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Abstract. A new type of sensor for students’ mental states is a single-channel portable EEG headset simple 
enough to use in schools. To gauge its potential, we recorded its signal from children and adults reading text and 
isolated words, both aloud and silently.  We used this data to train and test classifiers to detect a) when reading is 
difficult, b) when comprehension is lacking, and c) lexical status and word difficulty.  To avoid exploiting the 
confound of word and sentence difficulty with length, we truncated signals to a uniform duration.  The EEG data 
discriminated reliably better than chance between reading easy and difficult sentences.  We found weak but 
above-chance performance for using EEG to distinguish among easy words, difficult words, pseudo-words, and 
unpronounceable strings, or to predict correct versus incorrect responses to a comprehension question about the 
read text. We also identified which EEG components appear sensitive to which lexical features.  We found a 
strong relationship in children between a word’s age-of-acquisition and activity in the Gamma frequency band 
(30-100 Hz). This pilot study gives hope that a school-deployable EEG device can capture information that 
might be useful to an intelligent tutor. 
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INTRODUCTION 
The ultimate automated tutor could peer directly into students’ minds to identify their mental states 
(knowledge, thoughts, feelings, and so forth) and decide accordingly what and how to teach at each 
moment. The reality, of course, is that today’s automated tutors attempt instead to infer students’ 
mental states from a thin trickle of data, typically in the form of mouse clicks and keyboard input. 
Some ITS research (e.g., D’Mello et al., 2009; Gluck et al., 2000; Graesser et al., 2006; Mota & 
Picard, 2003; Woolf et al., 2009) has reported success in using other types of data, such as speech, eye 
movements, posture, heart rate, skin conductance, and mouse pressure, to detect various cognitive and 
affective states that may not be feasible to infer from conventional input, but could be of use to 
intelligent tutors.  We report here on a complementary source of input from as close to the brain as 
non-invasively possible: electroencephalography (EEG). 

The EEG signal is a voltage signal that can be measured on the surface of the scalp, arising from 
large areas of coordinated neural activity manifested as synchronization (groups of neurons firing at 
the same rate). This neural activity varies as a function of development, mental state, and cognitive 
activity, and the EEG signal can measurably detect such variation. Rhythmic fluctuations in the EEG 
signal occur within several particular frequency bands, and the relative level of activity within each 
frequency band has been associated with brain states such as focused attentional processing, 
engagement, and frustration (Berka et al., 2007; Lutsyuk et al., 2006; Marosi et al., 2002), which in 
turn are important for and predictive of learning (Baker et al., 2010). Studies of children’s EEG power 
spectra have also identified specific frequency band differences between readers with different reading 



proficiencies (Ackerman et al., 1994; Ackerman et al., 1998; Clarke et al., 2002; Colon et al., 1979; 
Fein et al., 1983). 

The recent availability of simple, low-cost, portable EEG monitoring devices now makes it 
feasible to take this technology from the lab into schools. The NeuroSky “MindSet,” for example, is 
an audio headset equipped with a single-channel EEG sensor. It measures the voltage between an 
electrode that rests on the forehead and electrodes in contact with the ear. Unlike the multi-channel 
electrode nets worn in labs, the sensor requires no gel or saline for recording and therefore requires 
much less expertise to position. Even with the limitations of recording from only a single sensor and 
working with untrained users, a previous study (NeuroSky, 2009) found that the MindSet 
distinguished two fairly similar mental states (neutral and attentive) with 86% accuracy. MindSet has 
been used in brain-computer interfaces to classify flash patterns (Luo & Sullivan, 2010), human 
emotional responses (Crowley et al., 2010), and states of human awareness while driving (Yasui, 
2009). 

The ability to record longitudinal EEG data in authentic school settings is important for several 
reasons. First, we can analyze learning over intervals longer than a lab experiment, not just short-term 
memory effects. Second, we can study data generated by children’s “in vivo” behavior at school, 
rather than their more constrained behavior under intense adult supervision in unfamiliar lab settings. 
Third, we can get enough data over a long enough time from enough students to potentially combat 
the notoriously noisy nature of EEG data with the statistical power of “big data,” thereby enabling us 
to analyze the effects of different forms of instruction and practice on student learning and moment-to-
moment engagement. Finally, longitudinal recording of EEG data on a school-based tutor offers the 
opportunity to obtain enough data over time to develop and train valid student-specific models and 
apply them on enough occasions to result in better learning. 

To assess the feasibility of collecting useful information about cognitive processing and mental 
states using a portable EEG monitoring device, we conducted a pilot study. Participants wore a 
NeuroSky Mindset while using Project LISTEN’s Reading Tutor (Mostow & Beck, 2007). The 
Reading Tutor displays text, listens to the student read aloud, and logs detailed moment-by-moment 
records of its multimodal tutorial dialogue to a database (Mostow & Beck, 2009). We matched this 
data to our EEG data by user ID and timestamp. 

