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Abstract Recent developments in Software Defined
Radio technology have created the opportunity to de-
velop networks that are, in principle, highly adaptable
and effective under a much wider range of operating
conditions than currently possible, but few researchers
are able to fully exploit this new flexibility. Cognitive
radio networks require multiple interacting capabilities
for situation assessment, planning and learning, and are
therefore a rich application area for Artificial Intelligence
(AI) technology. Al techniques enable real-time, context-
aware adaptivity at the core of the cognitive networking
vision. This paper briefly discusses some of the Al tech-
niques that can and have been leveraged in this domain.
The goal is to encourage further research in this area
so that we can overcome the most significant challenges
that remain in cognitive networking.

1 Introduction

The demand is increasing for networking technologies
that support robust communication and functionality
under challenging operating conditions. Traditionally, net-
work configurations are hand-tuned and remain static
during operations. However, since user needs and operat-
ing conditions both change over time, cognitive networks
must be designed that are aware of their performance
needs, determine if their needs are being met, and revise
system configurations to better meet their needs.

Recent developments in software defined radio tech-
nology have opened up the opportunity to develop net-
works that are, in principle, highly adaptable and effec-
tive under a much wider range of operating conditions
than currently possible [3,9,28]. However, while these
tools provide new flexibility, few researchers are able to
fully exploit it. This paper briefly discusses some of the
Artificial Intelligence techniques that can (and should)
be leveraged in this domain, and highlights specific cases
of successful implementations.

A Mobile Ad hoc NETwork (MANET) is a type
of ad hoc network that consists of “mobile platforms...
which are free to move about arbitrarily... At a given
point in time... wireless connectivity in the form of a
random, multi-hop graph or ‘ad hoc’ network exists be-
tween the nodes” [15]. MANETS are characterized by
dynamic topologies, bandwidth-constrained, variable ca-
pacity links, energy-constrained operation, and limited
physical security. A MANET is needed for self-forming,
self-configuring, and self-healing operation where the me-
dia and communications channels undergo rapid changes
(e.g., over free space optical, RF, and underwater acous-
tic links) and nodes freely enter and leave the network.
MANETSs are not needed when links are unchanging,
e.g., GEO satellite links, LOS microwave tower links,
fiber optics, Ethernet and wired infrastructure.

In the cognitive network vision, the network adapts
to these continuous changes rapidly, accurately, and au-
tomatically. A cognitive network must

identify and forecast network conditions, including
communications environment and performance,

— adapt to constantly changing conditions, including
participants, tasks, and conditions,

— learn from prior experiences so that it doesn’t make
the same mistakes,

— balance the needs of many users—military, commer-
cial, civilian, and government—while conforming to
official regulations and Policies such as rules-of-en-
gagement.

Intelligent cognitive radios require multiple interacting
capabilities for situation assessment, planning and learn-
ing. Cognitive networks require those capabilities to op-
erate cooperatively in a distributed, diverse environment.
Artificial Intelligence (AI) techniques have addressed
these challenges in many domains, including several ex-
amples in networking. AI enables the real-time, context-
aware adaptivity that is required by cognitive networks.



2 A Brief Intro to Artificial Intelligence

Given that many readers of this paper will come from
the communications and networking community, it may
be useful to provide a little context.

Artificial Intelligence (AI) is the branch of computer
science concerned with the automation of intelligent be-
haviour [39], usually associated with human thinking
such as decision making, problem solving and learning [2].
In 1950, Alan Turing proposed the Turing Test [71] which
called for a human judge to interact through a terminal
to both another human and a computer; if the judge
cannot tell which is which, then the machine is said to
pass the test and would be considered intelligent. The
term Artificial Intelligence was coined in 1956 by no-
table researchers including Herb Simon, Allen Newell,
John McCarthy and Marvin Minsky, at the Dartmouth
Conference [43]. McCorduck [44] presents a comprehen-
sive history of AI, while Russell and Norvig [61] describe
AT techniques appropriate for building decision-making
agents that make rational actions for their given context.

