
CLF: A logical framework for concurrent systems

Thesis Proposal

Kevin Watkins

Carnegie Mellon University

Committee:
Frank Pfenning, CMU (Chair)
Stephen Brookes, CMU
Robert Harper, CMU
Gordon Plotkin, University of Edinburgh

CMU, May 13, 2003 – p.1

Thesis: CLF enables succinct and straightforward
specification and implementation of concurrent

systems

CLF = Concurrent Logical Framework

Developed jointly with Iliano Cervesato, Frank
Pfenning, and David Walker

CMU, May 13, 2003 – p.2

What is a logical framework?

Generic, mechanizable system for specifying, computing
with, and reasoning about deductive systems.

Consists of:
• Language based on logical formulas
• Principles for representing systems of interest
• Algorithms for mechanically manipulating the language

Applications:
• Logics
• Programming languages

CMU, May 13, 2003 – p.3

What is a logical framework?

Basic idea:
• Specify at high level using logical connectives
• Find powerful connectives in logics richer than

classical: intuitionistic logic, linear logic, lax logic

Why based on logic?
• Conceptually uniform (same language for specification

and reasoning)
• Generic
• Long history (most studied kind of formal system)

CMU, May 13, 2003 – p.4

Outline

• The LF logical framework
• Modeling judgments and deductions

• Linear logic
• Modeling state

• The CLF framework
• Monadic type
• Modeling concurrency

• Thesis statement
• Research plan

CMU, May 13, 2003 – p.5

The LF logical framework

CLF extends LF = Logical Framework [Harper, Honsell,
Plotkin 1987]

LF based on type theory:
• Syntax and deductions unified as objects
• Correctness of objects specified by types
• Type language based on intuitionistic logic

CMU, May 13, 2003 – p.6

The LF logical framework

Why explicit objects for proofs?
• Meta-reasoning
• Applications (e.g. proof-carrying code)
• Reliability

Why types?
• Type checking is decidable
• Type checking algorithm is efficient
• Well-typed objects automatically compose
• Proof checking = type checking!

CMU, May 13, 2003 – p.7

Representing deductive systems in LF

Deductive system terminology:
• Judgment = statement subject to proof

• Examples:
• “The proposition A is true.”
• “The expression e evaluates to value v.”
• “The principal P knows secret key κ.”

• Deduction = object containing evidence of a judgment
(tree of inferences)

A true B true
A ∧ B true

e1 ⇓ true e2 ⇓ v

(if e1 then e2 else e3) ⇓ v

CMU, May 13, 2003 – p.8

Representing deductive systems in LF

Formalize system of interest:
• Syntax
• Judgments
• Allowed rules of deduction

Formulate representation function mapping to LF:
• Syntax becomes LF objects
• Judgments become LF types
• Deductions become LF objects

CMU, May 13, 2003 – p.9

Representing deductive systems in LF

Syntax built from LF constants having function types:
and : prop → prop → prop

ite : exp → exp → exp → exp

pA ∧ Bq ≡ and(pAq, pBq)

pif e1 then e2 else e3q ≡ ite(pe1q, pe2q, pe3q)

Judgments become dependent types referring to particular
objects. Examples:

true : prop → type

eval : exp → val → type

knows : prin → key → type

CMU, May 13, 2003 – p.10

Representing deductive systems in LF

Rules of inference become LF constants having function
types:

∧I : true(A) → true(B) → true(and(A,B))

if_true : eval(e1, true) → eval(e2, v) →

eval(ite(e1, e2, e3), v)

Deductions mapped to compositions of these constants

CMU, May 13, 2003 – p.11

Representing deductive systems in LF

Adequacy theorem:
• Bijection between syntax of system and LF objects of

proper type
• Bijection between deductions of system and LF objects

of proper type

LF features make this easier:
• Model variable binding with LF function types
• Model capture-avoiding substitution with LF function

application

CMU, May 13, 2003 – p.12

LF summary

Language:
• Dependent type theory
• Based on intuitionistic logic

Representation principles:
• Judgments as types
• Deductions as objects

Algorithms:
• Type checking (= proof checking)
• More . . .

