Logical Mobility and Locality Types

Jonathan Moody!
jwmoody@cs.cmu.edu

Computer Science Department
Carnegie Mellon University
5000 Forbes Ave.
Pittsburgh PA 15213-3891
(phone) 1-412-268-5942

TCS Track 2: Logic, Semantics, Specification and Verification

April 1, 2004

! Acknowledgements: Frank Pfenning for feedback on a draft of this paper. This material
is based upon work supported under a National Science Foundation Graduate Research Fel-
lowship. The ConCert Project is supported by the National Science Foundation under grant
number 0121633: “ITR/SY+SI: Language Technology for Trustless Software Dissemination.”

Abstract

We present a type theory characterizing the mobility and locality of program terms in
a calculus for distributed computation. The type theory is derived from logical notions
of necessity (0OA) and possibility (¢ A) of the modal logic S4 via a Curry-Howard style
isomorphism. Logical worlds are interpreted as sites for computation, accessibility
corresponds to dependency between processes at those sites. Necessity (0A) describes
terms of type A which have a structural kind of mobility or location-independence.
Possibility (¢A) describes terms of type A located somewhere, perhaps at a remote
site. We present the calculus in a setting where the locations are distinguished by
stores. Store effects (mutable references) give rise to a class of location-dependent
terms, namely the store addresses denoting reference cells. The system of modal
types ensures that store addresses are not removed from the location where they are
defined.

1 INTRODUCTION 1

1 Introduction

Our claim is that modal logic with necessity OA and possibility ¢A can serve as
the basis of a location-aware type theory for distributed computation. In support,
we present a statically typed, distributed calculus derived from a natural deduction
formulation of S4 modal logic — derived, in the sense that programs correspond to
proof terms, and types to propositions. The modal propositions OA (“mobile A”)
and OA (“remote A”) capture spatial properties of terms relevant to distributed
computation. Mobility and locality are explicit, but the particular locations involved
remain abstract. A programmer need not deal with low-level issues such as assigning
terms to be evaluated at particular locations, communication, or manipulation of
addresses.

We give a semantics for the calculus which is type-sound, permitting movement of
code and values known to be portable, while disallowing it in other cases. The logical
reading of the typing rules leads naturally to the following operational interpretation:
O elimination spawns a freely mobile term of type OA for evaluation at an arbitrary,
indefinite location, and < elimination sends a mobile fragment of code to a definite
location where the remote term of type ¢ A resides.

From a purely operational perspective, these behaviors are not novel. Our process
spawning model is similar to futures of Multilisp [13], and jumping (or something
similar) is a feature of many mobile process calculi such as Mobile Ambients [6], DPI
[9], and others [18, 16]. Jagannathan [10] calls it “communication-passing” style. But
in this work, we focus on the logical origins of these mechanisms and give a static
type-theory which ensures distributed programs are safe with respect to the locality
of resources. In section 6, we discuss other distributed calculi, their approach to
modeling locations, and their static type theories (if any). Most closely related are
calculi due to Jia and Walker [12, 11], and Murphy et. al [20, 21]. These authors give a
distributed interpretation to the modalities DA and ¢ A — one based on S5 semantics
(as opposed to S4). Though the approaches are similar, our calculus is qualitatively
different, both in terms of execution model and the programming discipline it imposes.

A type theory of mobility and locality is only useful when locations are distinguish-
able from the perspective of a running program. We assume a number of definite loca-
tions distinguishable by fixed resources, as well as some indefinite or interchangeable
locations. This allows us to model localized values and location-dependent actions
accurately. For example, memory addresses or file handles become meaningless when
removed from a particular location (machine). Actions may also have a location-
dependent meaning; it matters fundamentally where a program reads from an input
stream or pops up a dialog box. Our approach is to distinguish some locations by
mutable state, specifically a store mapping addresses to values. Thus our type system
is an extension of the pure S4 theory with mutable references and a simple form of
effect typing.

2 LOGICAL PRELIMINARIES 2

2 Logical Preliminaries

Modal logic is built on a foundational assumption that truth is localized. The Kripke
semantics for classical modal logic ascribes to each world w a local valuation function
Vw(Ap) for the atomic propositions. Thus proposition Ay may be true at world w but
false at w’. This localized conception of truth is what gives modal logic the capacity
to describe distributed computation. In a constructive formulation, we no longer have
localized truth valuations, but proofs of a certain form may be portable, establishing
the truth of A in the context of assumptions true at any accessible world. Others
proofs may be tied to a particular world. When removed from that local context,
they no longer establish truth of A.

The types, syntax, and static semantics of our calculus are derived from a con-
structive formalization of modal logic developed by Pfenning and Davies [17]. This
was chosen over other intuitionistic formalisms, such as Simpson’s [19], since proof
reduction and substitution have simple explanations and the logic does not rely on
explicit reasoning about worlds and accessibility. The Pfenning/Davies formalism
is based on three primitive judgments on A, a proposition: A true, meaning that
A is locally true “here”; A valid, meaning that A true holds in every accessible
world; and A poss, meaning that A true holds in some accessible world. Validity
(A valid) is also commonly referred to as necessary truth. These judgments and the
propositions A — B (implication), OA (necessity), and ¢A (possibility) are defined
in relationship to one another, culminating in a natural deduction system for a modal
logic supporting axioms characteristic of constructive S4. The primary judgments are
A;T F A true and A;T - A poss, where A are assumptions A valid, and T' are
assumptions A true.

