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Thesis: CLF enables succinct and straightforward
specification and implementation of concurrent

systems

CLF = Concurrent Logical Framework

Developed jointly with Iliano Cervesato, Frank
Pfenning, and David Walker
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What is a logical framework?

Generic, mechanizable system for specifying, computing
with, and reasoning about deductive systems.

Consists of:
• Language based on logical formulas
• Principles for representing systems of interest
• Algorithms for mechanically manipulating the language

Applications:
• Logics
• Programming languages
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What is a logical framework?

Basic idea:
• Specify at high level using logical connectives
• Find powerful connectives in logics richer than

classical: intuitionistic logic, linear logic, lax logic

Why based on logic?
• Conceptually uniform (same language for specification

and reasoning)
• Generic
• Long history (most studied kind of formal system)
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Outline

• The LF logical framework
• Modeling judgments and deductions

• Linear logic
• Modeling state

• The CLF framework
• Monadic type
• Modeling concurrency

• Thesis statement
• Research plan
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The LF logical framework

CLF extends LF = Logical Framework [Harper, Honsell,
Plotkin 1987]

LF based on type theory:
• Syntax and deductions unified as objects
• Correctness of objects specified by types
• Type language based on intuitionistic logic
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The LF logical framework

Why explicit objects for proofs?
• Meta-reasoning
• Applications (e.g. proof-carrying code)
• Reliability

Why types?
• Type checking is decidable
• Type checking algorithm is efficient
• Well-typed objects automatically compose
• Proof checking = type checking!
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Representing deductive systems in LF

Deductive system terminology:
• Judgment = statement subject to proof

• Examples:
• “The proposition A is true.”
• “The expression e evaluates to value v.”
• “The principal P knows secret key κ.”

• Deduction = object containing evidence of a judgment
(tree of inferences)

A true B true
A ∧ B true

e1 ⇓ true e2 ⇓ v

(if e1 then e2 else e3) ⇓ v
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Representing deductive systems in LF

Formalize system of interest:
• Syntax
• Judgments
• Allowed rules of deduction

Formulate representation function mapping to LF:
• Syntax becomes LF objects
• Judgments become LF types
• Deductions become LF objects
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Representing deductive systems in LF

Syntax built from LF constants having function types:
and : prop → prop → prop

ite : exp → exp → exp → exp

pA ∧ Bq ≡ and(pAq, pBq)

pif e1 then e2 else e3q ≡ ite(pe1q, pe2q, pe3q)

Judgments become dependent types referring to particular
objects. Examples:

true : prop → type

eval : exp → val → type

knows : prin → key → type
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Representing deductive systems in LF

Rules of inference become LF constants having function
types:

∧I : true(A) → true(B) → true(and(A,B))

if_true : eval(e1, true) → eval(e2, v) →

eval(ite(e1, e2, e3), v)

Deductions mapped to compositions of these constants
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Representing deductive systems in LF

Adequacy theorem:
• Bijection between syntax of system and LF objects of

proper type
• Bijection between deductions of system and LF objects

of proper type

LF features make this easier:
• Model variable binding with LF function types
• Model capture-avoiding substitution with LF function

application
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LF summary

Language:
• Dependent type theory
• Based on intuitionistic logic

Representation principles:
• Judgments as types
• Deductions as objects

Algorithms:
• Type checking (= proof checking)
• More . . .
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Example: locking protocol

Model trivial locking protocol
• Multiple threads t1, . . . , tn

• Multiple locks l1, . . . , ln

• Each thread runs program
• Program = sequence of instructions

• lock(l)

• unlock(l)

Other details suppressed
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Example: locking protocol

LF types for threads, locks, programs:

thread : type

lock : type

program : type

LF objects for programs:

exit : program

do_lock : lock → program → program

do_unlock : lock → program → program

Example: do_lock(l, do_unlock(l, exit)) has type program
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Example: locking protocol

Great, we modeled the syntax. But how to model
execution?

Need to model state:
• What program is each thread running?
• Which locks are locked?

Could introduce more syntax for states . . .