We wanted to know if MindSet data lets us distinguish among mental states relevant to learning 
to read. If we can do so better than chance, then these data contain relevant information that future 
work may decode more accurately. Thus we address four questions: 

 
1. Can we use school-deployable EEG to detect when reading is difficult? 
2. Can we use such EEG to detect when comprehension is lacking?  
3. Can we use such EEG to detect properties of individual read words? 
4. Which features of this EEG signal correspond to particular lexical properties? 

 
 We first describe the relationship between EEG and cognition. We next describe the study design 

and analysis methods. In the following sections, we address questions 1-4 above. We then discuss 
challenges, limitations, and future work, and finally conclude. 

EEG AND COGNITION 
The EEG signal is a continuous waveform sampled, in our case, 512 times per second. Much like a 
sound wave, the EEG waveform can be broken down into component frequencies and represented at 



each time point by the power in each frequency band. The EEG spectrum is typically clustered into 5 
frequency bands: delta (1-3Hz), theta (4-7 Hz), alpha (8-11 Hz), beta (12-29 Hz), and gamma (30-100 
Hz). Changes in the synchronization of neural activity at these frequencies, resulting in changes in the 
measured power, are thought to be important in the control of cognitive processes and can vary as a 
result of attention, alertness, memory, mental effort, motor responses, errors, and feedback. The exact 
nature of the relationship between cognition and EEG frequency can vary across cortical regions and 
as a function of the specific task requirements. Understanding which types of tasks or cognitive 
processes modulate activity in each of the EEG bands helps us interpret the meaning of relationships 
that we find between EEG activity and our tasks. In addition, it helps us identify appropriate features 
to use in training classifiers. 

Generally, oscillations in the alpha and beta bands desynchronize (reducing power in these 
frequencies) as attention and task demands increase. Alpha and beta suppression have been found for 
reading words with attention compared to viewing distractor words that are to be ignored (Dalal et al., 
2009), and with increasing task demands across a variety of tasks (Fink et al., 2005). Often concurrent 
with alpha and beta suppression, oscillations become more synchronous in the higher frequency 
gamma band, as well as the lower frequency delta and theta bands.  

Increases in the gamma band are often related to linking perceived stimuli to both short-term and 
long-term memory, and therefore might be especially relevant during learning. For example, gamma 
power is higher for attended stimuli that are later recalled (Fell et al., 2001; Mainy et al., 2007), during 
perceptual learning (e.g. learning pictures which later must be identified in a fragmented form) 
(Gruber et al., 2002), when reading target words needing attention in a reading task (Dalal et al., 
2009), and for viewing images of real objects whose identities are presumably represented in long-
term memory rather than novel objects (Herrmann et al., 2004). These increases are often found in 
occipital brain regions normally associated with the visual-perceptual tasks, but Lachaux et al. (2008) 
found that in a reading task, when gamma band activity increased in the reading network, it also 
decreased in other regions. They suggest that gamma band activity can both synchronize and 
desynchronize during tasks, depending on the cortical region. However, we record from only one 
location on the scalp, which doesn’t measure activity across the whole brain.  Consequently we may 
not always see EEG power change in the expected direction.  

Synchronous delta oscillations increase during motor responses where errors are made or in 
conditions where errors are likely to be made and may reflect error-specific processing (Cavanagh et 
al., 2012). In addition, delta power increases with increased internal processing during harder mental 
tasks (Harmony et al., 1996).  

Theta oscillations also increase with novel stimuli, conflict, punishment, and error, and may be a 
good measure of the sustained shift that underlies several well-known transient signals marking 
responses to errors, correct responses, and feedback – all important elements of learning and 
performance (Cavanagh et al., 2012). Increased theta in one study was related to decreased behavioral 
alertness, defined as the times when participants were making more errors (Huang et al., 2001).  
However, this increase could also be a result of error-related processing rather than alertness. Howells 
et al. (2010) also found a negative relationship between perceived mental effort and theta and the 
theta/beta ratio (decreased theta with increased mental effort), but only in certain types of attentional 
tasks – theta was generally also lower during rest than during tasks requiring attention.  

At the finest grain size, the EEG signal can be time-locked to a certain “event,” such as the 
presentation of a word, and the resulting Event-Related Potential (ERP) can be plotted as a raw 
waveform with recognizable peaks and dips (“components”) following certain kinds of “events.” 