The intuition behind our application of modal logic to distributed programming
is the following: If, following the Curry-Howard approach, we interpret propositions
as types and proofs as programs, it is also quite natural to interpret the logical
worlds as sites for computation. Proofs of validity (A valid) correspond to mobile,
portable terms. And proofs of possibility (A poss) correspond to computations that
produce a term in some definite, perhaps remote, location. An extended discussion of
the background and logical motivation of the calculus can be found in the technical
report [15].

3 Modal Type Theory and Calculus

The syntax of terms M and types A is given in figure 1. We call the fragment with
types A — B, 0OA and OA the core calculus. To support interesting examples, we
include several extensions: generic effectful computation characterized by the monadic
type (OA, and mutable references ref A as store-effects. We also assume a set of base
types nat, bool, 1 (unit type), etc.

Corresponding to the judgments A true and A poss of the modal deduction
system, we have typing judgments M : A and M =+ A, respectively. To characterize

3 MODAL TYPE THEORY AND CALCULUS 3

Types (A, B) | Syntactic Forms (M, N)
Local |A— B x| x:A.M | M N

1,bool,nat | () | true | false | (defn. elided...)
Spatial | OA u | boxM | let boxu=MinN

CA diaM | let diax=Min N
Effects | OA compM | let compx=Min N

ref A refM | 'M | M:=N

Figure 1: Types and terms of the modal calculus.

local, effectful computations we add a third form of judgment M~ A. We summarize
the typing judgments and their informal readings:

Judgment Significance

A;T'HM: A M has type A here (local pure term)
A;TH M~ A M produces result of type A here (local effects)
A;T'H M+ A M produces result somewhere (non-localized comp.)

The hypothetical form(s) A;T'F M : A, etc. are made in the context of some mobile
variables u :: A € A, corresponding to assumptions A valid, and local variables
x : A € T corresponding to assumptions A true. The typing rules are presented in
figure 2.

Locations are implicit in the local context I', in the following sense: A;I'F M : A
means M has type A in a location where local bindings for I' are available. Thus
certain forms of judgment have a special significance. A;- = M : A, means that
M : A any place via weakening on I'. This form of typing derivation corresponds to
a proof of A valid in the deduction system. By analogy, A;x: B+ M <+ A, means
that M =+ A holds in a location where x : B.

3.1 Spatial Content of Typing

Neither the deductive formalism [17] nor the typing rules involve locations explicitly,
but a few of the typing rules nonetheless have spatial content, by virtue of interaction
between the local context I', and judgments M : A, M + A, etc. For example, rule
Ol states that mobile terms are those which depend only on other mobile terms in
A. Effects are prohibited under box M by requiring M : A.! The elimination form
allows us to bind such a term to u:: A in A. Such variables have a scope extending
beyond the confines of a single location, so it is essential that only mobile values be

1This might be weakened to allow some benign, non-observable classes of effects, but executing
1/0 effects at an arbitrary location leads to unpredictable behavior.

3 MODAL TYPE THEORY AND CALCULUS 4

Mobile Context A == - | Aju= A
Local Context I' == - | I'x: A
ATHEM:A

A;F,X:A,F’}—X:Ahyp A,u::A,A’;FI—u:Ahyp
A;Tx: A-M: B s ATHFM:A—-B A;TEN:A

ATFM:AM:A—B ATFMN:B -

A-FM:A I A;THEFM:0A Auw: A;TEN:B
AT FboxM:0A © A:TF let boxu=M inN : B
ATHEM~ A ATEFM+A
ol . 4
A;T FcompM : OA A;T'FdiaM : CA
ATHEFM~ A

ATEM:A A TEFM:OA AT,x: AN~ B
— __ _ comp - OE
ATHEM~ A A;T'F1let compx=M inN~ B
ATEM:A A;TEFM:0A Au: A;THFN~B
- talloc - ——— OE.

A;T'Fref M~ ref A A;T'F let boxu=MinN~ B
A;Fl—M:refAt : A;THM:refA A;TEN:A
ATFEMeA € ATEM: =N~ 1 tset

A TEFM+A
ATHEM:A ATHFM:CA Ajx: AN+ B

_— 0SS
ATrm=A" ATF let diax=MinN<=B F

ATHQ~ A A TEFM:0A Au: A;THEFN-+B

il / E
A;FI—Q+APOSS A;T'Flet boxu=Min N =+ B D
A TEM:OA A;F,x:AI-N%BOE
nrt A;T'Flet compx=MinN + B P
M A
I T comp
: £
MM A A
e
voooa
M M—a

Figure 2: Typing rules for the core modal calculus extended with effects. Allocation,
dereference, update of reference cells are considered effectful computations. Rules for
base types, other type constructors, etc. are omitted since they are orthogonal and
defined in the usual ways under local term typing (A;I' = M : A). The diagram
illustrates subsumptions between the judgments (poss, poss’ and comp).

3 MODAL TYPE THEORY AND CALCULUS 5

bound to u :: A.

A;-FM:A I A;TEM:0A Auz A;TEN:B
A;T'Fbox M :OA = A;TF let boxu=Min N : B

mp)

The rule OF describes binding the result of a local computation M : (A to
a local variable x : A. Of course, some variables in I" could be bound to values
dependent on prior effects. Under the assumption that effects are not destructive, it
is sound to retain the local context I' in typing A;',x: AF N~ B.

A;THM:OA A;I’,x:Al—NﬁvBOE
A;TF let compx=M inN~ B

Finally, OFE describes the binding of a remote term value to a local variable x : A.
For this to be sound, it must be the case that the continuation A;x: A+ N + B be
well-formed at the remote location. This is ensured by restricting the local context
to a single binding x : A available at some remote location. The I rule allows us to
encapsulate a term M + A as a remote term < A.