Better answer: extend the logic underlying LF

CMU, May 13, 2003 – p.16



Linear logic

CLF related to Dual Intuitionistic Linear Logic (DILL)
[Hodas, Miller 1994; Barber 1996]

“Dual” meaning two kinds of hypotheses:
• Unrestricted hypotheses

• Can use more than once
• Or not at all

• Linear hypotheses
• Must use exactly once

Think linear hypotheses = resources
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Linear logic

Unrestricted hypotheses already available via LF function
type A → B

New connectives:
• Linear implication A −◦ B (create linear hypothesis =

resource)
• Multiplicative conjunction A ⊗ B (join resources)
• Multiplicative unit 1 (empty set of resources)
• More . . .
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Linear logic

Unrestricted examples:
• More than once: A → A ⊗ A

• Not at all: A → 1

Linear examples:
• Okay: A ⊗ B −◦ B ⊗ A

• No! A −◦ A ⊗ A

• No! A −◦ 1
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Representing state via linear logic

Richer logic allows simpler modeling of state
• State = set of linear hypotheses (resources)
• Inference rules modify state

• Consume resources
• Introduce new resources
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Example continued

New judgments (= types) for state:

unlocked : lock → type

locked : lock → thread → type

run : thread → program → type

Inference rules modify state:

run(t, exit) −◦ 1

run(t, do_lock(l, p)) ⊗ unlocked(l) −◦ run(t, p) ⊗ locked(l, t)

run(t, do_unlock(l, p)) ⊗ locked(l, t) −◦ run(t, p) ⊗ unlocked(l)
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Representing state via linear logic

Modeling reachability:
• Initialize with linear hypotheses for starting state
• Final state reachable iff there is a deduction of it

Not yet a type theory
• What about deductions-as-objects?
• Want bijection between deductions and executions
• More precise than reachability
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Linear logic as a framework

Prior work: Linear Logical Framework (LLF) [Cervesato,
Pfenning 1996]

• Has unrestricted and linear hypotheses
• Has unrestricted and linear implication: → and −◦

• Also more connectives not discussed here: Π, &, >
• No synchronous connectives: ⊗, 1, ⊕, 0, !, ∃
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Linear logic as a framework

No ⊗, 1 availabile in LLF

Instead use “continuation-passing style”:
• DILL style:

run(t, do_lock(l, p)) ⊗ unlocked(l) −◦ run(t, p) ⊗ locked(l, t)

• LLF style: (run(t, p) −◦ locked(l, t) −◦ g) −◦
(run(t, do_lock(l, p)) −◦ unlocked(l) −◦ g)

Problem: CPS sequentializes execution
• Too few deductions equal
• Proof search not concurrent

No good for concurrent systems!
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Linear logic as a framework

Why no synchronous connectives?
• ⊗, 1, ⊕, 0, !, ∃ involve let-style elimination forms
• Commuting conversions push let bindings around
• Example: (let y1 ⊗ y2 = x in M1) M2 versus

let y1 ⊗ y2 = x in (M1 M2)

No obvious way to define canonical forms
• LLF solution: rule out synchronous connectives
• CLF solution: segregate ⊗, 1, !, ∃ using monad
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Monad

Segregate more restrictive from less restrictive language

Prior work:
• Segregate effectful from non-effectful computations in

functional programming [Moggi 1988]
• Logical view: lax logic [Benton, Bierman, de Paiva

1998]
• Judgmental view [Pfenning, Davies 2000]

Two kinds of judgments:
• “A true”: can prove A in more restrictive language
• “A lax”: can prove A in less restrictive language
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Monad

New monadic type constructor {−}

Moving between judgments:
• If “A true” holds, then “A lax” holds
• If “A lax” holds, then “{A} true” holds

CLF idea: confine ⊗, 1, !, ∃ to lax judgment

Syntactic restriction on types
• From this: A ⊗ 1 ⊗ !B −◦ C ⊗ 1 ⊗ !D

• To this: A −◦ B → {C ⊗ 1 ⊗ !D}
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Example revisited

DILL style:

run(t, exit) −◦ 1

run(t, do_lock(l, p)) ⊗ unlocked(l) −◦ run(t, p) ⊗ locked(l, t)

run(t, do_unlock(l, p)) ⊗ locked(l, t) −◦ run(t, p) ⊗ unlocked(l)

CLF style:

run(t, exit) −◦ {1}

run(t, do_lock(l, p)) −◦ unlocked(l) −◦ {run(t, p) ⊗ locked(l, t)}

run(t, do_unlock(l, p)) −◦ locked(l, t) −◦ {run(t, p) ⊗ unlocked(l)}
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CLF type theory

Types:

Atomic P ::= a | P N

Asynch A ::= P | Πx :A.A | A −◦ A | A & A | > | {S}

Synch S ::= S ⊗ S | 1 | ∃x :A.S | !A | A

(A → B special case of Πx :A.B)
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CLF type theory

Objects (only canonical forms):