ATl draws techniques from a broad variety of fields
including mathematics, psychology, economics, and con-
trol theory. Al has a huge variety of subfields, including
planning and scheduling, machine learning, knowledge
engineering and fusion, and constraint reasoning.

Natural language processing, speech recognition, ma-
chine vision and robotics all had origins in AI. Practical
AT successes are often pulled into their own domains,
leaving Al researchers to deal with the unsolved prob-
lems. Larry Tesler is often misquoted as having said “Al
is whatever hasn’t been done yet” [29]. Tesler corrects
the quote to “Intelligence is whatever machines haven’t
done yet” [67].

The Odd Paradox

Practical Al successes, computational programs that
actually achieved intelligent behavior, were soon as-
similated into whatever application domain they were
found to be useful in, and became silent partners along-
side other problem-solving approaches, which left Al
researchers to deal only with the “failures,” the tough
nuts that couldn’t yet be cracked.

McCorduck, 2004 [44]

3 Networking Problems Amenable to A1

Artificial Intelligence techniques could plausibly be used
in any Networking problem that involves some form of
situation assessment and/or decision making. The fol-
lowing list is a small sample of some of the specific do-
main problems that AI techniques may be able to help
solve:

— Cyber Security!

L Because cyber security is a huge research area unto itself,
we do not further address these issues in this paper.

Network Configuration and Planning
— Network Control and Coordination
Policy and Constraint Management
— Performance Analysis

This section describes appropriate roles for Al tech-
niques as taken from the perspective of networking needs.

3.1 Potential AI roles from the perspective of the
networking cognition loop

AT systems are often described using the cognition loop
of “Sense, Plan, Act, and Learn,” similar to the OODA
loop of “Observe, Orient, Decide, Act” [6,7] shown in
Figure 1. Note that the OODA loop lacks the key func-
tions of Planning and Learning required in a cognition
loop: without these capabilities it is hard to argue that
a system is “cognitive.” Joe Mitola proposed the OOP-
DAL cognition loop specifically for cognitive radio that
effectively merges these: “Observe, Orient, Plan, Decide,
Act and Learn” [47]. Figure 2 sketches the interaction of
these steps and indicates the tasks they perform.

In the Observe step, the system must collect the raw
sensor data and then cluster that data into hypothesized
events. It then validates that data by paring the set of
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Fig. 1 The OODA cycle does not require cognitive capa-
bilities.
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Fig. 2 The OOPDAL cycle highlights the tasks that cogni-
tive systems perform.



hypothesized events down to the set of likely events. Net-
work modules need to expose internal state, including
current values of controllable parameters, current values
of observations and monitored parameters, and current
activity. AI modules need to identify faulty sensors, and
integrate values across the layers in the stack. The Al
also needs to collect patterns of activity and track per-
formance trends. The Al on a single node may choose
to share observations with other nodes, and may need
to incorporate indirect observations received from other
nodes.

In the Orient step, the system must assess the sit-
uation. To understand the entire situation, this process
involves inferring what else might be true if the event
has happened. Intent Inference infers the goals of other
agents based on observations of their actions. This ac-
tivity may require recognizing that a formerly friendly
node has been compromised. Finally, impact analysis ex-
amines the potential ramifications of the current situa-
tion, including predicting future states given possible dy-
namism in the domain and selected courses of action. De-
pending on these ramifications, some situations can be
safely ignored, others may require information gathering,
others may require coordination with teammates, oth-
ers may require changing activity to adapt to conditions
or avoid threats, and others may require explicit threat
suppression. The network modules should expose any de-
rived computations, including analyses of performance
or network state, and estimates of future conditions if
possible. The Al needs to interpret these observations
and identify potential factors (or root causes) of situa-
tions, and compute progress toward performance goals.
The AI then needs to estimate future conditions and
the likelihood of achieving goals, so that it can decide
on the urgency of responding to problems. Any conclu-
sions should be presented to the network modules where
possible, including for example indicating bottlenecks or
unreliable nodes.