These components are named by whether they are a positive deflection (P) or a negative deflection 
(N), and by how long, in milliseconds, they occur after the event. Studies in carefully controlled 
laboratory conditions have detected item recognition (P300) (Picton, 1992), surprise/inconsistency 
(N400) (Kutas & Federmeier, 2000; Kutas & Hillyard, 1980), and violations of expectations (P600), 
especially in syntax (Coulson et al., 1998; Gouvea et al., 2010). To illustrate, for example, the N400, 
one can expect to see a negative deflection in the waveform approximately 400 ms after seeing the 
word “pizza” in the sentence “The girl drank the pizza.” However, a reader who does not know the 
meaning of the word “pizza” should not be sensitive to such inconsistency when the word occurs in an 
unexpected context. Although it is not clear that such precise components can be detected in less 
controlled settings, especially since the waveforms are usually averaged over many trials, the ability to 
do so might tell an intelligent tutor whether a student recognized a taught word, spotted a new word, 
or noticed a misspelling or textual inconsistency. Immediate, unobtrusive detection of these cognitive 
states in place of overt, time-consuming questions to assess student knowledge could potentially 
enable order-of-magnitude speedups over conventional cycles of teaching, learning, and testing. 

In short, previous work has demonstrated that lab-quality EEG can detect many mental states 
relevant to intelligent tutors.  We wanted to know whether a much simpler consumer-quality portable 
single-channel EEG device that schools could afford and operate could detect any such states. 

METHODS: STUDY DESIGN AND ANALYSIS METHODS 
We used a within-subjects design to compare the EEG signal during easy vs. difficult reading, at both 
the passage and single item level, during both oral and silent reading. Our approach is analogous in 
some ways to some of the earliest efforts to use EEG in intelligent tutors, by Frasson et al. They used 
EEG to model learners’ reactions in ITS (Blanchard et al., 2007), detect learners’ emotions (Heraz & 
Frasson, 2007; Heraz et al., 2007), assess learners’ attention (Derbali et al., 2011; Derbali & Frasson, 
2011), and more recently to show that subliminal cues were cognitively processed and have positive 
influence on learners’ performance and intuition (Chalfoun & Frasson, 2010, 2011, 2012; Chaouachi 
et al., 2010; Jraidi et al., 2012). However, it appears that some of this previous work may have inflated 
classifier accuracy by allowing statistical dependencies between training and test sets.  The study 
reported here also differs in that it focused on detecting the cognitive workload relevant to learning to 
read and that it used a low-cost, single-channel EEG sensor feasible to deploy in schools.  

Study design 
We implemented our experimental protocol in the Reading Tutor’s language for scripting interactive 
activities. The Reading Tutor logs a detailed stream of timestamped information that can be linked to 
EEG records, including word reading times, accuracy (i.e. acceptance by its automatic speech 
recognizer), clicks for help, answers to comprehension questions, and voice recordings. In this study, 
the Reading Tutor displayed passage excerpts to read aloud – three easy and three difficult – in 
alternating order. The “easy” passages were from texts classified at the K-1 level by the Common 
Core Standards Text Exemplars, Appendix B (www.corestandards.org). The “difficult” passages came 
from practice materials for the Graduate Record Exam 
(majortests.com/gre/reading_comprehension.php) and the American Council on Education’s General 
Equivalency Diploma (GED) test 
(college.cengage.com:80/devenglish/resources/reading_ace/students). Each passage was followed by a 
multiple-choice cloze question (formed by deleting a word from the next sentence in the passage) to 
ensure that readers were reading for meaning. The protocol then repeated these tasks in a silent 

http://www.corestandards.org/
http://majortests.com/gre/reading_comprehension.php
http://college.cengage.com/devenglish/resources/reading_ace/students/index.html


reading condition, using different texts. Across the read-aloud and silent reading conditions, passages 
ranged from 62 to 83 words long. 

11 nine- and ten-year-olds participated at their school, and 10 adult readers participated in our 
laboratory. A few other participants user-tested the protocol, but without EEG data. Figure 1 illustrates 
the setup for a Reading Tutor session, in which a participant read the text displayed on the screen 
while wearing an EEG headset. We excluded 2 children and 4 adults due to missing or poor-quality 
data. We analyzed data for the remaining 15 readers, both overall and separately for the 9 children and 
6 adults.  Although the study was initially intended as a pilot study, the number of subjects proved 
sufficient to obtain the results reported here. 
 

 
Figure 1: First author shows setup for using the Reading Tutor while wearing EEG headset 

EEG data collection and artifact removal 
The participants interacted with the Reading Tutor while wearing a wireless single-channel MindSet 
that measured activity over the frontal lobe. The MindSet measures the voltage between an electrode 
resting on the forehead and two electrodes (one ground and one reference) each in contact with an ear. 
More precisely, the position on the forehead is Fp1 (somewhere between left eye brow and the 
hairline), as defined by the International 10-20 system (Jasper, 1958). We used NeuroSky’s 
NeuroView software to collect the following signal streams: 