A;TEM+A ATEM:CA A;x:AFN-+B

A;I'FdiaM : CA ol A;T'+ let diax=MinN + B oF

3.2 Examples

The definition of OA (mobility) is orthogonal to the rest of the type constructors;
even lexically scoped closures of type nat — nat can be mobile O(nat — nat). This
is more powerful than ad-hoc restrictions on mobility based on the form of types.

let plusk : Onat -> O(nat -> nat) =
(A x : O nat .
let box k = x in
box (A y : nat . y + k))
(* incr a mobile function *)
let box incr :: nat -> nat = plusk (box 1)

Moving the closure representation of incr is sound since we know the free variable
k :: nat in box (Ay : nat.y + k) is bound to a mobile value.

Mobile terms (box M : OA) are I'-closed and free of local dependencies. They
can be evaluated at any location without regard to local resources. The elimination
form let boxu=box M in N spawns M for evaluation in an independent process (at
an arbitrary location). It is straightforward to introduce parallelism with box and
let box. Consider the Fibonacci function, implemented in a recursive fashion:

4 OPERATIONAL INTERPRETATION 6

let fib : Onat -> nat =
mfix £ . A bn .
let box n = bn in
if n < 2 then n
else let box f1
let box f2
f1 + f2

box f (box (n-1)) in
box f (box (n-2)) in

in fib (box 5)

Here the definition of £ must itself be mobile, since £ occurs under box. The typing
rule for mobile fixpoint mf ix requires that the body be I'-closed analogous to the rule
Ol. Fixpoint operators are defined in appendix section 8.3.

Values of type ¢ A can be used to model locations with special roles during com-
putation. Type A describes the resource/interface provided by that site. Non-trivial
values of this type must be obtained through a primitive binding mechanism. We can
form a term dia M : OA in the source language, but M is only “remote” in a trivial
sense.

(* rqueue : O ({insert:nat->Qunit, ...}) *)
let rqueue = bind_queue ... in

(* insert (x : Onat) into rqueue *)
let box v = x in
let dia q = rqueue in (* jump to queue location *)

let comp () = q.insert v in

The actual location of rqueue is hidden by the type constructor <, so the binding
mechanism is free to choose which location will provide the service. Our type discipline
requires that the code sent to the remote location be free of any dependence on
local bindings in I' with the exception of q itself, which can be bound upon arrival.
Primitive remote resources and their properties are discussed in section 8.4.

4 Operational Interpretation

4.1 Model of Locations

We now formalize the operational semantics in a way that is consistent with the log-
ical readings of OA and ¢A described above. The semantics should reflect clearly
the spatial distribution of program fragments, so that communication (movement)
of terms is evident. To this end we introduce processes (I : M) consisting of a term
M labeled uniquely by [. The semantics should also represent concretely the distin-
guishing features of each location. In this instance, locations are distinguished by a
store H mapping addresses a to values. Finally, processes are placed in structured
configurations C that reflect the relationships between processes, stores, and other
processes.

4 OPERATIONAL INTERPRETATION 7

Store H == - | Hla+— V]
Co-located Processes P == - | P, (l: M)
Configuration C == - | ({:M)<C | [HEP]<C

Figure 3: Runtime Structures: processes, stores, and configurations

The notation [H E P] represents a collection of processes P executing inside a
definite location under the store H. Some processes have no definite location, only a
placement (I : M)<C relative to other processes C'. If one thinks of processes as worlds
of a Kripke model, the connective < can be viewed as an assertion of accessibility. For
example, [H F P] < C means that processes C are accessible from P.

We permit process labels and store addresses in terms at runtime. Process labels
occur in two forms: [and @I. Both refer to a process (I : M) but [denotes the result
value of a mobile process and @[denotes the value “at” process | (which may not be
mobile). Typing contexts A and I are generalized to account for labels and addresses.
We provide typing rules for these new syntactic forms in figure 4.

A configuration C is well-formed iff - F¢ C' : I'. That is, all processes in C are
well-formed, and the processes P at definite locations [H F P] have types given by
I". See figure 4 for the definition. There are subsidiary judgments for typing stores
A;T H H : TV, and co-located processes A;I' ¢ P : IV, The label-binding structure
of a configuration is determined by accessibility (<). The form (I : M)<C binds [:: A
in the subsequent portion C. The form [H F P] <C binds the labels [; : A; due to C
in the processes P. Local store addresses a defined by H are also bound in P.

4.2 Substitution and Values

We adopt the definitions of substitution from Pfenning and Davies [17] with trivial
extensions to account for labels and store addresses. There are multiple forms of
substitution, two of which are relevant here. [M/u] is the substitution of a mobile
term for u and [M/x] is substitution of a local term for x. They are defined in
the usual compositional way, avoiding variable capture. Labels and store addresses
denote syntactically closed terms, so [M/u]@r = @r, for example. Because of this,
we can say that substitution acts locally (within a single process). Variables of the
two sorts have different typing properties so the relevant substitution properties are
subtly different.

4 OPERATIONAL INTERPRETATION

Runtime Term M,N == ... |1l | @ | a
Mobile Context A == - | AjuzA | Ajl=: A
Local Context I' == - | I'x:A | I'a: A | TQl: A
A:Al,ZIZA,AQ res F:F17@11A7F2 F:I‘l,a:A,FQ
ATFI:A ATFGl=A ' ATFa: reta “dr
AFeC:T
A;-FM:A A,l::A}—CC:F,df
indef ————
AFe(:MyaC : T Ape ... one
AbeC:D ARH:TH ADTHpep:r
AF [HF PlaC : I',T ocation
ATHEP:TY
A;THEP:TY ATEM=-A
proc. ——————— empty

ATHEP(I: M) : IV,@l: A AT Fe

ATHH:TY

ATH H:T' <= VaeDom(HUT') . A;T,I'+ H(a): T'(a)

Figure 4: Runtime terms, generalized typing contexts, and configuration typing.