CMU, May 13, 2003 – p.13

Example: locking protocol

Model trivial locking protocol
• Multiple threads t1, . . . , tn

• Multiple locks l1, . . . , ln

• Each thread runs program
• Program = sequence of instructions

• lock(l)

• unlock(l)

Other details suppressed

CMU, May 13, 2003 – p.14

Example: locking protocol

LF types for threads, locks, programs:

thread : type

lock : type

program : type

LF objects for programs:

exit : program

do_lock : lock → program → program

do_unlock : lock → program → program

Example: do_lock(l, do_unlock(l, exit)) has type program
CMU, May 13, 2003 – p.15

Example: locking protocol

Great, we modeled the syntax. But how to model
execution?

Need to model state:
• What program is each thread running?
• Which locks are locked?

Could introduce more syntax for states . . .

Better answer: extend the logic underlying LF

CMU, May 13, 2003 – p.16

Linear logic

CLF related to Dual Intuitionistic Linear Logic (DILL)
[Hodas, Miller 1994; Barber 1996]

“Dual” meaning two kinds of hypotheses:
• Unrestricted hypotheses

• Can use more than once
• Or not at all

• Linear hypotheses
• Must use exactly once

Think linear hypotheses = resources

CMU, May 13, 2003 – p.17

Linear logic

Unrestricted hypotheses already available via LF function
type A → B

New connectives:
• Linear implication A −◦ B (create linear hypothesis =

resource)
• Multiplicative conjunction A ⊗ B (join resources)
• Multiplicative unit 1 (empty set of resources)
• More . . .

CMU, May 13, 2003 – p.18

Linear logic

Unrestricted examples:
• More than once: A → A ⊗ A

• Not at all: A → 1

Linear examples:
• Okay: A ⊗ B −◦ B ⊗ A

• No! A −◦ A ⊗ A

• No! A −◦ 1

CMU, May 13, 2003 – p.19

Representing state via linear logic

Richer logic allows simpler modeling of state
• State = set of linear hypotheses (resources)
• Inference rules modify state

• Consume resources
• Introduce new resources

CMU, May 13, 2003 – p.20

Example continued

New judgments (= types) for state:

unlocked : lock → type

locked : lock → thread → type

run : thread → program → type

Inference rules modify state:

run(t, exit) −◦ 1

run(t, do_lock(l, p)) ⊗ unlocked(l) −◦ run(t, p) ⊗ locked(l, t)

run(t, do_unlock(l, p)) ⊗ locked(l, t) −◦ run(t, p) ⊗ unlocked(l)

CMU, May 13, 2003 – p.21

Representing state via linear logic

Modeling reachability:
• Initialize with linear hypotheses for starting state
• Final state reachable iff there is a deduction of it

Not yet a type theory
• What about deductions-as-objects?
• Want bijection between deductions and executions
• More precise than reachability

CMU, May 13, 2003 – p.22

Linear logic as a framework

Prior work: Linear Logical Framework (LLF) [Cervesato,
Pfenning 1996]

• Has unrestricted and linear hypotheses
• Has unrestricted and linear implication: → and −◦

• Also more connectives not discussed here: Π, &, >
• No synchronous connectives: ⊗, 1, ⊕, 0, !, ∃

CMU, May 13, 2003 – p.23

Linear logic as a framework

No ⊗, 1 availabile in LLF

Instead use “continuation-passing style”:
• DILL style:

run(t, do_lock(l, p)) ⊗ unlocked(l) −◦ run(t, p) ⊗ locked(l, t)

• LLF style: (run(t, p) −◦ locked(l, t) −◦ g) −◦
(run(t, do_lock(l, p)) −◦ unlocked(l) −◦ g)

Problem: CPS sequentializes execution
• Too few deductions equal
• Proof search not concurrent

No good for concurrent systems!
CMU, May 13, 2003 – p.24

Linear logic as a framework

Why no synchronous connectives?
• ⊗, 1, ⊕, 0, !, ∃ involve let-style elimination forms
• Commuting conversions push let bindings around
• Example: (let y1 ⊗ y2 = x in M1) M2 versus

let y1 ⊗ y2 = x in (M1 M2)

No obvious way to define canonical forms
• LLF solution: rule out synchronous connectives
• CLF solution: segregate ⊗, 1, !, ∃ using monad