In the Plan step, the system must first identify goals
to be achieved (and when). This step involves managing
the multi-objective performance criteria for all current
tasks and upcoming reservations. (Note that network-
wide goals are often different from node-specific goals.)
The system must then generate plans to achieve those
goals. Planning involves causality reasoning, conditional
planning (or “what-if” analyses), temporal reasoning,
constraint reasoning, and resource management. Given
the current state of the network, the planner must pre-
dict the effect of potential actions on the future state of
the network. Plans can be generated at multiple time-
scales, handling immediate concerns at a fine-granularity,
and longer-term issues at a coarse-granularity (poten-
tially allowing negotiation with other nodes). Because
cognitive networks operate in a multi-objective space, a
planner may generate several plans that tradeoff meet-
ing one objective for another, ideally on a pareto-optimal
curve. Finally, the system must schedule to allocate spe-

cific resources to specific activities over time. Planning
& scheduling often operate iteratively, in the sense that
tasks cannot be selected for a plan if no schedule ex-
ists. Traditionally, network modules contain significant
scheduling capabilities, but the planning capabilities are
implicit in the software, that is, the human network en-
gineer performs the planning.

The Decide step selects among the candidate plans
and schedules, and then allocates computational and ra-
dio resources. Given how quickly the domain changes,
a potential approach is to select actions that are com-
mon at the beginning of “most” of the candidate plans,
because the plan is likely to be revised as conditions
change.

In the Act step, the system implements the chosen
activities. This may include setting values of parameters
or replacing running modules or waveforms. Note that if
the radio or its software has actions that can be selected,
these should be exposed to the plan/decide steps other-
wise the system will be unable to use the full breadth of
system capability.

In the Learn step, the system uses experience to
update models so that the other steps can make more
accurate forecasts. The system can learn human and
application-level behaviour, including node mobility and
data-access patterns (which applications or humans or
roles are accessing the network, and what each of them
needs and when). The system can learn environmen-
tal conditions, including connectivity patterns and ge-
ographical factors. It can also learn capabilities of other
nodes, including capacity, reliability, and functionality.
The planner can use this understanding of neighbours
to bias routing decisions. The learner can use both ex-
plicit human feedback (e.g., QoS is below par), or empiri-
cal performance data (e.g., statistics mapping parameter
settings to QoS).

3.2 Potential Al roles from the perspective of network
characteristics

Communications networks have numerous characteris-
tics that challenge network designers, for which AT tech-
niques would be appropriate and effective solutions.
These characteristics include:

Dynamic: Very few things in a MANET environment are
static. Military missions change, user requirements
change, users join or leave the network, hardware
fails, and mobility causes continuous fluctuations in
connectivity. Machine learning techniques can recog-
nize that the environment has changed, and update
models; they can also generalize from previously-seen
conditions to infer reasonable solutions for new con-
ditions. This generalization capability is critical be-
cause cognitive networks rarely operate under the
identical conditions; we can thus collect baseline data
in a relatively controlled environment (e.g., the lab or



Adaptation for cognitive metworks means that a
network trained in a desert can learn how to per-
form well under water.

a test field), and then expect reasonable operations
when the network is actually fielded. Techniques for
planning under uncertainty make choices that will be
appropriate even as the domain changes.

Partially-observable: Many factors that affect communi-
cation cannot be observed. Few radios, for example,
have a “fog” sensor. Al techniques are good at in-
ferring missing data and generalizing a situation so
that decisions make sense for current conditions.

Ambiguous observations: Detection and understanding
of a change in situation is not always simple. For ex-
ample, how does the system automatically tell the
difference between short-term fade versus entering a
building? AI techniques are good at recognizing am-
biguity or low confidence, and can either gather more
information to discriminate or make decisions appro-
priate for both conditions.

Resource constrained: Cognitive network nodes usually
operate under a variety of resource constraints, in-
cluding bandwidth, compute capabilities or energy.
AT techniques are effective at scaling a solution to
the platform they are operating on, and designing
tasks that manage available resources effectively.