 
1. The raw EEG signal, sampled at 512 Hz 
2. A filtered version of the raw signal, also sampled at 512 Hz 
3. An indicator of signal quality, reported at 1 Hz 
4. MindSet’s proprietary “attention” and “meditation” signals said to measure the user’s level of 

mental focus and calmness, reported at 1 Hz 
5. A power spectrum, reported at 8 Hz, clustered into the standard named frequency bands 

 
Figure 2 shows a sample Reading Tutor interaction, where the student is asked to read stories, 

answer corresponding comprehension questions, and finally read some words. We used the 
timestamped Reading Tutor logs to split the EEG time series into segments labeled by the type of 
stimulus (e.g. easy vs. difficult) or response (e.g. correct or incorrect).  The Reading Tutor and 



MindSet log signals at different time scales, so we performed linear interpolation between successive 
EEG values (using Matlab’s built-in “interp1” function) to estimate their values at the points 
timestamped by the Reading Tutor. 

 
Figure 2: Sample Reading Tutor interactions (top), classifier labels (middle), and EEG signals 

(bottom).  RAW (or FILTERED) is the average power of the entire raw (or filtered) EEG signal 
during an utterance; ATT and MED are proprietary “attention” and “meditation” indicators; 
and DELTA, THETA, ALPHA, BETA, and GAMMA are the average power of the successive 
named frequency bands. 

NeuroSky claims to detect frontal lobe EEG activity, but other sources could introduce artifacts 
or noise into the recorded signals. In particular, facial expressions, eye blinks, and muscle movement 
elsewhere in the body generate electromyographic (EMG) signals. To remove potential EMG artifacts, 
Neurosky applies a 3-100Hz band-pass filter to the raw EEG signal to remove frequencies below 3Hz 
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and over 100Hz, which are known to be related to EMG, as well as a Notch filter that eliminates 
electrical noises from the power source, which varies from 50 to 60 Hz depending on the geographical 
location. The corresponding filtered signal and power spectrum are based on these denoised raw 
signals. We used two additional techniques to further mitigate noise. First, we used soft thresholding 
with wavelets to denoise the signals (Donoho, 1995). The wavelet transform provides a time-
frequency decomposition shown to be suitable for EEG/ERP analysis (Bartnik et al., 1992; Bertrand et 
al., 1994; Demiralp et al., 1999). Second, we used Neurosky’s proprietary signal quality indicator to 
exclude any signals affected by poor electrode contact due to muscle movement. We analyzed only 
utterances at least 50% of whose samples had good reported signal quality (represented by a value of 
0). 

Figure 3 shows the averaged magnitude of various EEG features in a) easy vs. difficult sentences, 
b) correct vs. incorrect responses to comprehension questions while they were reading the preceding 
passage, c) correct vs. incorrect responses to comprehension questions while they answered the 
question, and d) easy, difficult, pseudo- and non-words. To compare the relative contribution across 
EEG features, we normalized all features as z-scores. As expected, the difficult sentences and words 
are associated with higher attention levels, lower meditation levels, lower magnitudes in low 
frequency bands and higher magnitudes in high frequency bands. Moreover, correct responses are 
associated with less attention and higher meditation levels while reading the preceding passage, but 
higher attention and meditation levels while answering the question. The fact that the different classes 
exhibit different EEG profiles suggested that it would be feasible to train machine learning classifiers 
to decode mental states of individual participants. 

Visualization of EEG data 
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Figure 3: The magnitude of various EEG features during a) easy vs. difficult sentences, b) 

correct vs. incorrect responses to comprehension questions while they read the preceding passage, 
c) correct vs. incorrect responses to comprehension questions while they answer the question, and 
d) easy, difficult, pseudo-, and non-words. RAW (or FILTERED) is the average power of the 
entire raw (or filtered) EEG signal during an utterance; ATT and MED are proprietary 
“attention” and “meditation” indicators; and DELTA, THETA, ALPHA, BETA, and GAMMA 
are the average power of the successive named frequency bands. 
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Training classifiers 
We trained Gaussian Naïve Bayes classifiers to estimate based on EEG data the probability that a 
given stimulus (sentence, word, or comprehension question) was easy rather than difficult, or correct 
rather than incorrect. We chose this method (rather than, say, logistic regression) because it is 
generally best for problems with sparse (and noisy) training data (Ng & Jordan, 2002). 

The EEG device emits the various signals enumerated earlier, including the raw and filtered EEG 
signal, proprietary “attention” and “meditation” indicators, and the successive named frequency bands.  
To characterize their overall values, we computed their means over the interval of each utterance. To 
characterize the temporal profile of the EEG signal, we computed several features, some of them 
typically used to measure the shape of statistical distributions rather than of time series: 

• The minimum and maximum describe the range of each signal (but are vulnerable to noise). 
• The variance measures the amount and magnitude of variation in the signal. 
• The linear fit coefficient measures its overall slope. 
• The quadratic fit coefficient measures its overall curvature. 
• The skewness measures its asymmetry. 
• The kurtosis measures its peakiness. 
We trained separate classifiers for each condition (oral and silent reading) and group (children 

and adults), and also classifiers for data pooled across both conditions and groups.  We trained and 
tested two types of classifiers for each classification task. 

