list | = bool
I';;(02p; 2r) >y, Goals :: [atm list, atm list, atm list, nat, oo list | = bool

where the list judgments are employed in the implementation of the backchain rule:
[A« Op;; I & (osplit $2 21, Qr) & I';; (2, 2r)>0p & IT'>i I | = ;02 >i41(A)
Ordered list consumption is as follows:

— P i)
[(osplit Qr N 2.) & I';; 261> G & I';;(21;2:) 1> Gs | = I';;(21; 2r) >iv1 GH#Gs

while unordered list consumption is analogous, but behaves additively. The rest of
the sequent rules are as expected and left to the on-line documentation. Note that
in this logic implications have only atomic antecedents which therefore yields only
atomic contexts. Atoms are provable either by assumption (intuitionistic or ordered)
or via backchaining. The notation A «— Op,;; I corresponds to an inductive definition
of a set prog of type [atm, oo list, 00 list] = bool, see Subsection 4.2 for examples.
The sequent calculus is parametric in those clauses and so are its meta-theoretical
properties. Sequents are decorated with natural numbers which represent the height
of a proof; this measure allows reasoning by complete induction. For convenience we
define I';; 21> G iff there exist n such that I';; 21>, G and > G iff [|;;]] > G. Similarly
for the other judgments. The very fact that provability is inductive makes available
inversion principles as elimination rules of the aforementioned definitions.

MC-Theorem 1 (Structural Rules). The following rules are admissible:

1. Weakening for numerical bounds: [I';;20>, G; n < m]| = I';;2 >, G and
[I';;(020;02R) >y Goals; n < m | = I';;(21;02g) > Goals and [T >,
Goals; n <m] = I >, Goals.

2. Context weakening: [;2> G; ' C I]| = I'";;20> G and [I';;(2r; 2R) >
Goals; ' C I | = I';(21; 2r) > Goals and [I' > Goals; I' C I]| =
I > Goald.

Proof. The proof is by a fully automated mutual structural induction on the three
sequents judgments.

The sequent calculus in [16] enjoys various forms of cut-elimination. For the sake of
the type preservation proof (Theorem 2) we only need the following atomic intuitionistic
cut: [T#A);[1>G; > (4)] = I';[] > G and similarly for judgments on lists.
This proof is work-in-progress.

4.2 Encoding the Object Logic

We now show how the continuation machine can be written as an Olli program. Rather
than building an explicit stack-like structure to represent the continuation K, we will
simply store instructions in the ordered context. Thus we will use the following repre-
sentation to encode the machine:

Koi 7 K="
where "K' is the representation, described below, of the continuation (stack) K and
similarly for T¢7.

Given the goal: init V — ex (ev e) our program will evaluate the expression e and
instantiate V' with the resulting value. The intended reading of this query is: evaluate
e with the initial continuation (the continuation which just returns its value). A goal
of ex (return ¢) is intended to mean: execute instruction i. A goal of ex (return v)
is intended to mean: pass v to the top continuation on the stack (i.e. the rightmost

element in the ordered context).
We have the following representations:

init o returnv =~ 7 init W = ex (return "v7)
where the logic variable V' is the final answer;
K;Xz.i ¢ returnv s TK7 (cont (Az."i")) = ex (return "v7)

where the ordering constraints force the proof of return "v™ to focus on the rightmost
ordered formula.

As usual in the two-level approach [13] we introduce a datatype atm to encode the
atomic formulae of the OL, which in this case study consists of:

datatype atm ::= ceval exp val | ex instr | init val | cont (val = instr) |
of exp tp | ofl instr tp | ofV wval tp | ofK tp

We can now give the clauses for the OL deductive systems, starting with typing:

Inductive - «—— _;;_ = [atm, oo list, oo list] = bool
= of (B, @ Ey) T «— [];;[(of Ey (T" arrow T)), (of Ey T")]
[abstr E] = of (lam z. E z) (T} arrow Ty) «— [];;[allz. (of & T1) — (of (E z) Tv)]
[abstr E | = ofV (lam* E) T «— [];;[of (lam E) T)
= ofl (ev E) T «— [];;[(of E TY]
= ofl (return V) T «— [];;[(ofV V T]
= ofl (app1 V E) T «— [];;[(ofV V (T3 arrow 1)), (of E T5)]
= ofK (T arrow T') < [(init V)];;[(ofV V T7)]
[abstr K | = ofK (T3 arrow T3) «— [(cont K), (ofK T arrow T)];;
[allv. (ofV v T1) — (ofl (K v) T)]

Typing judgments are intuitionistic, except typing of continuations. The judgments
for expressions, values and instructions directly encode the corresponding judgments

and derivation rules. The judgments for continuations differ from their analogs in Sec-
tion 2 in that there is no explicit continuation being typed; instead, the continuation to
be typed is in the ordered context. Thus, these judgments must first get a continuation
from the ordered context and then proceed to type it.