Diverse: Nodes in a MANET have a wide variety of ca-
pabilities, from small hand-held radios to large radios
with satellite communications (satcom); these vary
both in communications and compute power. This
heterogeneity requires different solutions on different
nodes. Al techniques consider diversity a benefit, as
it allows resources to be managed in different ways.

Discrete: As a result of the limited communication and
frequent disconnections, nodes have to make deci-
sions locally, considering local requirements and con-
straints. Using local observations, local learning, and
local decision-making simplifies the learning problem
without compromising too much optimality. Key in-
formation, such as global network performance, can
be shared across nodes when required.

Massive scale: There are roughly 600 observable param-
eters and 400 controllable parameters (possibly con-
tinuous-valued) to configure per node?. We thus have
a distributed, heterogeneous, low-communication,
partially-observable, high-latency optimization prob-

2 We include the ability to dynamically reconfigure the TP
stack as control parameters; we model alternate configura-
tions by creating a control parameter x for each available
network module, where x = 1 when the module has been in-
voked, and z = 0 when the module is not operating [27]. No
current system exposes all of these parameters; the highest
known is about 100 parameters, of which 30 are controllable.

lem of approximately N choices per timestep?; one
second would be a large timestep. Data mining and
ML techniques are effective even on massive datasets;
moreover incremental planning and learning tech-
niques incorporate new information efficiently and
rapidly.

Complex Access Policies: Due to the heterogeneous na-
ture of the data and the nodes, access policies may
restrict the set of nodes that are permitted to hold,
transmit or receive specific data. Knowledge engi-
neering techniques can represent policies as con-
straints, and then constraint reasoning techniques
can find satisfying solutions quickly.

Multi-objective performance requirements: Networks are
traditionally optimized for one thing, such as through-
put, delay, or energy consumption. However, in a
realistic cognitive network, multiple users have in-
teracting requirements and policies, thus creating a
complex multi-objective function that captures mis-
sion, situational and social standpoints [26]; it can
include a wide variety of issues including bandwidth,
application-level quality of service, energy, network
connectivity, and security. Distributed planning and
optimization approaches effectively modify behaviour
to meet these requirements.

AT techniques are capable of addressing the full rich-
ness of these challenges in other domains. Moreover,
there are single systems (e.g., robotics) that collectively
address many of these challenges together. In the net-
working domain, however, Al techniques are just begin-
ning to scratch the surface. We need to bring these tech-
niques into the networking domain, and address them in
depth.

Networks also have characteristics that have only
been lightly addressed by the networking and AI com-
munities.

Complex temporal feedback loops: Within a node, cer-
tain activities occur at very rapid speeds (e.g., be-
tween the Medium Access Control (MAC) and Phys-
ical layers) requiring very a very tight feedback loop
to support cognitive control. Other activities (e.g., at
the Routing layer) occur on a longer time-scale and
cognitive control algorithms may need to take into
account a wider range of factors in a slow feedback
loop. Between nodes, there is yet a longer feedback
loop between changes that are made and the effects
that are observed in network-level performance. The
variety of temporal loops and their dramatic speed
differences means that correlating cause and effect of
actions is particularly challenging.

Complex interactions: Networking parameters have deep,
poorly-understood interactions with each other and
with system performance. In many cases, human net-

3 P = number of parameters, N = number of nodes, and
1 is the average number of values that a parameter can take.



work engineers can identify specific pair-wise inter-
actions, such as increased power reduces battery life.
However, most of these pair-wise interactions are care-
fully caveatted by the networking community, with
exceptions or conditionals that are rarely observable
or computable. Al has the potential to capture and
model many more of these interactions than human
network engineers could ever be capable of analyzing.

Heterogeneous Intercommunication: There is a very
strong norm in the networking community that all
nodes must be designed and (statically) configured to
interoperate; typical ad hoc networks build a group
of homogenous nodes. Cognitive networks break this
assumption: each node can have an independent cog-
nitive controller, and thus network nodes may be het-
erogeneous, and may fall into in non-interoperable
configurations.* Heterogeneous configurations are a
key enabler to dramatic improvements in network
performance, and thus as Al techniques are slowly
given greater access to network configuration, this
challenge will be critical to solve.