We trained reader-specific classifiers on a single reader’s data from all but one stimulus block 
(e.g. one story), tested on the held-out block (e.g., all other stories), performed this procedure for each 
block, and averaged the results to cross-validate accuracy within reader. Cross-validating across 
blocks avoids improperly exploiting statistical dependencies (e.g. temporal continuity) between 
observations of a reader on successive stimuli within the same block (e.g., sentences in the same 
story). 

We trained reader-independent classifiers on the data from all but one reader, tested on the held-
out reader, performed this procedure for each reader, and averaged the resulting accuracies to cross-
validate across readers. We averaged each feature over the time interval of each stimulus, excluding 
the 15% of observations with poor signal quality. 

We computed classification accuracy as the percentage of cases classified correctly, where 
chance performance is one over the number of categories. For the four-way classification, we 
evaluated rank accuracy as the average percentile rank (normalized between 0 and 100) of the correct 
category if categories are ordered by the value of the regression formula; chance performance is 50%. 
Rank accuracy is a more sensitive criterion than classification accuracy for evaluating performance on 
multi-category tasks such as decoding mental states from brain data (Mitchell et al., 2004). 

To test whether a classifier was significantly better than chance, we first computed its overall 
accuracy for each reader, yielding a distribution of N accuracies, where N is the number of readers. 
Treating this distribution as a random variable, we performed a one-tailed T-test of whether its mean 
exceeded chance performance for the classification task in question. Counting N readers rather than 
observations is conservative in that it accounts for statistical dependencies among observations from 
the same reader. Our significance criterion was p < .05, without correction for multiple comparisons. 

Two problems in training classifiers are class size imbalance and the confound between the length 
and difficulty of the stimuli. We face these issues because easy stories tend to be composed of many 
short sentences (about 10 on average), whereas difficult stories tend to be composed of a few long 



sentences (about 4). As a result, we have more easy sentences than difficult ones, and easy sentences 
are shorter than difficult ones.  

Sentence length was not an obvious confound, since we did not include length or duration as an 
explicit feature.  This issue eluded us and the reviewers until we realized late in the process of 
preparing this article that some of our feature values might correlate with duration.  For the goal of 
detecting cognitive effort or difficulty based solely on EEG, independent of text features such as 
sentence length or behavioral features such as sentence duration, encoding information about such 
features in the test data constitutes “cheating.”  Even innocuous-looking features may encode such 
information.  For instance, the minimum and maximum of a signal as noisy as EEG are likely to 
correlate with its duration. 

Indeed, re-segmenting passage readings into equal-duration units (ignoring sentence boundaries) 
resulted in worse classification accuracy than using sentences as units.  Truncating sentences to equal-
duration units fared somewhat better than re-segmenting, despite having less data, presumably because 
readers’ EEG signals have temporal structure related to sentence boundaries.  Therefore, to address the 
sentence duration issue, we truncate all stimuli to a uniform duration (5 seconds for sentence stimuli 
and 1 second for word stimuli). Thus a difficult sentence that lasts 8 seconds and an easy sentence that 
lasts 6 seconds are both truncated to 5 seconds, and all isolated words are truncated to 1 second. 

Note that this conservative approach differs from our earlier work (Mostow et al., 2011) by 
reframing the question as “can we classify sentence difficulty based on the first 5 seconds of reading 
it?”  We excluded from our data set – both training and test data – the 57% of the sentences shorter 
than 5 sec (as well as the 9% of the isolated word recordings shorter than 1 sec).  Thus the results 
reported here on the reduced set are not strictly comparable to our original results nor to the results 
(mentioned above but not detailed) on the larger data set constructed by segmenting the read passages 
into 5-second segments regardless of sentence boundaries. 

As for the problem of class size imbalance, a common solution is to resample the training data to 
obtain equal-size sets of training data. However, “random undersampling can potentially remove 
certain important examples [and underestimate performance]; and random oversampling can lead to 
overfitting [and overestimate performance]” (Chawla et al., 2004). To avoid bias due to class size 
imbalance, we originally (Mostow et al., 2011) employed three different resampling methods: random 
oversampling of the smaller class(es), with replacement; random undersampling of the larger class(es), 
without replacement; and directed undersampling, in our case by truncating the larger class to the 
temporally earliest k examples. An adaptive tutor would use such temporal truncation to train user-
specific models on each user’s initial data. For this article we used random undersampling of the larger 
class(es), which yielded medium performance (a conservative measure) in the original study among 
the three random resampling methods. We performed the sampling 10 times to limit the influence of 
particularly good or bad runs and obtain a stable measure of classifier performance. 