We now show the evaluation clauses of the program, which fully takes advantage of
ordered contexts. The first one is just a wrapper to put queries into the correct form.
The rest directly mirror the machine transition rules:

= ceval EV « [init V > ex (ev E)|;;[]
= ex (return V) «— [(init V)];;[]
[abstr E] = ex (return V) «— [(cont E), (ex (E V))];;[]
[abstr E] = ex (ev (lam F)) «— [(ex (return (lamx E)))];;][]
= ex (ev (F1 @ F3)) «— [cont (\v. appy v E3) —» (ex (ev E1))];;[]
[abstr E | = ex (app; (lam* E) Es) «— [{ex (ev (E E3)))];;[|

Note the presence of the abstraction annotations as Isabelle HOL premises in rules
mentioning binding construct. This in turn allows to simulate definitional reflection
via the built-in elimination rules of the prog inductive definition without the use of
freeness axioms [8].

4.3 Formal Verification of Type Preservation

Now we can address the meta-theory, namely the subject reduction theorem:

MC-Theorem 2.

[]5init V, 02 D (ex I) =
VI TR0 (> (ofl I T1)) D. ([]3init V, 2" > (ofK (T1 arrow T3))) O (> (ofV V T3))

Proof. The proof is by complete induction on the height of the derivation. Legenda:

[]5;init V, 2 1>; (ex I) corresponds to [1 ;; init V * Ome |- < ex I > ::: i
> (ofl I Ty) corresponds to [] ;; [1 |-- < ofI I T1 >
[15 (£2;5 £2.) >; Goals corresponds to [1 ;; 0L ;; Or |[> Goals ::: i

The induction hypothesis (which will be elided next) is

[| ALLm. m < n -->

(ALL I V Ome.
[J ;; init V * Ome |- < ex I > :::m -——>
(ALL T1 T2 Ome’.
0 ;; [01-—<ofI ITL> &
[0 ;; [init V * Ome’] |-- < ofK (Tl ar T2) > -->
(0;; [0 1-—-<o0ofVVT2>));
We begin by inverting on [1 ;; [1 ;; init V * Ome |- < ex I> ::: n and then

on the prog clauses, yielding several goals each for each evaluation clause. Let’s look
at a simple case for lam:

[l osplit (init V * Ome) 01 Or;

[J ;; 01 ;; Or |1> [ex (return (lam* E)) >, True)] ::: ia;
[0 ;; [0 |-- < ofI (ev (lam E)) T1 > ;
[l ;; [init V * Ome’] |-- < ofK (T1 ar T2) > ; abstr E |]

==> [] M I:] I-— < ofV VT2 >

First we prove that T1 must be of functional form T1’> ar T2’. Note that this requires
several inversion steps as we need to move back and forth between the prog and
provability level. Then we invert on splitting, yielding two goals, the first one of which
we try to show impossible. Case one: 01 = init V * L2 and Or = [].

[;; init V *x L2 ;; Or ||> [< ex (return (lam* E)) >, True)] ::: ia;
osplit Ome L2 Or |[]
=>[] ;; O |I--<ofVVT2>

Inverting again on the first assumptions yields:

[0 ;; Og |- < ex (return (lam* E)) > ::: ia;
[1 ;; init V *x L2 ;; Or’ |I> [] ::: da ... |1 ==> ...

This is contradictory, since we have init V * L2 = []. The second case has Or =
init V * L2 and 01 = []. On more inversion and

osplit (init V * Ome) Og Or’;

(] ;; Og |- < ex (return (lam* E)) > ::: ia;
(155 0 55 02 [I> [] ::: dia |]
==>[] ;5 [] |I-= <ofVVT2>
Here we note that it must be Or’ = [], so that inversion on osplit (init V * Ome)

Og [] yields only one case:

[1;; [0 |I--< ofI (ev (lam E)) (T1’ ar T2’) > ;
[0 ;; [init V * L’’] |-- < ofK ((T1’ ar T2’) ar T2) > ; abstr
[l ;; init V * L2 |- < ex (return (lam* E)) > ::: ia;
osplit Ome L2 []]
==>[] ;; [0 |I-- < ofVVT2>

This follows by IH and the fact that:

0 ;; [0 |-- < ofI (ev (lam E)) (T1 ar T2) > ==
[T ;; [0 |-- < ofI (return (lam* E)) (T1 ar T2) >

Corollary 1 (Subject Reduction). [> ceval E V; > of ET] = (> ofV V T).

