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How does the brain encode complex sensory signals?
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Outline

Motivations

Efficient coding theory

Application to natural sounds

Interpretation of experimental data

Efficient coding in population spike codes
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A wing would be a most mystifying structure
if one did not know that birds flew.

Horace Barlow, 1961
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Natural signals are redundant
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Efficient coding hypothesis (Attneave, 1954; Barlow, 1961; et al):

Sensory systems encode only non-redundant structure

Michael S. Lewicki, Carnegie Mellon University, Oct, 21 2002 ➡➡ ➡

➡

? 5



Why code efficiently?

Information bottleneck of sensory coding:

• restrictions on information flow rate

– channel capacity of sensory nerves
– computational bottleneck
– 5× 106 → 40− 50 bits/sec

• facilitate pattern recognition

– independent features are more informative
– better sensory codes could simply further processing

• other ideas

– efficient energy use
– faster processing time

How do we use this hypothesis to predict sensory codes?
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A simple example: efficient coding of a single input

(from Atick, 1992)

How to set sensitivity?

• too high ⇒ response saturated
• too low ⇒ range under utilized

• inputs follow distribution of sensory
environment

• encode so that output levels are used
with equal frequency

• each response state has equal area
(⇒ equal probability)

• continuum limit is cumulative pdf of
input distribution

For y = g(c)

y

ymax
=

∫ c

cmin

P (c′)dc′
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Testing the theory: Laugin, 1981

Laughlin, 1981:

• predict response of fly LMC (large monopolar cells)
– interneuron in compound eye

• output is graded potential

• collect natural scenes to estimate
stimulus pdf

• predict contrast response function
⇒ fly LMC transmits information
efficiently

What about complex sensory
patterns?
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V1 receptive fields are consistent with effcient coding theory

V1 receptive fields are well-fit by 2D Gabor functions
(Jones and Palmer, 1987).

Does this yield an efficient code?
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Coding images with pixels (Daugman, 1988)

Lena histogram of pixel values
Entropy = 7.57

High entropy means high redundacny ⇒ a very inefficient code
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Recoding with Gabor functions (Daugman, 1988)

Pixel entropy= 7.57 bits Recoding with 2D Gabor functions
Filter output entropy = 2.55 bits.

Can these codes be predicted?
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Sparse coding of natural images (Olshausen and Field, 1996)

. . .

. . .

visual input units receptive fields

before
learning

after
learning

nature scene

. . .

Adapt population of receptive fields to

• accurately encode an ensembe of natural images
• maximizing the sparseness of the output, i.e. minimizing entropy.
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Theory predicts entire population of receptive fields

(Lewicki and Olshausen, 1999)

Population of receptive fields.
(black = inhibitory; white = exicitatory)

Overlayed response property schematics.
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Algorithm selects best of many possible sensory codes
Learned

Gabor

Wavelet

Fourier

Haar

PCA

(Lewicki and Olshausen, 1999) Theoretical perspective:
Not edge “detectors” but an efficient way to describe natural, complex images.
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Gabor wavelet Haar Fourier PCA learned
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Efficient coding of natural sounds



Efficient coding: focus on coding waveform directly

Goal:

Predict optimal transformation of acoutsic waveform
from statistics of the acoustic environment.
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Why encode sound by frequency?

Auditory tuning curves.
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A simple model of waveform encoding

Data consists of waveform segments sampled randomly from a sound ensemble:

x1:N

Filterbank model:

ai(t) =
N−1∑
τ=0

x(t− τ)hi(τ)

Model only describes signals within the
window of analysis.

How do derive the filter shapes hi(t)
that optimize coding efficiency?
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Information theoretic viewpoint

Use Shannon’s source coding theorm.

L = E[l(X)] ≥
∑

x

p(x) log
1

q(x)

=
∑

x

p(x) log
p(x)
q(x)

+
∑

x

p(x) log
1

p(x)

= DKL(p‖q) + H(p)

If model density q(x) equals true density p(x) then DKL = 0.
⇒ q(x) gives lower bound on average code length.

greater coding efficiency ⇔ more learned structure

Principle

Good codes capture the statistical distribution of sensory patterns.

How do we descibe the distribution?
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Describing signals with a simple statistical model

Goal is to encode the data to desired precision

x = ~a1s1 + ~a2s2 + · · ·+ ~aLsL + ~ε

= As + ε

Can solve for ŝ in the no noise case

ŝ = A−1x

Want algorithm to choose optimal A (i.e. the basis matrix).
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Algorithm for deriving efficient codes

Learning objective:

maximize coding efficiency

⇒ maximize P (x|A) over A (basis for
analysis window, or filter shapes).