Lemma 1 (Substitution Properties)

AyFM:A AN AuctAANTEN:B = AA;TFH[M/u]N:B
A;-FM:A AN Ausz AAAN;TEN+~B = AA;TH[M/uJN~ B
A;FM:A AN Ausz AANSTEN+-B = AA;TH[M/uN-+B
ATEM:A AN AT x: ATVEN:B = AT+ [M/x]N:B

ATEM:A A AT x: ATVEN~B = AT+ [M/x]N~ B
ATEM:A AN ATx:AT'"EFN=-B = ADLIVH[M/x]N+B

Proof: straightforward, by induction on the typing derivation for N. The property is
established for derivations of N : B first, then N~ B assuming the former case, then

N + B assuming substitution properties hold in both the former cases. O

Substitutions [M/u]N and [M/x|N are only properly defined for terms M satis-
fying M : A. For example, [let diax=M in N/u] is undefined. Terms M ~ A and
M + A have different logical properties which are not respected by ordinary substi-
tution. Special forms of substitution can be defined for these cases (see [17]), but our
operational semantics is designed so that only [M/u]N and [M/x]N are required.

4 OPERATIONAL INTERPRETATION 9

The values of the calculus are as follows, eliding values of base type which are
standard. Local values correspond to the typing judgment A;T'F V @ A (or V+ A).
General values correspond to A;I'F V* +— A.

Local Value V == x | u | Xx:A.M | boxM | diaM | compM | a |
Value V* == @l | V

To achieve more concurrency, we treat labels [as pseudo-values, though they can be
reduced further by synchronizing on the result of process [. We use the notation V'
to denote local value or label .

4.3 Reduction Rules

We use evaluation context notation to specify where reduction steps may occur inside
of terms; R[N | denotes a term decomposed into context R[] and subterm N. Any
well-formed term has one or more decompositions. Non-uniqueness arises from the
treatment of labels 7. Pseudo-values V occur throughout the definition of contexts
and redices, so M =1 N is decomposed as either R = [I] N (function position) or
R =1 R’ (argument position).

We present the reduction rules C = C’ in a way that elides unchanged, irrelevant
parts of the configuration. For example, the rule (I : M) = (I : M') applies to any
single process, in a definite location [H E ...] or not.

The most revealing reduction rules are those governing 0 and < introduction and
elimination. This is where the spatial content of the calculus is found, and our se-
mantics permits creation and interaction between processes in these rules. To reduce
(let boxu=box M in V), we spawn an independent process Iz to carry out the evalu-
ation of subterm M. The spawned process s is placed outside of a definite location, re-
flecting the fact that M may be evaluated at anywhere. The rule syncr allows retriev-
ing the mobile result value of such a process. Reducing (R][let diax=dia@ls in N])
involves sending R[] and N to the location where (I3 : V) resides. Notice that the
value V is never moved outside [H F ...], though it is duplicated in the fresh process
l3. Rule resolve allows traversing chains of indirection to locate a remote value, and
letdia covers the trivial case of a local term.

There are also pure and effectful local reduction steps. The local reductions involve
only one process, and, in the latter case, the local store H. Reductions associated
with additional base types, products (A x B), sums (A + B), etc. would be in this
family.

4.4 Properties

Type preservation and progress theorems hold for our semantics; mobility (0A) and
locality (CA) types ensure that our distributed programs are safe. This would be
unremarkable but for the presence of certain localized terms in our semantics — the
store addresses a. The criterion for well-formed configurations specifies that addresses
bound by store H only occur in processes P inside the definite location [H & P]. The
modal type discipline ensures that programs respect the locality of store addresses.

4 OPERATIONAL INTERPRETATION

10

Eval. Ctxt. R == [] | RN | VR | let boxu=RinN
| let diax=RinN | let diax=diaRin N
| let compx=RinN | let compx=compRinN
| ref R | 'R | R:=N | a:=R

letbor (I3 : R[let boxu=box M inN|) = (la: M)<(ly: R[[l2/u]N])
(where [fresh)

syncr (I :VY<a.. {l; : R[l2]) = {la:V)<...(l1:R[V])

syncl (I; : R[let diax=dia(Qly)inN])<...[HE (Iz: V)]
= (l1:Ql3)<...[HE(ly: V), (3:R[[V/x]N])]
(where I3 fresh)

resolve (Iy : R[1let diax=dia(Qly)inN])<...(ly: Ql3)
= (l; : R[let diax=dia(Qi3)inN])<...(lz: Ql3)

letdia (I : R[1let diax=diaVinN])
= (1 : R[[V/x]|N])

letcomp H E (I:R[M]) = H F(:R[[V/x]N])
(where M = let compx=compV inN)
alloc H F (I:R[refV]) = H[a—V] E (l:R[a])
(where a fresh)
get H E (:R['a]) = H E (:R[H(a)])
set H F (:Rla:=V]) = Hla—V] E {{:R[O])

app (1:R[(M\x:A.M)V]) (:R[[V/x]M])

=
—

Figure 5: Reduction rules, organized by category. There are spatial reductions asso-
ciated with the modalities which allow interaction between processes, as well as pure

and effectful local reductions.