ADROIT [70], by giving each node its own learn-
ing system, represented a radical departure from the
traditional networking stance that requires homo-
geneous configurations: ADROIT was the first sys-
tem to demonstrate how powerful a heterogeneous
MANET can be. ADROIT avoided the possibility of
catastrophic failure by giving the AI no access to
parameters that can cause complete communications
failure.

The first two of these challenges have been addressed
in point solutions in the AI community, and specific
instances in the networking community. The last chal-
lenge of automatic heterogeneous intercommunication
has never been addressed by the Al community or the
Networking community. Perhaps a collaborative research
effort will give new insights, solutions, and capabilities.

4 AT Techniques in Networking

While almost any Al technique could potentially prove
useful in a networking environment, certain techniques
are more promising and/or have already produced in-
teresting results. These include Knowledge Engineering,
Planning and Scheduling, Machine Learning, Distributed
AT and Multi-agent systems, including biologically-ins-
pired approaches, and Game Theory. This section de-
scribes possible locations for Al in networks as taken
from the perspective of Al techniques.

Knowledge Engineering aims to capture knowledge so
that a computer system can solve complex problems [20].

4 The alternative is to have one cognitive controller for sev-
eral nodes; while coordination issues are reduced, communi-
cation overhead increases dramatically and intelligent control
is vulnerable to network partitions.

Different knowledge representation approaches are used
for different types of knowledge, and the different ways
that it will be used. Much knowledge engineering work
is concerned with constructing Ontologies. In the net-
working domain, this knowledge would include models of
physics and signal propagation, constraints on the sys-
tem, analysis of interactions, and rules of thumb (e.g.,
about how to configure the system). A formal ontology
may help a cognitive system reason about how and when
capabilities are interchangeable, e.g., recognizing that ei-
ther of two metrics for computing Quality of Information
may be used and that a metric for Quality of Service may
be an appropriate replacement under some conditions.
Semantics and representations are important considera-
tions for cognitive networks [23,32]. Several researchers
have developed knowledge bases and heuristic rules to
optimize the network [23,35,56].

Planning and Scheduling techniques are appropriate
for decision-making situations, where tasks need to be
organized and coordinated to meet performance objec-
tives, under resource constraints. In dynamic environ-
ments, the plan needs to be monitored because pre-
dictions about performance may have been inaccurate
or the conditions have changed such that previously-
selected actions are no longer appropriate. In these cases
the strategy needs to be revised online. Multi-agent plan-
ning, dynamic programming, partially-observable Markov
decision processes (POMDPs), constraint satisfaction,
and distributed optimization algorithms are common
techniques. Planning and scheduling techniques in net-
works can decide what content to move, where, when,
and how, including power-aware computing, node ac-
tivity and task scheduling, and network management.
Scheduling packets and admission control may also ben-
efit from these approaches.

Rathnasabapathy and Gmytrasiewicz show that rout-
ing protocols are conditional plans in the AT sense, and
formulate routing as a multi-agent decision problem us-
ing POMDP’s [57]. Chadha [10,11] created a self-orga-
nizing network management hierarchy that dynamically
updates itself based on changes in connectivity or do-
main requirements. As an example task-allocation scheme,
mobile ad hoc networks can benefit from pre-pulling or
pre-pushing data towards the nodes at the edge of the
network. Intelligent search mechanisms can similarly de-
cide which nodes to use as resources for information [30,
76]. Chadha et al use machine learning, planning and do-
main expertise to dynamically select and place servers
in MANETS [12]; Tapiador and Clark [66] combine ge-
netic algorithms with policies for the same problem. Lau
et al [34] use Al techniques for planning under uncer-
tainty to estimate the best opportunities for communi-
cating with other nodes. PNUTS [73] contains an adap-
tive scheduler for handling server queries.