CMU, May 13, 2003 – p.25

Monad

Segregate more restrictive from less restrictive language

Prior work:
• Segregate effectful from non-effectful computations in

functional programming [Moggi 1988]
• Logical view: lax logic [Benton, Bierman, de Paiva

1998]
• Judgmental view [Pfenning, Davies 2000]

Two kinds of judgments:
• “A true”: can prove A in more restrictive language
• “A lax”: can prove A in less restrictive language

CMU, May 13, 2003 – p.26

Monad

New monadic type constructor {−}

Moving between judgments:
• If “A true” holds, then “A lax” holds
• If “A lax” holds, then “{A} true” holds

CLF idea: confine ⊗, 1, !, ∃ to lax judgment

Syntactic restriction on types
• From this: A ⊗ 1 ⊗ !B −◦ C ⊗ 1 ⊗ !D

• To this: A −◦ B → {C ⊗ 1 ⊗ !D}

CMU, May 13, 2003 – p.27

Example revisited

DILL style:

run(t, exit) −◦ 1

run(t, do_lock(l, p)) ⊗ unlocked(l) −◦ run(t, p) ⊗ locked(l, t)

run(t, do_unlock(l, p)) ⊗ locked(l, t) −◦ run(t, p) ⊗ unlocked(l)

CLF style:

run(t, exit) −◦ {1}

run(t, do_lock(l, p)) −◦ unlocked(l) −◦ {run(t, p) ⊗ locked(l, t)}

run(t, do_unlock(l, p)) −◦ locked(l, t) −◦ {run(t, p) ⊗ unlocked(l)}

CMU, May 13, 2003 – p.28

CLF type theory

Types:

Atomic P ::= a | P N

Asynch A ::= P | Πx :A.A | A −◦ A | A & A | > | {S}

Synch S ::= S ⊗ S | 1 | ∃x :A.S | !A | A

(A → B special case of Πx :A.B)

CMU, May 13, 2003 – p.29

CLF type theory

Objects (only canonical forms):

Atomic R ::= c | x | R N | R∧N | π1R | π2R

Normal N ::= R | λx.N |
∧

λx.N | 〈N,N〉 | 〈〉 | {E}

Expr E ::= let {p} = R in E | M

Monadic M ::= M ⊗ M | 1 | [N,M] | !N | N

Pattern p ::= p ⊗ p | 1 | [x, p] | !x | x

Truth judgment: atomic objects, normal objects, monadic
objects

Lax judgment: expressions

CMU, May 13, 2003 – p.30

CLF type theory

Monad eliminates commutative conversions
• Example: {(let {y1 ⊗ y2} = x in M1) M2} ruled out by

judgments
• Example: {let {y1 ⊗ y2} = x in M1} M2 not well typed
• Must have {let {y1 ⊗ y2} = x in (M1 M2)}

Still have permutative conversions inside expressions
• Example: {let {p1} = R1 in let {p2} = R2 in E} versus
{let {p2} = R2 in let {p1} = R1 in E}

• Equal objects in CLF (presuming variables don’t get
detached from their bindings)

CMU, May 13, 2003 – p.31

CLF type theory

CLF equality on objects given by:
• α-conversion
• Permutative conversions

Also need instantiation algorithm to compute canonical
forms while typing

Payoff:
• α-conversion models variable binding
• Instantiation algorithm models capture-avoiding

substitution
• New: Permutative conversions model concurrency!

CMU, May 13, 2003 – p.32

Modeling concurrency

Basic idea:
• Concurrent execution becomes sequence of let bindings
• Independent computation steps are let bindings with no

common linear variables
• Because of permutative conversions, can’t observe

order in which independent computation steps occur

More details in proposal document

Still need to axiomatize more sophisticated relations (e.g.