Atomic R ::= c | x | R N | R∧N | π1R | π2R

Normal N ::= R | λx.N |
∧

λx.N | 〈N,N〉 | 〈〉 | {E}

Expr E ::= let {p} = R in E | M

Monadic M ::= M ⊗ M | 1 | [N,M ] | !N | N

Pattern p ::= p ⊗ p | 1 | [x, p] | !x | x

Truth judgment: atomic objects, normal objects, monadic
objects

Lax judgment: expressions
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CLF type theory

Monad eliminates commutative conversions
• Example: {(let {y1 ⊗ y2} = x in M1) M2} ruled out by

judgments
• Example: {let {y1 ⊗ y2} = x in M1} M2 not well typed
• Must have {let {y1 ⊗ y2} = x in (M1 M2)}

Still have permutative conversions inside expressions
• Example: {let {p1} = R1 in let {p2} = R2 in E} versus
{let {p2} = R2 in let {p1} = R1 in E}

• Equal objects in CLF (presuming variables don’t get
detached from their bindings)
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CLF type theory

CLF equality on objects given by:
• α-conversion
• Permutative conversions

Also need instantiation algorithm to compute canonical
forms while typing

Payoff:
• α-conversion models variable binding
• Instantiation algorithm models capture-avoiding

substitution
• New: Permutative conversions model concurrency!
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Modeling concurrency

Basic idea:
• Concurrent execution becomes sequence of let bindings
• Independent computation steps are let bindings with no

common linear variables
• Because of permutative conversions, can’t observe

order in which independent computation steps occur

More details in proposal document

Still need to axiomatize more sophisticated relations (e.g.

π-calculus bisimulation)
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CLF summary

Language:
• Dependent type theory
• New: Based on linear logic plus monad

Representation principles:
• Deductions are objects
• Judgments are types
• State as linear hypotheses
• New: Concurrent computations are monadic

expressions

Conservatively extends LF and LLF
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Thesis: CLF enables succinct and straightforward
specification and implementation of concurrent

systems
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Thesis

In detail:
• Succinct: don’t have to reason explicitly about

serializations
• Straightforward: just add monad brackets to your DILL

formulas
• Analogy: in LF, don’t have to reason about variable

binding

Not only interested in specification; must be possible to

create mechanized tools for computing with and reasoning

about specifications

CMU, May 13, 2003 – p.36



Research outline

Completed work:
• [Definition of CLF]
• Theory of CLF
• Example specifications

Proposed work:
• Framework extensions
• Semantics of proof search
• Tools
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Theory of CLF

Key points (see proposal document):
• Includes all connectives of DILL except ⊕, 0 (future

work)
• Conservatively extends LF and LLF
• New presentation of LF restricts to canonical forms

• No redices allowed
• Instantiation algorithm works on ill-typed objects
• No mutual dependence of equality and typing
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Theory of CLF

Instantiation and typing:

Γ ` R ⇒ Πx :A.B Γ ` N ⇐ A
Γ ` R N ⇒ inst_aA(x.B,N)

ΠE

Example:

inst_aa→a(x. b (λy. c (x (x y))), λz. d z) ≡ b (λy. c (d (d y)))
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Example specifications

Already done:
• Petri nets
• The π-calculus [Milner]
• ML with references, suspensions, futures, concurrency

à la Concurrent ML [Reppy]

Future work:
• MSR (security protocols) [Cervesato]
• Forum [Miller]
• Action calculi [Milner]
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Framework extensions

Full DILL language: (add ⊕, 0)
• Which equality is right? (need more examples)

Syntactic extensions:
• Notational definitions
• Explicit substitutions

More judgments:
• Ordered hypotheses [Polakow]
• Proof irrelevance [Pfenning]
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Proof search

Prior work: Elf language [Pfenning 1994]
• Interpret LF specification as logic program
• Operational semantics for proof search
• Generalizes Prolog
• Requires unification algorithm

New issues for CLF:
• Non-determinism associated with concurrency
• Linear unification algorithm (prior work: pre-unification

[Cervesato, Pfenning 1997])
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Tools

Key algorithms:
• Type-checking
• Type reconstruction
• Proof search

Prior work: Twelf system [Pfenning et al.]
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Research plan

First:
• Implement checker
• More example specifications

Informed by examples:
• Framework extensions
• Semantics of proof search
• Implement search (restricted unification) and

experiment
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Research plan

If time permits:
• Full unification
• Methods of representing meta-proofs
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Conclusion

Natural progression:
• LF: judgments as types, deductions as objects

• Internalizes α-conversion, capture-avoiding
substitution

• LLF: state as linear hypotheses
• Internalizes state

• CLF: concurrent computations as monadic expressions
• Internalizes concurrent equality
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