Cognitive networks operate under a variety of envi-
ronmental, operation, and application constraints. More-
over, solutions to traffic admission, scheduling and rout-



ing should be solved on-line and in a distributed way to
cope with mobility and frequent topology changes. The
MANET research community has extensively studied
traditional constraint optimisation techniques based on
Lagragian relaxation, Linear or Mixed Integer Program-
ming. The AI community has developed more flexible
and powerful problem solving techniques that hybridize
search and constraint propagation, including dynamic
choice point selection, decision variable ordering, probe
backtracking and constraint-based search control [38,62].
These new techniques solve much broader challenges than
traditional approaches, solving much larger problems and
giving better adaptation to network mobility, heteroge-
neous resources, and resilience to spectrum interference,
jamming, link breaks or node failures [24,54].

Machine Learning (ML) techniques aim to improve
the performance of a system by observing the environ-
ment and updating models that describe the interactions
of observables [33,45,46]. ML techniques are appropri-
ate in every domain that is imperfectly modelled. Most
complex domains (including networking) fall into this
category. Moreover, because the set of all possible be-
haviors is too large to be covered by observed examples,
the learner must generalize so that the learned model
is useful for new (previously unseen) cases. ML tech-
niques include artificial neural networks, support vector
machines, clustering, explanation-based learning, induc-
tion, reinforcement learning, genetic algorithms, nearest-
neighbour methods, and case-based learning. Data Min-
ing techniques are a subset (or close cousin) to ML tech-
niques, in that they identify patterns in large datastores.
Data Mining results can be used in a ML system to im-
prove its models. Machine learning differs from Statistics
in that it generalizes from the observed data.

Dietterich and Langley [17] provide a good overview
of ML techniques and how they could be applied to
Cognitive Networks, but cite only one concrete exam-
ple of a realized system in communications networking.
Possibly the earliest use of ML in networking, Littman
and Boyan [5] introduced a reinforcement-learning ap-
proach to routing in networks. Other researchers have
extended this work to a wireless environment, to handle
dynamic load, to manage energy and to plan node mo-
bility [13,14,36,60,65]. MANET networks are often or-
ganized into cluster hierarchies to achieve performance
guarantees [77]; ML techniques could be leveraged here.
ML techniques could also be used to build patterns of
users in forward-deployed enclaves: to understand the re-
lationship between task (or role) and topics of interest,
and when those files will be needed [79].

Another rich area for ML is learning how parameters
interact with each other and with the domain. Rieser [58]
and Rondeau [59] used genetic algorithms to tune pa-
rameters and design waveforms. The experiments show
no data about how fast it works and moreover the learn-
ing appears to operate offline; Rieser states explicitly
that it “may not be well suited for the dynamic environ-

ment where rapidly deployable communications systems
are used.” All demos involve one receiver, one transmit-
ter, and one jammer, although in theory the approach
should not be limited. Newman et al [51,50] similarly
use genetic algorithms to optimize parameters in a sim-
ulated network; they also show no time results. Montana
et al [49] used a genetic algorithms approach for param-
eter configuration in a wireline network that can find the
95% optimal solution in “under 10 minutes.” Using the
ML design of Haigh [27], ADROIT [70] used Artificial
Neural Networks to model communications effectiveness
of different strategies. They were the first to demonstrate
ML in an on-line (real-time) real-world (not simulation)
MANET. Each node in their distributed approach learns
a different model of global performance based on local
observations (i.e. no shared information), thus meeting
MANET requirements for rapid local learning and deci-
sion making.

Distributed AI and Multi-agent Systems are concerned
with finding distributed solutions for AI problems [22,53,
75]. Techniques address domains that have the following
characteristics:

Discrete: Local goals and constraints

Deprived: Locally resource constrained

Distributed: Embedded in a physical world

Decentralized: Local decisions and local views of the en-
vironment (i.e., no centralized decision maker)

Diverse: Different capabilities and different roles

Dynamic: Changing task/mission and domain

DAITI and MAS approaches generally decompose central-
ized techniques to make them appropriate for the decen-
tralized environment, often with some calculation of the
tradeoff between optimality and latency. While concep-
tually appropriate for the communications networking
environment [21], these traditional techniques have to-
date not acknowledge or address a key requirement for
communications networks, namely that the task being
negotiated is the communications itself. In other words,
traditional AI has always assumed that that communi-
cation is “safe,” negotiating and coordinating only the
application-level tasks [42,48,78]; moreover they gen-
erally require massive communications with non-neigh-
bours, universally do not support mobility (changing
connections or constraints between the nodes), and uni-
versally do not support a changing objective function.
These drawbacks are so significant that extensive re-
search and redesign are required to make them appli-
cable in this domain.