Resampling addresses class size imbalance in training data but not in test data. Resampling test 
data would unfairly distort performance, so we report overall cross-validated accuracy on the test data. 
However, class size imbalance inflated it, yielding a numerically correct but misleading measure of 
accuracy. We therefore also report within-class accuracy, which is independent of class size. 

CAN WE USE EEG TO DETECT WHEN READING IS DIFFICULT? 
We trained Gaussian Naïve Bayes classifiers to distinguish between easy and difficult sentences read 
aloud, silently, or both, for all participants, just for children, and just for adults. Table 1 shows the 
results; overall accuracy in bold here and later is significantly better than chance. These results differ 



substantially from those in (Mostow et al., 2011) due to bug fixes, wavelet filtering, other 
improvements, and truncating to uniform duration. Depending on the condition and group, overall 
accuracy of reader-specific classifiers ranged from 39% to 58% for (2 of 9 significantly above 50%).  
(The 9 cases are for different but overlapping data sets, so they are not statistically independent tests 
of our approach.) Accuracy was higher for reader-independent classifiers, ranging from 42% to 60% 
(4 of 9 significant), suggesting that imperfect transfer across readers was outweighed by the advantage 
of training on more data, much as in classifying fMRI brain images (Mitchell et al., 2004). 

These results seem promising, but are they meaningful, or merely artifacts of the considerable 
class size imbalance between the number of easy and difficult cases? Within-class accuracy is a more 
rigorous measure. Accuracy of reader-specific classifiers ranged from 40% to 56% on easy cases and 
39% to 57% on difficult cases. Reader-independent classifiers performed better here as well.  Their 
within-class accuracy ranged from 37% to 67% on easy cases and 45% to 64% on difficult cases.  
However, only one reader-specific classifier and two reader-independent classifiers are over 50% 
accurate within both classes.  Although these results are significantly above chance, EEG-based 
mental state detectors will presumably need to be much more accurate to help intelligent tutors. 

Table 1: Accuracy in classifying sentences from easy vs. difficult text. The columns ‘Overall’, 
‘Easy’, and ‘Difficult’ respectively show cross-validated accuracy on the entire data set (in bold if 
significantly above chance) and on easy and difficult sentences (highlighted if over 50% for both). 

   Reader-specific Reader-independent 

 Condition Number of Cases 
[Easy, Difficult] Overall Easy Difficult Overall Easy Difficult 

Overall Overall [314, 271] 0.51 0.49 0.51 0.56 0.48 0.64 
 Oral [237, 149] 0.51 0.47 0.52 0.53 0.51 0.51 
 Silent [77, 122] 0.51 0.56 0.45 0.49 0.45 0.48 

Children Overall [235, 157] 0.47 0.47 0.48 0.50 0.41 0.62 
 Oral [167, 80] 0.45 0.44 0.45 0.42 0.37 0.50 
 Silent [68, 77] 0.50 0.48 0.46 0.48 0.45 0.45 

Adults Overall [79, 114] 0.58 0.54 0.57 0.58 0.54 0.59 
 Oral [70, 69] 0.56 0.50 0.56 0.60 0.67 0.48 
 Silent [9, 45] 0.39 0.40 0.39 0.50 0.53 0.49 

CAN WE USE EEG TO DETECT READING COMPREHENSION? 
After each text, our protocol displayed a comprehension question constructed from the next sentence 
in the story by omitting one of the key words and replacing it with a blank to form a cloze question. 
The participant had to choose among three choices to complete the sentence – the omitted word as the 
correct response, and two distractors. Note that this pilot study did not explore the effect of distractors. 
It is possible that participants could infer the correct answer from common knowledge – especially 
adult readers on easy passages. A more informative alternative would use different types of distractors 
to detect different types of comprehension failure (Mostow & Jang, 2012). 



We trained Gaussian Naïve Bayes classifiers to predict correct versus incorrect responses to the 
comprehension questions, based on participants’ EEG data collected while they read the preceding 
passage. Table 2 shows the results. Depending on the condition and group, accuracy for reader-
specific classifiers averaged from 25% to 53% overall, none of them significantly better than chance, 
20% to 67% on correct responses, and 20% to 63% on incorrect responses.  We attribute the absence 
of significant results for reader-specific classifiers to the small sample size caused by asking only one 
question per text. As before, accuracy was higher for reader-independent classifiers, with overall 
accuracy ranging from 35% to 65% for adult silent reading, the only one significantly above chance – 
compared to 4 of 9 for distinguishing easy from difficult sentences, where we had much more training 
and test data.  Moreover, none of the classifiers achieves accuracy above 50% within both classes. 