For well-formed decompositions R[M |, there is an inversion lemma which allows

us to conclude M is also well-formed. This is a standard property for evaluation
contexts, but in our case M might satisfy more than one of the three typing judgments.

Some decompositions are ruled out by typing, R[M | : B and M ~ A, for example,

are incompatible.

Lemma 2 (Context Typing Inversion)
ATEFR[M]:B = JA.ATEM:A
ATEFR[M]«B = 3A.ATFM:AV A;TEM~A
ATER[M]+B = JA.ATHEM:AV AT

FM~AYV A TEM+A

4 OPERATIONAL INTERPRETATION 11

Proof: Each is proved in order, assuming the prior one(s) hold. Individually, we
proceed by induction on evaluation contexts. For each form of context, we can invert
to the relevant typing rule or a subsumption rule (comp, poss, or poss’) applies. O

Under certain conditions, a context R[] can be moved from one environment to
another because its constituent subterms are I'-closed. That is, R[] may be inde-
pendent of local bindings and mobile, just as a term M encapsulated as box M is
mobile.

Lemma 3 (Mobile Continuations) Assume a context R| | such that A;T' = M =+
A = A;THR[M]+B (for any M). Then AJ/A'; TN+ A = AA; T+
R[N]+ B (for any A", ", and N).

Proof: by induction on the structure of R. Due to typing, the only possibility is
R = let diax;=diaR’in N;. By inversion on typing we can apply the IH to R’.
Also by inversion, A;x; : Ay = N1 + B. The conclusion follows by A-weakening and
the OF typing rule. O

Theorem 1 (Type Preservation) If+¢ C : T' and C = C' then ¢ C' : TV for
some I which extends T .

Proof: by cases on derivation of C' = (', using the definition of +¢ C : T,
inversion on typing derivations, and substitution properties. In the critical cases
where fragments of the program move from one process to another, these mobile
terms, values, or contexts remain well-formed via weakening (of A and/or I'). See
appendix section 8.1 for selected cases. O

To establish progress, we first enumerate the redices of the semantics and give
a decomposition lemma. The category (localredex) corresponds to local reduction
rules. But note that reducing [or let diax=dia@lin N requires interaction with
other processes.

Definition 1 (Redex and Local Redex)
(redex) == 1 | let diax=dia@linN | (localredezx)
(localredex) = (Ax:A.M)V | let boxu=box M in N
| let diax=diaVinN | let compx=compV in N
| refV | ta | a:=V
Lemma 4 (Decomposition) Well-formed terms M are either values, or can be de-
composed as R[N | where N is of the form (redex).
ATEFEM:B = M=V VvV 3IR.M=TR[(redex)]
ATFM~«B = M=V Vv 3IR.M==R|(redex)]
ATFM+B = M=V* v 3IR.M=TR|[(redex)]

Proof: Each is proved in order, assuming the prior one(s) hold. The proof is
by induction on typing derivations. If M is a value V (or M = V*), we are done.
Otherwise, M is a redex in the empty context (trivial decomposition), or we invert
the relevant typing rule and proceed by induction on a typing subderivation to show
that M has a non-trivial decomposition. O

5 CONSEQUENCES OF MODAL TYPES 12

Theorem 2 (Progress) If ¢ C : T then either (1) there exists C' such that C —>
C’" or (2) C is terminal (all processes contain V*).

Proof: Generalize the statement as follows: If A F¢ C : T then (1) C = C’ or
(2) C is terminal or (3) C has a process (I : R[I"]) blocked on label I’ :: A € A. The
proof is by induction on derivations and relies on case analysis and the decomposition
lemma. The main progress theorem is an instance where C is closed (A = -), so case
(3) is vacuous. See appendix section 8.2. O

5 Consequences of Modal Types

Basing the calculus on a modal logic has benefits, but also imposes a certain program-
ming discipline. One benefit is that the logic gives us a clear definition of mobility O A,
orthogonal to the rest of the type theory. On the other hand, the calculus contains
only the constructs necessary for logical completeness and nothing unsound (wrt S4).
Some mechanisms which seem natural to a programmer, such as remote procedure
calls, and mobile remote references are not present or present only in restricted forms.

Well-formed programs respect the locality of both effects and of values produced
through those effects. Effects are only executed at definite locations, and localized
values are never taken out of the context where they are well-defined. The following
program is disallowed, because a local variable xr, bound to a store address, occurs
in a mobile fragment of the program.

let comp xr = ref O in

let box () = box (xr := !xr + 1) in
(* spawned computation synchronized *)
let comp y = !xr in

(* y=0o0ry=17 %)

Abandoning the idea that store addresses distinguish locations and thus should be
localized, it is quite possible to give a reasonable semantics for mobile references —
passing a special remote reference (perhaps a@l) as a proxy for the store address a
as defined in [. But this is a more complicated mechanism than the copying inter-
pretation. It also sidesteps the assumption of distinguishable locations; if proxies are
indistinguishable from local values under the semantics and its primitive operations,
there is no observable difference between the locations. While one can adopt indis-
tinguishability as a design goal, there are costs to maintaining the illusion: communi-
cation latency makes performance unpredictable, and the implementor must provide
for distributed garbage collection of remote references.

The modal type system forces us to recognize mobility and locality explicitly, so
execution costs are more apparent. Our notion of mobility is static, there is nothing
in our semantics analogous to a runtime marshalling exception. This is remarkable
when one considers mobile closures of type O0(A — B) which might capture a non-
mobile bindings were it not for the type discipline of O. There are other, more subtle,

6 RELATED WORK 13

consequences that are apparent when the S4 calculus is compared to calculi based on
S5 modal logic or alternative type theories. We briefly discuss these in sections 6 and
7.