Biologically-inspired computing approaches are light-
weight coordination mechanisms [72], and have been used
for a variety of networking problems. AntHocNet [16]
uses both proactive and reactive schemes to update the
routing tables, and outperforms AODV. Konak et al [31]
use particle swarm optimization and agents to improve
network connectivity. Sesum-Cavic and Kiithn use swarm
intelligence for dynamic load balancing [64]. Parunak
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Fig. 3 (a) IP modules are usually tightly coupled, with

one function in the API for each exposed parameter, e.g.,
setTimeout (x) (b) If IP modules used a consistent interface,
e.g., set("Timeout", x), we solve the n X m problem and
facilitate later addition of cognition.

and Brueckner use a stigmergic approach to decide where
to locate services on a MANET [55]. Biologically-inspired
methods are often slower in reaction than conventional
control systems, and may lose optimality, but can offer
greater resilience.

Game theory is a branch of applied mathematics that
is used for analyzing the interaction among agents whose
decisions affect each other. Game theory is becoming a
common formalism for studying strategic and coopera-
tive interaction in multi-agent systems [18]. Applications
of game theory to wireless communications have also re-
ceived significant interest by the research community;
Nisan et al [52] and Liu and Wang [36] present good
introductions. Previous research includes enforcing fair-
ness and thwarting selfish behavior in shared medium [40],
multi-hop packet relaying [1,8], multi-carrier (OFDM)
systems [4], MIMO [63], interactions between communi-
cating nodes [37], and overlay networks [74].

5 An Environment for Cognitive Networking

AT techniques can be incorporated directly within tra-
ditional modules, or structured as additional modules
that directly access IP-module APIs. However, we as a
community will obtain the most effective results if we re-
structure the traditional IP-stack architecture. The crit-
ical issue is that networking software architectures rely
on APIs that are carefully designed to expose each pa-
rameter separately, as sketched in Figure 3a. This ap-
proach to network configuration is not maintainable, for
example as protocols are redesigned or new parameters
are exposed. It is also not amenable to cognitive control.
One issue is that there is no way to get a “directory” of
the parameters that can be observed or controlled. An-
other issue is that there is no coordination mechanism:
what happens if a cognitive controller wants to set the
same parameter that another module wants to set?

To support Al-based control, we need an architecture
more like the one sketched in Figure 3b, where each mod-
ule exposes parameters in a consistent format, with func-
tions such as expose (paramName), set (paramName, val)
and get (paramName). In this structure, first shown in

ADROIT [25,68], a Broker serves as a kind of system
bus between the modular software and any entity that
wishes to change how a running module behaves. So, for
instance, if a timer parameter is to be adjusted, that re-
quest is sent to the Broker, which passes the request on
to the relevant module. Communication goes through
the Broker even for module-to-module requests. Any-
thing that wishes to observe, monitor, or change the
state of the radio must do so via a command relayed by
the Broker. The Broker must provide directory services
so that modules can find each other based on capabili-
ties or exposed parameters. To ensure that no real-time
network module is blocked while waiting for a response,
the architecture design must support asynchronous re-
quests to set or get parameter values, with correspond-
ing upcalls, reporting and alerting functions. The Bro-
ker must notify interested parties of any changes in the
radio’s state or configuration. It is also useful for the
design to include capabilities that allow a protocol to
adapt within given constraints, particularly to support
the rapid MAC/PHY layers.

One concern raised with this architecture is the re-
liance on a centralized Broker. The Broker is a manda-
tory part of the new system architecture, with failure
of the Broker having grave consequences, and therefore
each network module should have a failsafe default op-
eration that work (presumably with degraded perfor-
mance), even when the Broker is not functional. Another
useful failsafe capability is support for a module to re-
ject decisions that don’t make sense, including for ex-
ample constraint management mechanisms that ensure
that settings are consistent.