Low accuracy in predicting performance on comprehension questions may well be due to label 
noise.  Consider how we classified text difficulty compared to how we measured comprehension.  Our 
classification of each passage as easy or difficult is reliable in that we chose very easy and much more 
difficult passages.  This classification applies across the passage insofar as sentences in an easy 
passage tend to be easy, and sentences in a difficult passage tend to be difficult.  In contrast, 
comprehension may fluctuate over the course of a passage, succeeding on some sentences but failing 
on others.  A single question is bound to test comprehension of some sentences better than others.  
Moreover, a random answer to a 3-choice question has a 33% probability of being correct, which 
renders our passage comprehension measure even noisier.  A more reliable comprehension measure 
would require asking more questions, with answers that can’t be guessed without comprehending the 
text. 

Table 2: Accuracy in predicting correct vs. incorrect responses to comprehension questions 
using EEG while they read the preceding passage. The columns ‘Overall’, ‘Correct’, and ‘Incorrect’ 
respectively show cross-validated accuracy on the entire data set and within-class on incorrect and 
correct responses.  “NaN” means “Not a Number,” representing undefined results caused by sparsity.  

 
 

 Reader-specific Reader-independent 

 Condition Number of Cases 
[Incorrect, Correct] Overall Correct Incorrect Overall Correct Incorrect 

Overall Overall [56, 143] 0.41 0.40 0.41 0.38 0.35 0.45 

 Oral [28, 79] 0.35 0.27 0.43 0.48 0.62 0.33 

 Silent [28, 64] 0.48 0.54 0.41 0.46 0.34 0.57 
Children Overall [36, 72] 0.39 0.40 0.37 0.41 0.40 0.44 

 Oral [20, 35] 0.25 0.30 0.20 0.35 0.59 0.12 

 Silent [16, 37] 0.53 0.67 0.38 0.48 0.38 0.58 
Adults Overall [20, 71] 0.51 0.49 0.54 0.41 0.32 0.64 

 Oral [8, 44] NaN NaN NaN NaN NaN NaN 

 Silent [12, 27] 0.42 0.20 0.63 0.65 0.33 0.97 
 



Table 3: Accuracy in predicting correct vs. incorrect responses to comprehension questions 
using EEG while they answer the question. The columns ‘Overall’, ‘Correct’, and ‘Incorrect’ 
respectively show cross-validated accuracy on the entire data set and within-class on incorrect and 
correct responses (highlighted if over 50% for both). 

 
 

 Reader-specific Reader-independent 

 Condition Number of Cases 
[Incorrect, Correct] Overall Correct Incorrect Overall Correct Incorrect 

Overall Overall [60, 140] 0.53 0.51 0.60 0.48 0.39 0.64 

 Oral [31, 79] 0.43 0.30 0.57 0.38 0.27 0.50 

 Silent [29, 61] 0.49 0.30 0.68 0.62 0.56 0.69 
Children Overall [38, 69] 0.55 0.57 0.52 0.49 0.41 0.64 

 Oral [21, 35] 0.38 0.30 0.47 0.37 0.10 0.63 

 Silent [17, 34] 0.54 0.36 0.72 0.70 0.67 0.74 
Adults Overall [22, 71] 0.52 0.45 0.67 0.52 0.53 0.49 

 Oral [10, 44] NaN NaN NaN NaN NaN NaN 

 Silent [12, 27] 0.37 0.33 0.40 0.52 0.33 0.70 
Moreover, we trained Gaussian Naïve Bayes classifiers to predict correct versus incorrect 

responses to the comprehension questions, based on participants’ EEG data collected while they 
answer the question. Table 3 shows the results. Depending on the condition and group, accuracy for 
reader-specific classifiers averaged from 37% to 55% overall (2 significant), 30% to 57% on correct 
responses, and 40% to 72% on incorrect responses. We attribute the absence of significant results for 
reader-specific classifiers to the small sample size caused by asking only one question per text. As 
before, accuracy was higher for reader-independent classifiers, ranging from 37% to 70% overall (2 
significant), 10% to 67% on correct responses, and 49% to 74% on incorrect responses.   Two reader-
specific and two reader-independent classifiers exceeded 50% accuracy within both classes 

The ability to gauge readers’ comprehension in real-time based on their EEG would provide more 
data and take less student time than interrupting occasionally to ask comprehension questions. 
Improved performance on this task will likely require not only more accurate classification, but a more 
accurate gold standard to validate against than students’ performance on a single multiple choice 
question they can answer correctly with probability 1/3 merely by guessing at random. 

CAN WE USE EEG TO DETECT LEXICAL STATUS? 
After the read-aloud portion of the passages and comprehension questions, our protocol displayed 10 
English words followed by 10 pronounceable pseudo-words to read aloud. After the silent-reading 
portion of the passages and comprehension questions, it displayed 10 words, 10 pseudo-words, and 10 
unpronounceable consonant strings to read silently. 