5 Related Work and Conclusions

We refer to [1] for a review of related work about HOAS. The present paper generalizes
the approach in [13], which in turn was inspired by [8,11]. The latter in particular
presents a two-level proof of type preservation for MLR in a second-order linear speci-
fication logic. This is a variant of the proof implemented in the linear logical framework
LLF [4], where, in the EIf tradition, a meta-theorem is a relation (type family) between
judgments whom the logic programming-like interpretation provides an operational se-
mantics to. Finally, external coverage checking (which are, for the time being, limited
to LF [22]) verifies that the given relation is indeed a realizer for that theorem. Only
as we speak, M, [20], the meta-logic of LF has been extended to £, a meta-logic for
LLF [10].

In the same vein, Polakow and Pfenning [17] have used an Ordered Logical Frame-
work to formally show that terms resulting from a CPS translation obey stack-like
ordering properties with respect to intermediate values [7, 6]. Polakow and Yi [18] later
extended these techniques to a CPS translation for a language with exceptions which
employed a continuation pair (one for success, one for failure). While both of these
efforts carried out a formal proof in OLF, neither of them were automated in any way.

E;

10

We have presented a two-level approach to formalize an ordered logical framework
on top of the Hybrid system, which allows inductive reasoning about objects defined
via HOAS in a well-known environment such as Isabelle HOL. This replicates, in a
well-understood and interactive setting, the style of proof of FOA I, so all results
are proven without “technical” lemmas foreign to the mathematics of the problem.
The specification logic with its meta-theoretical properties are proven once and for
all and it can be varied depending on the application under study without changing
infrastructure.

As we said in the Introduction, this paper is merely a stepping stone towards in-
vestigating the meta-theory of languages with imperative features. The next objective
is to replay the cited proof of type preservation for MLR, which will be simplified by
the internalization of the instruction stack. From this viewpoint it is somewhat dis-
appointing that we still have to retain a notion of typing of continuations ofK 7. An
intriguing possibility is to move to the third-oder machine described in [16], which, by
using third-order clauses and left implication <, does not need the level of instructions.
For example evaluating an application would be in Olli syntax:

ev_app : ev (E1 @ E2) <<- ({V1} return V1 <-< appl V1 E2) ->> (ev El)

where now appl :: val -> exp -> bool, return :: val -> bool, ev :: exp —>
bool. This would entail some changes in the SL, generalizing the structure of implica-
tional clauses and of backchaining. In a sense, there seems to be a natural progression
from intuitionistic second-order logic [13] to second and finally third order ordered lin-
ear logic whereby we simplify the machine, first internalizing explicit continuations in
the CPM [15] then removing instructions by making use of the more expressive logic.

The possibility of handling in such an elegant fashion both state and order opens up
literally dozens of applications, typically abstract machines, which up to now have been
encoded in a rather indirect fashion. One long term project is the verification of prop-
erties of typed monadic intermediate languages, such as MIL-lite [3], possibly deriving
an abstract machine following [5]. Further there are several other applications beyond
programming languages for an ordered framework such as GSOS with priorities [23].
The latter may require a more sophisticated notion of order, such as branching. It is
conceivable that this could be mirrored by refining linear ordered context in the sense
of bunches in BI [19].

As far as the infrastructure is concerned, note that similarly to [13] in this case study
we only needed to induct closed terms, although we reason (typically by inversion) in
presence of hypothetical judgments. Inducting HOAS-style over open terms is a major
challenge [20]; in this setting generic judgments are particularly problematic, but can be
dealt with by switching to a more expressive SL, based on a eigenvariable encoding [12].
The new theory of terms-in-infinite-context underlying the new version of Hybrid [2]
directly supports this syntax. With that in place, we will be able, for example, to
replay in a full HOAS style a notion of program equivalence based on bisimilarity [14]
and finally approach at the right level of abstraction the verification of the compiler
optimizations of MIL-lite [3].

Source files for the Isabelle HOL code can be found at

www.mcs.le.ac.uk/"amomigliano/isabelle/2Levels/0112

Acknowledgments Alberto Momigliano is supported by EPSRC grant GR/M98555.
Jeff Polakow is supported by grant IST-2001-33477.
References

1. S. Ambler, R. Crole, and A. Momigliano. Combining higher order abstract syntax with
tactical theorem proving and (co)induction. In V. A. Carrefio, editor, Proceedings of the

12.