6 Related Work

There are many prior foundational calculi which have a distributed operational in-
terpretation. Most notably the Pi-calculus [14] and offspring. Pi-calculus processes
interact by communicating names over named channels. Locations are thought of as
implicit in the connectivity of processes. And names, the only form of resource, do
not have a definite location or fixed scope (due to scope-extrusion). Thus locations in
the Pi-calculus have no fixed properties or identity. Our approach differs in that our
main focus is on locations and their distinguishing properties. The modal calculus
assumes a set of definite locations with fixed resources, as well as some indefinite
locations which are indistinguishable/interchangeable.

Various proposed calculi have added explicit locations to the Pi-calculus. Exam-
ples are the DPI calculus of Hennessy et. al [9] and lsdm by Ravara, Matos, et. al [18].
These calculi allow some channel names to be declared fixed to a location, while oth-
ers follow the laws of scope extrusion. DPI has a type system that tracks the locality
of channel names, and associates each location with a set of resources (names) bound
in that location. The Klaim calculus is also based on localized resources (multiple
tuple spaces). De Nicola, et. al give a type system for Klaim [16] that checks process
behaviors against administratively granted capabilities.

The ambient calculus [6] proposed by Cardelli and Gordon is a more radical depar-
ture, replacing channels with ambients n[|. Ambients are places which may contain
other ambients and running processes. They also serve as locations in which frag-
ments of the program exchange messages. Cardelli and Gordon [8, 7] and Caires and
Cardelli [2, 3] have developed an ambient logic with modal operators to characterize
the location structure and behavior of ambient calculus programs. In their work,
accessibility is interpreted as containment of ambients, XV requires all sub-locations
satisfy W, and (W requires that some sub-location satisfy W. As with names in the
Pi-calculus, untyped ambients have no fixed locality or scope; in the absence of a spec-
ification, nested ambients may move freely in and out of other ambients in response to
actions of the running program. Cardelli, Ghelli, and Gordon also developed a static
type system for ambients [4, 5] which restricts ambient mobility. But their notion of
mobility is quite different from the one we derived from logical necessity.

Modal logics should be referred to in the plural, because there are several different
ways to define the meaning of 0A and ¢ A. Following a similar intuition, others have
derived distributed calculi from S5 or S5-like hybrid logics. S5 is distinguished from
S4 by the assumption that accessibility between worlds is symmetric, in addition
to reflexive and transitive. The Lambda 5 calculus of Murphy, Crary, Harper, and
Pfenning [20, 21] is derived from pure S5. And Jia and Walker’s A, language [12, 11]
is based on a S5-like hybrid logic with spatial types AQw and n[A] (absolute and

7 CONCLUSIONS 14

relative locations) in addition to the pure modalities OA and ©A. Both type theories
are based in a formalism with explicit worlds; the programmer specifies directly where
all fragments of the program are evaluated. This is qualitatively different than our
S4 calculus, in which boxed terms are evaluated at any indefinite location. But in
some ways, S5 allows a programmer to do more than S4. For the most part, this is
explained by the axiom schemas (5) ¢A — OCA and (5’) ©OA — OA. Axiom (5)
represents the ability to make (references to) remote terms mobile, and (5’) the ability
to return a mobile term which happens to be remote. Both can be given a safe and
sensible semantics, but there are costs to be weighed. For example, supporting (5)
complicates storage management since it allows references to arbitrary local values to
be exported.

In [1] Borghuis and Feijs present a language based on a single 0° modality. How-
ever, their operational interpretation of this modality is not based on the spatial
interpretation of O that we adopt. Rather 0°(A — B) represents location o’s knowl-
edge of how to transform a value of type A to one of type B. The calculus allows
composing services and applying them to values, which are all assumed to be mobile.

7 Conclusions

While 54 does not lead to the most computationally powerful distributed language,
it has a relatively simple programming model and type system. It is also the right fit
under a policy that new located resources may not be introduced during computation,
or perhaps only through an external primitive. This policy could be advantageous
because it encourages the programmer to work locally (as noted by Jagannathan
[10]). It also simplifies the runtime support for marshalling and distributed garbage
collection.

In this instance of the calculus, we treated stores H as the fundamental distin-
guishing property of locations, but the problem of distinguishability is more general.
Store addresses serve as a canonical example of a localized entities, but the logically
motivated type system is independent of this choice. One can imagine extending
the calculus and operational model with other forms of localized resources. Besides
mutable references, file handles, or other pointers to OS data structures, it is not so
clear what other classes of localized value there might be. Concerns such as semantic
transparency should guide the language designer — mobility (move-by-copy) is not
tenable in situations where identity of an object must be preserved. In other cases,
we might choose to fix certain resources to locations for reasons of efficiency, privacy,
or security. Once this choice is made, the abstract principles of modal logic determine
the global properties of the language.

In future work, we plan to pursue this kind of abstract investigation of distributed
computation. We hope to draw conclusions about marshalling and abstraction-safety
in distributed computation. The types A, whose structure we can examine at runtime,
have a kind of inherent potential for mobility, in the sense that functions of type A —
OA exist. That is, a marshalling function takes a local value of type A and produces

REFERENCES 15

an equivalent boxed value of type OA, for some notion of equivalence. But what of
values whose type is abstract? It should not be possible to distinguish a (potentially)
mobile implementation type from a non-mobile one. Hence abstraction becomes a
secondary source of location-dependence; we cannot automatically conclude o — O«
(for some unknown «). Various second-order extensions of the type theory are under
investigation. Hopefully this will shed new light on how abstract datatypes should
behave in a distributed computation, and the meaning of abstraction-safety in that
context.