π-calculus bisimulation)

CMU, May 13, 2003 – p.33

CLF summary

Language:
• Dependent type theory
• New: Based on linear logic plus monad

Representation principles:
• Deductions are objects
• Judgments are types
• State as linear hypotheses
• New: Concurrent computations are monadic

expressions

Conservatively extends LF and LLF
CMU, May 13, 2003 – p.34

Thesis: CLF enables succinct and straightforward
specification and implementation of concurrent

systems

CMU, May 13, 2003 – p.35

Thesis

In detail:
• Succinct: don’t have to reason explicitly about

serializations
• Straightforward: just add monad brackets to your DILL

formulas
• Analogy: in LF, don’t have to reason about variable

binding

Not only interested in specification; must be possible to

create mechanized tools for computing with and reasoning

about specifications

CMU, May 13, 2003 – p.36

Research outline

Completed work:
• [Definition of CLF]
• Theory of CLF
• Example specifications

Proposed work:
• Framework extensions
• Semantics of proof search
• Tools

CMU, May 13, 2003 – p.37

Theory of CLF

Key points (see proposal document):
• Includes all connectives of DILL except ⊕, 0 (future

work)
• Conservatively extends LF and LLF
• New presentation of LF restricts to canonical forms

• No redices allowed
• Instantiation algorithm works on ill-typed objects
• No mutual dependence of equality and typing

CMU, May 13, 2003 – p.38

Theory of CLF

Instantiation and typing:

Γ ` R ⇒ Πx :A.B Γ ` N ⇐ A
Γ ` R N ⇒ inst_aA(x.B,N)

ΠE

Example:

inst_aa→a(x. b (λy. c (x (x y))), λz. d z) ≡ b (λy. c (d (d y)))

CMU, May 13, 2003 – p.39

Example specifications

Already done:
• Petri nets
• The π-calculus [Milner]
• ML with references, suspensions, futures, concurrency

à la Concurrent ML [Reppy]

Future work:
• MSR (security protocols) [Cervesato]
• Forum [Miller]
• Action calculi [Milner]

CMU, May 13, 2003 – p.40

Framework extensions

Full DILL language: (add ⊕, 0)
• Which equality is right? (need more examples)

Syntactic extensions:
• Notational definitions
• Explicit substitutions

More judgments:
• Ordered hypotheses [Polakow]
• Proof irrelevance [Pfenning]

CMU, May 13, 2003 – p.41

Proof search

Prior work: Elf language [Pfenning 1994]
• Interpret LF specification as logic program
• Operational semantics for proof search
• Generalizes Prolog
• Requires unification algorithm

New issues for CLF:
• Non-determinism associated with concurrency
• Linear unification algorithm (prior work: pre-unification

[Cervesato, Pfenning 1997])

CMU, May 13, 2003 – p.42

Tools

Key algorithms:
• Type-checking
• Type reconstruction
• Proof search

Prior work: Twelf system [Pfenning et al.]

CMU, May 13, 2003 – p.43

Research plan

First:
• Implement checker
• More example specifications

Informed by examples:
• Framework extensions
• Semantics of proof search
• Implement search (restricted unification) and

experiment

CMU, May 13, 2003 – p.44

Research plan

If time permits:
• Full unification
• Methods of representing meta-proofs

CMU, May 13, 2003 – p.45

Conclusion

Natural progression:
• LF: judgments as types, deductions as objects

• Internalizes α-conversion, capture-avoiding
substitution

• LLF: state as linear hypotheses
• Internalizes state

• CLF: concurrent computations as monadic expressions
• Internalizes concurrent equality

CMU, May 13, 2003 – p.46

	vspace {-2ex}Thesis: CLF enables succinct and straightforward specification and implementation of concurrent systems\[3ex] CLF = Concurrent Logical Framework \[2ex] Developed jointly with Iliano Cervesato, Frank Pfenning, and David Walker
	What is a logical framework?
	What is a logical framework?
	Outline
	The LF logical framework
	The LF logical framework
	Representing deductive systems in LF
	Representing deductive systems in LF
	Representing deductive systems in LF
	Representing deductive systems in LF
	Representing deductive systems in LF
	LF summary
	Example: locking protocol
	Example: locking protocol
	Example: locking protocol
	Linear logic
	Linear logic
	Linear logic
	Representing state via linear logic
	Example continued
	Representing state via linear logic
	Linear logic as a framework
	Linear logic as a framework
	Linear logic as a framework
	Monad
	Monad
	Example revisited
	CLF type theory
	CLF type theory
	CLF type theory
	CLF type theory
	Modeling concurrency
	CLF summary
	Thesis: CLF enables succinct and straightforward specification and implementation of concurrent systems
	Thesis
	Research outline
	Theory of CLF
	Theory of CLF
	Example specifications
	Framework extensions
	Proof search
	Tools
	Research plan
	Research plan
	Conclusion