13.

14.

15.

16.
17.

18.

19.

20.

21.

22.

23.

11

15th International Conference on Theorem Proving in Higher Order Logics, Hampton,
VA, 1-8 August 2002, volume 2342 of LNCS. Springer Verlag, 2002.

S. Ambler, R. Crole, and A. Momigliano. A definitional approach to primitive recursion
over higher order abstract syntax. 2003. Submitted.

N. Benton and A. Kennedy. Monads, effects and transformations. Flectronic Notes in
Theoretical Computer Science, 26, 1999.

I. Cervesato and F. Pfenning. A linear logical framework. Information and Computation,
1998. To appear in a special issue with invited papers from LICS’96, E. Clarke, editor.
O. Danvy and al. A functional correspondence between evaluators and abstract machines.
2003. To appear at PPDP’03.

O. Danvy, B. Dzafic, and F. Pfenning. On proving syntactic properties of CPS programs.
In A. Gordon and A. Pitts, editors, Proceedings of HOOTS’99, Paris, Sept. 1999. Elec-
tronic Notes in Theoretical Computer Science, Volume 26.

O. Danvy and F. Pfenning. The occurrence of continuation parameters in CPS terms.
Technical Report CMU-CS-95-121, Department of Computer Science, Carnegie Mellon
University, Feb. 1995.

A. Felty. Two-level meta-reasoning in Coq. In V. A. Carrefo, editor, Proceedings of the
15th International Conference on Theorem Proving in Higher Order Logics, Hampton,
VA, 1-8 August 2002, volume 2342 of LNCS. Springer Verlag, 2002.

. J.-Y. Girard. Linear logic. Theoretical Computer Science, 50:1-102, 1987.
10.
11.

A. McCreight and C. Schiirmann. A meta linear logica framework. Draft, 2003.

R. McDowell and D. Miller. Reasoning with higher-order abstract syntax in a logical
framework. ACM Transactions on Computational Logic, 3(1):80-136, January 2002.

D. Miller and A. Tiu. Encoding generic judgments. In M. Agrawal and A. Seth, editors,
FST TCS 2002: Foundations of Software Technology and Theoretical Computer Science,
number 2556 in LNCS, pages 18-34. Springer-Verlag, 2002.

A. Momigliano and S. Ambler. Multi-level meta-reasoning with higher order abstract syn-
tax. In A. Gordon, editor, FOSSACS’03, volume 2620 of LNCS, pages 375-392. Springer
Verlag, 2003.

A. Momigliano, S. Ambler, and R. Crole. A Hybrid encoding of Howe’s method for
establishing congruence of bisimilarity. ENTCS, 70(2), 2002.

F. Pfenning. Computation and deduction. Lecture notes, 277 pp. Revised 1994, 1996, to
be published by Cambridge University Press, 1992.

J. Polakow. Ordered Linear Logic and Applications. PhD thesis, CMU, 2001.

J. Polakow and F. Pfenning. Properties of terms in continuation-passing style in an ordered
logical framework. In J. Despeyroux, editor, 2nd Workshop on Logical Frameworks and
Meta-languages (LFM’00), Santa Barbara, California, June 2000. Proceedings available
as INRIA Technical Report.

J. Polakow and K. Yi. Proving syntactic properties of exceptions in an ordered logical
framework. In H. Kuchen and K. Ueda, editors, Proceedings of the 5th International Sym-
posium on Functional and Logic Programming (FLOPS’01), pages 61-77, Tokyo, Japan,
Mar. 2001. Springer-Verlag LNCS 2024.

D. J. Pym. On bunched predicate logic. In G. Longo, editor, Proceedings of the 14th
Annual Symposium on Logic in Computer Science (LICS’99), pages 183-192, Trento,
Italy, July 1999. IEEE Computer Society Press.

C. Schiirmann. Automating the Meta-Theory of Deductive Systems. PhD thesis, Carnegie-
Mellon University, 2000. CMU-CS-00-146.

C. Schiirmann. A type-theoretic approach to induction with higher-order encodings. In
Proceedings of Logic for Programming, Artificial Intelligence and Reasoning (LPAR 2001),
volume 2142 of Lecture Notes in Computer Science, pages 266—281, 2001.

C. Schiirmann and F. Pfenning. A coverage checking algorithm for LF. 2003. To appear
at TPHOLSs, Roma, Italy, September 2003.

I. Ulidowski and I. Phillips. Ordered SOS process languages for branching and eager
bisimulations. Information and Computation, 178, 2002.