References

[1] Tijn Borghuis and Loe Feijs. A constructive logic for services and information
flow in computer networks. The Computer Journal, 43(4), 2000.

[2] Luis Caires and Luca Cardelli. A spatial logic for concurrency (part I). In
Theoretical Aspects of Computer Software (TACS), volume 2215 of LNCS, pages
1-37. Springer, October 2001.

[3] Luis Caires and Luca Cardelli. A spatial logic for concurrency (part II). In
CONCUR, volume 2421 of LNCS, pages 209-225. Springer, August 2002.

[4] Luca Cardelli, Giorgio Ghelli, and Andrew D. Gordon. Mobility types for mobile
ambients. In Jiri Wiedermann, Peter van Emde Boas, and Mogens Nielsen,

editors, Automata, Languagese and Programming, 26th International Colloquium
(ICALP), volume 1644 of LNCS, pages 230-239. Springer, 1999.

[5] Luca Cardelli, Giorgio Ghelli, and Andrew D. Gordon. Mobility types for mobile
ambients. Technical Report MSR-TR-99-32, Microsoft, June 1999.

[6] Luca Cardelli and Andrew D. Gordon. Mobile ambients. In Foundations of Soft-
ware Science and Computation Structures (FOSSACS), volume 1378 of LNCS,
pages 140-155. Springer-Verlag, 1998.

[7] Luca Cardelli and Andrew D. Gordon. Logical properties of name restriction.
In Samson Abramsky, editor, Typed Lambda Calculi and Applications, volume
46-60 of LNC'S, pages 46—60. Springer, May 2001.

[8] Luca Cardelli and Andrew D. Gordon. Ambient logic. Technical report, Mi-
crosoft, 2002.

[9] Matthew Hennessy and James Riely. Resource access control in systems of mobile
agents. Information and Computation, 173:82-120, 2002.

[10] Suresh Jagannathan. Continuation-based transformations for coordination lan-
guages. Theoretical Computer Science, 240(1):117-146, 2000.

REFERENCES 16

[11]

[12]

[13]

Limin Jia and David Walker. Modal proofs as distributed programs. Technical
Report TR-671-03, Princeton University, August 2003.

Limin Jia and David Walker. Modal proofs as distributed programs. In EFuropean
Symposium on Programming Languages, April 2004.

D. A. Kranz, R. H. Halstead, Jr., and E. Mohr. Mul-T: a high-performance paral-
lel lisp. In Proceedings of the ACM SIGPLAN 1989 Conference on Programming
language design and implementation, pages 81-90. ACM Press, 1989.

Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes
(I & II). Information and Computation, 100(1):1-40 & 41-77, 1992.

Jonathan Moody. Modal logic as a basis for distributed computation. Technical
Report CMU-CS-03-194, Carnegie Mellon University, October 2003.

R. De Nicola, G. Ferrari, R. Pugliese, and B. Venneri. Types for access control.
Theoretical Computer Science, 240(1):215-254, 2000. Klaim and tuple-spaces.

Frank Pfenning and Rowan Davies. A judgmental reconstruction of modal logic.
Mathematical Structures in Computer Science, 11(4):511-540, August 2001.

Anténio Ravara, Ana G. Matos, Vasco T. Vasconcelos, and Luis Lopes. Lexically
scoped distribution: what you see is what you get. In Foundations of Global
Computing. Elsevier, 2003.

Alex K. Simpson. Proof Theory and Semantics of Intuitionistic Modal Logic.
PhD thesis, University of Edinburgh, 1994.

Tom Murphy VII, Karl Crary, Robert Harper, and Frank Pfenning. A symmetric
modal lambda calculus for distributed computing. In LICS (to appear), 2004.

Tom Murphy VII, Karl Crary, Robert Harper, and Frank Pfenning. A symmetric
modal lambda calculus for distributed computing. Technical Report CMU-CS-
04-105, Carnegie Mellon University, 2004.

8 APPENDIX 17
8 Appendix
8.1 Type Preservation: selected cases
Case: syncr
<lgV><l<l1R[lg]> — <l2V><1<llR[V]>
Let A = AQ,ZQ o A,Al
Process l1: A;THR[l]+ B Assumption
ATHEIL:A Context Inversion
Process ly: Ag;-FV : A Assumption
ATHFV:A Weakening (Ag;- C A;T)
Process I;: AT HR[V]+ B Typing
Case: letbox
(I : R[1let boxu=boxMinN]) = (lo: M)<(ly: R[[l2/u]N])
(where I fresh)
Process l1: A;T'F R[let boxu=boxMinN |+ C Assumption
A;T'F let boxu=box M in N + B Context Inversion
(1) A;sFM:A Inversion
Auw: A, TEFN+B Inversion
Let A=Al A
Process lo: A;-FM: A by (1)
Au:: AA;THFN+B Weakening (A C A)
AT F [lg/u]N + B Substitution
Process l1: AT FR[[l2/u]N]+C Typing
Case: syncl
(I; : R[1let diax=dia(Qly)inN])<...[HFE (I3 : V)]
= (ly:Ql3)<...[HE (Ia: V), {3:R[[V/x]|N])]
(where [3 fresh)
Let Pl = F, @ZQ : A7F2
Let AQ = Al, A
Process l1: ATy, T'H - R[let diax=dia(Qly)inN]+C Assumption
Process lo: Ag; T, T2V = A Assumption
Ay; Ty, T - let diax=dia(Qly)in N + B Context Inversion
AT THi @ + A Inversion
Ay;x: AFN+B Inversion
Let F/l = F, @lQ : A, @l3 : C, FQ
Process I;: Ay, TH @iy + C Rule loc