Note that this architecture supports cognitive con-
trol, but does not mandate it. This software engineering
change solves two difficult problems in (traditional) net-
working architectures. The first is known as the n x m
problem: we wish to have one consistent interface to any
and all network modules so that if it changes, or when
additional modules are created, none of their controlling
applications need to be modified (including other mod-
ules in the network stack, applications, cognitive capabil-
ities, or even the user via a command-line interface). The
second problem the Broker solves is that of coordination
of control. Multiple controllers may be actively seeking
to manage modules at the same time, and to avoid con-
trol battles, they need to know about each other.

This architecture was designed and successfully demon-
strated in ADROIT [25,68], and the Broker software is
available on an open-source basis.

6 Corollaries and Implications

Cognitive networks have the potiential to achieve capa-
bilities not previously seen. There are several interesting
implications that arise in this environment.

Benefits and scope of cross-layer design. Cognitive
networking implies the ability to adapt many param-



eters across all of the layers in the stack. Traditional

networking “cross-layer design” has generally meant two

layers, and one or two parameters in each layer. To un-

derstand the potential impact of this broad cross-layer

optimization, it is worth doing detailed drill-down walk-

throughs, each focusing on how certain changes in pa-

rameters could produce novel changes in networking pro-

tocols and behavior under certain observed conditions [25,
69]. Simulation results for specific scenarios can demon-

strate the power of broad cross-layer optimization. These

walkthroughs also help the team understand how to make
the new approach work better.

Adaptation for cognitive metworks requires per-
forming cross-layer optimization over all of the
layers, each of which may have many exposed pa-
rameters.

Heterogeneous and non-interoperable nodes. A deeply-
held tenet in networking is conformance to written pro-
tocol specifications; all nodes must always follow the pro-
tocol, and from this one can conclude that they will in-
teroperate (but one cannot guarantee maximal perfor-
mance). Further, most nodes are homogeneous. Cogni-
tive controllers enable the network to become heteroge-
neous to the point of non-interoperability, resulting in
possible failure of the nodes to communicate, but also
enabling greater performance when managed correctly.
The architecture design must explicitly address the man-
date of maintaining connectivity, while allowing for het-
erogeneity. The ADROIT architecture included an “or-
derwire” bootstrap channel to be used when a node can
not communicate with the rest of the network and an
explicit “coordination manager” that decided what in-
formation to share with other nodes.

Capability Boundaries. In traditional networking ap-
proaches, there is a very clear boundary between ap-
plication and network module, often corresponding to a
user/kernel boundary with a widely known API (e.g.,
“BSD sockets”). Similarly, there is a clear boundary be-
tween controller and controllee. With the generic ap-
proach to exposing and controlling parameters, these
boundaries blur. Any client of the Broker can choose
to expose controllable parameters, and any client can
choose to set another module’s parameters. Thus, an ap-
plication can choose to have complete visibility into the
stack, or be told to back off by the network. While more
flexible, we must take care that the additional complex-
ity does not lead to unreliable systems. We expect that
removing traditional conceptual restrictions will result
in interesting and significant new ideas.

7 Conclusions

By dynamically changing their communications patterns
based on the current conditions, cognitive networks can

adapt to changes in infrastructure, optimize performance
based on current user needs, and modify behavior to
avoid communications difficulties or mitigate threats.
They may even be able to communicate with non-cognitive
radios or other legacy systems.

There are many powerful Al techniques that address
knowledge engineering, situation assessment, planning,
scheduling, and learning in distributed environments. Al
techniques are ready to be challenged with this complex
real-world domain, just as Networking requirements are
reaching the limits of what can be done by human ex-
perts. We are at a nexus from which interesting ideas
and capabilities will develop.

Similar to the gap that existed between the Infor-
mation Theory and Networking communities 10 years
ago [19], we need to consummate the union between Al
and communications network research.
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