Probability of pattern ensemble is:

P (x1,x2, ...,xN |A) =
∏
k

P (xk|A)

To obtain P (x|A) marginalize over s:

P (x|A) =
∫

dsP (x|A, s)P (s)

=
P (s)
|detA|

Using independent component analysis
(ICA) to optimize A:

∆A ∝ AAT ∂

∂A
log P (x|A)

= −A(zsT − I) ,

where z = (log P (s))′. Use
P (si) ∼ ExPwr(si|µ, σ, βi).

This learning rule:

• learns features that capture the most
structure

• optimizes the efficiency of the code
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Modeling Non-Gaussian distributions with ICA
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• Typical coeff. distributions of
natural signals are
non-Gaussian.

• Independent component
analysis (ICA) describes the
statistical distribution of
non-Gaussian distributions

• The distribution is fit by
optimizing the filter shapes.

• Unlike PCA, vectors are not
restricted to be orthogonal.

• This permits a much better
description of the actual
distribution of natural signals.
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Efficient coding of natural sounds: Learning procedure

To derive the filters:

• select sound segments randomly from sound ensemble

• optimize filter shapes to maximize coding efficiency

What sounds should we use?

What are auditory systems adapted for?

• localization / environmental sounds?

• communication / vocalizations?

• specific tasks, e.g sound
discrimination?

We used the following sound ensembles:

• non-harmonic environmental sounds
(e.g. footsteps, stream sounds, etc.)

• animal vocalizations (rainforest
mammals, e.g chirping, screeching,
cries, etc.)

• speech (samples from 100 male and
female speakers from the TIMIT
corpus)
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Results of adapting filters to different sound classes

Efficient filters for environmental sounds:

Efficient filters for speech:

Efficient filters for animal vocalizations:

• Each result shows only a subset

• Auditory nerve filters best match
those derived from environmental
sounds and speech

• learning movie
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Upsampling removings aliasing due to periodic sampling
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A combined ensemble: env. sounds and vocalizations

Efficient filters for combined Efficient filters for speech:

Can vary along the continuum by changing relative proportion, best match is 2:1
⇒ speech is well-matched to the auditory code
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Can decorrelating models also explain data?

Redundancy reduction models that adapt weights to decorrelate output activies
assume a Gaussian model:

x ∼ N (x|µ, σ)

Under this model, the filters can be derived with principal component analysis.

PCs of Environmental Sounds: Corresponding Power Spectra:

⇒ just decorrelating the outputs does
not yield time-frequency localized filters.
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Why doesn’t PCA work?

Check assumptions:

x = As and x ∼ N (x|µ, σ)

⇒ distribution of s should also be Gaussian.

Actual distribution of filter coefficients:
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Efficient coding of sparse noise

Learned sparse noise filters:

Efficient filters are delta functions that represent
different time points in the analysis window.

...but what about the auditory system?
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Auditory filters estimated by reverse correlation

x(t) y(t) z(t) s(t)Linear

System

static

nonlinearity

stochastic

pulse gen.

Cat auditory “revcor” filters:

time (ms)
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deBoer and deJongh, 1978 Carney and Yin, 1988
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Revcor filter predictions of auditory nerve response

(from de Boer and de Jongh, 1978).

• stimulus is white noise

• histogram: measured
auditory nerve response

• smooth curve:
predicted response

Conclusion:

Shape and
distribution of revcor
filters account for a
large part of the
auditory sensory code.

We want to match more
than just individual filters:

How do we
characterize the
population?
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Schematic time-frequency distributions
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Animal vocalizations:
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Tiling trends follow power law
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Does equalization of power explain these data?

Average power spectra:
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Comparison to auditory population code

Cat auditory nerves
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frequency
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Summary

Information theory and efficient coding:

• can be used to derive optimal codes for different pattern classes.

• explains important properties of sensory codes in both the auditory and visual
system.

• gives insight into how our sensory systems are adapted to the natural
environment.

Caveats

• Codes can only be derived within a small window

• Does not explain non-linear aspects of coding

• Models do not capture higher order structure
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Coding natural sounds with spikes



Addressing some limitations of the current theory

The current model assumes the sound waveform is dividing into blocks:

time

am
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Problems with block coding:

• signal structure is arbitrarily aligned
• code depends on block alignment
• difficult to encode non-periodic structure, e.g. rapid onsets
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An efficient, shift-invariant model

The signal is modeled by a sum of events plus noise:

x(t) = s1φ1(t− τ1) + · · ·+ sMφM(t− τM) + ε(t) .

The events φm(t):

• can be placed at arbitrary time points τm

• are scaled by coefficients sm
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Solution after optimization: 105 dB SNR
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Time shifting
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