Process ly: Ag; @3 : O, Ty, TH2 -V = A

Weakening

8 APPENDIX 18

Case:

8.2

Case:

Case:

(FQ,FH2 g @13 . C, FQ, FH2)

Ag:T9, THz x: AFN+B Weakening (A; C Ao)
(x: ACTy,TH2 x: A)
Ag; Ty, THz - [V /3]N + B Substitution
Process I3 : Ag;Tg, T'H2 - R[[V/3]N]|+C Mobile Continuation
resolve
(I : R[1let diax=dia(Q@ly)inN])«...(lz: Ql3)
— <ll :R[let diax=dia(@13) inN])<l...<l2 : @l3>

Let Fl = F, @lg : A7F2
Let AQ = Al, A
Process l1: Ay; T, T'H1 - R[let diax=dia(@Qly)inN]+C Assumption
Process ly : Ag;To, T2 @3+ A Assumption
IFy=...,QIl3: A, ... Inversion
AT, THL - let diax=dia(@ly)in N + B Context Inversion
AT, T Fa@l; = A Rule loc
AT, THi | let diax=dia(@l3)in N + B Rules OI,OFE
Process I;: Ayp; I, T - R[let diax=dia(Ql3)inN]=C Typing
Progress Theorem

none

Ao none
(C =) is terminal Definition
indef
D
Ay-FM:A Al ARC T def
inde
AFe(l:M)y«C : T

A FeM:A Assumption
Al ARCC:T Assumption
Decomposition of M: Decomp. Lemma
(a) M =V, or

(b) M =R (redex)]
Progress for C': I’ IH(D)
1)C=Cor

(2) C is terminal, or
(3) exists A-blocked (I’ : R[I"]) in C

If (a) then:
If (1) then: ({: V)<«C = (I: V)’ Immediate

8 APPENDIX 19
If (2) then: (I: V)< C is terminal Definition
If (3) and I = 1" then: ({:V)<aC = (l: V)<’ Rule syncr
If (3) and I # 1" then: " :: A € A (A-blocked process) Typing Inv.
If (b) and M = R[I""] then: I" :: A € A (A-blocked process) Typing Inv.
If (b) and M = R[let diax=dia@ly in N| then: Contradiction Typing
If (b) and M = R[{localredez)] then:

(- M)y«C=(l:M"YaC

Case: location

D

AFeC:T AR H:TH AT THEep T

AFC[HEP|<C : I',T

AreC:T
AT, TH e p .1
Decomposition of (I; : M;) € P:
(a) all M; =V, or
(b) exists M; = R (redex)]
Progress for C' : T’
(1)C =" or
(2) C is terminal, or
(3) exists A-blocked (I’ : R[I"]) in C

If (1) then: [HE P]<C = [HE P]<(C’
If (2) and (a) then: [H E P] < C is terminal
If (2) and (b) then:

If M; =R[I"] then: I"" :: A€ A (A-blocked process)

If M; = R[let diax=dia@l,in N | then:
[HE (i : M) <C = [HE (I; : M))] <« C"
Otherwise M; = R|(localredex) | then:
[HE(l;: M))]<«C = [H' E (l; : M))]<C
If (3) then: I"” :: A € A (A-blocked process)

Local Redex

location

Assumption
Assumption
Decomp. Lemma

TH(D)

Typing Inv.

Immediate
Definition

Typing Inv.
Rule syncl or resolve

Local Redex
Typing Inv.

8 APPENDIX 20

8.3 Fixpoints

There are two natural forms of fixpoint corresponding to the distinction between
variables (u :: A) and (x : A). We refer to mfix (u :: A). M as mobile fixpoint,
and fix(x : A).M as local fixpoint. The operational semantics is given in the
conventional way, with substitution used to perform unrolling.

AusA-FM: A
A;TFofix(u A). M : A

Al x:AEM: A
AT Hofix(x:A).M: A

fiz

mfix

unrolly, (r:R[mfix(u: A).M]) = (r:R[[mfix(u: A).M/u]M])
unroll (r:R[fix(x: A).M]) = (r:R[[fix(x:A).M/x|M])

One can encode recursive computations involving effects or remote locations using
fix(x: OQA). M or mfix (u:: CA). M. The same encoding strategy fails for mobile
fixpoints encoded as fix (x : OA). M because the encoding does not have the right
behavior under reduction.

8.4 Configuration Topology and Resources

Ordinarily, one does not think of resource handles or pointers as themselves being
localized. After all, the label Q[is separated from the underlying term, and there
is no obvious operational reason why it must behave differently than a label of the
form [. There is, however, a subtle logical explanation. Assuming only reflexive
and transitive accessibility (54), a resource accessible at one world (location) may
become inaccessible upon shifting perspective to a second world. Without stronger
assumptions about the topology of worlds, treating labels @[as freely mobile terms
is unsound. This presents difficulties when we try to explain binding of programs to
external resources of type O<CA that are both mobile and remote.

Our simple notion of a process configuration C' is not able to reflect an accessi-
bility relation (process dependencies) beyond a partial ordering. Programs in the S4
calculus execute safely in this class of process configurations, but we cannot represent
any extra constraints on the topology. One natural extension is to assume certain
processes denoting global resources are accessible from all others; their labels (written
@I) are then treated as part of the mobile context A. We do not pursue this extension
here because it complicates the structure of process configurations without shedding
much light on new phenomena.