Real words were all 2-syllable 7-letter words; half were easy and half were difficult, and they 
were presented with alternating difficulty. The easy words occur frequently in text, with a Kucera-
Francis (K-F) written frequency count of 30 or more (mean = 84), whereas the difficult words occur 
infrequently, with K-F written frequencies below 10 (mean = 3.4). The easy words are also learned 



earlier than the difficult words, with an age-of-acquisition (AOA) below 315 on a scale from 100 -700 
(mean = 254.4, corresponding to approximately age 4); the AOA for difficult words was above 450 
(mean = 555.5, corresponding to approximately age 10) (Coltheart, 1981). 

Just as we used difficult text to see if we could detect when a reader is having difficulty reading, 
we included non-words to see if we could detect when a reader notices that a word is unfamiliar. 
Pseudo-words and illegal strings were 3 letters long and chosen to vary in their number of 
orthographic neighbors (words that differ in spelling by only one letter). These stimuli came from a 
study by Laszlo & Federmeier (Laszlo & Federmeier, 2011) showing that ERPs are sensitive to 
neighborhood size. Pseudo-words were pronounceable and legal according to English orthography. In 
contrast, the illegal strings were unpronounceable, and therefore omitted from the read-aloud portion. 
We varied the orthographic neighborhood size of both types of non-words from 0 neighbors to 22 
neighbors, to permit future analysis of its effects. 

Table 4: Rank accuracy (chance = 50%) in classifying lexical stimuli. Column ‘O’ shows 
overall rank accuracy. Columns ‘E’, ‘D’, ‘P’, and ‘I’ show within-class rank accuracy on easy, 

difficult, pseudo-, and illegal words (highlighted if over or at 50% for all four). 

   Reader-specific Reader-independent 

 Condition 
Number of Cases 
[Easy, Difficult, 
Pseudo-, Illegal] 

O E D P I O E D P I 

Overall Overall [134, 137, 269, 114] 0.55 0.56 0.57 0.49 0.66 0.48 0.43 0.56 0.46 0.46 

 Oral [81, 80, 161] 0.51 0.61 0.52 0.46  0.44 0.54 0.49 0.36  

 Silent [53, 57, 108, 114] 0.53 0.51 0.52 0.50 0.57 0.53 0.40 0.60 0.56 0.53 
Children Overall [71, 72, 145, 60] 0.55 0.45 0.59 0.51 0.74 0.50 0.38 0.54 0.48 0.61 

 Oral [43, 42, 87] 0.51 0.55 0.54 0.48  0.52 0.43 0.53 0.55  

 Silent [28, 30, 58, 60] 0.52 0.52 0.65 0.36 0.60 0.57 0.28 0.70 0.53 0.64 
Adults Overall [63, 65, 124, 54] 0.54 0.70 0.53 0.46 0.57 0.49 0.59 0.50 0.47 0.41 

 Oral [38, 38, 74] 0.51 0.69 0.50 0.42  0.49 0.59 0.56 0.41  

 Silent [25, 27, 50, 54] 0.52 0.52 0.45 0.57 0.53 0.50 0.47 0.47 0.58 0.47 
 
We trained and evaluated classifiers just as described previously, except that we trained 

multinomial Gaussian Naïve Bayes classifiers to estimate from EEG data the probability that a word 
was easy, difficult, a pseudo-word, or (in the silent condition) illegal. We expected it to be harder to 
distinguish among 3 or 4 kinds of isolated words and non-words than to tell easy from difficult 
sentences, both because n-way distinctions are harder than binary distinctions, and because reading an 
isolated word is so brief compared to reading a sentence. Nevertheless, as Table 4 shows, overall 
accuracy was reliably (albeit barely) better than random for 5 of 9 reader-specific classifiers and 3 of 9 
reader-independent classifiers, showing that even with a single noisy channel, few participants, 
experimental setup less precise than lab studies, and simple analysis methods, there was above-chance 
performance on single-word stimuli.  Moreover, within-class rank accuracy averaged from about 36% 
to 74% for reader-specific classifiers, and about 28% to 70% for reader-independent classifiers. Often 
above-chance accuracy on some classes comes at the cost of below-chance accuracy on one or more 



others.  Only one reader-specific classifier was at or above 50% rank accuracy within every class.  
However, every reader-specific classifier has rank accuracy below 50% within at most one class, 
which means that it distinguishes among the other three classes with above-chance accuracy within all 
of them. 

WHAT EEG COMPONENTS ARE SENSITIVE TO WHAT LEXICAL FEATURES? 
To probe whether the features of the individual word being read affect activity in particular EEG 
frequency bands, we fit 15 separate linear mixed effects models, one model to predict activity in each 
of the 5 frequency bands: delta (1-3Hz), theta (4-7 Hz), alpha (8-11 Hz), beta (12-29 Hz), and gamma 
(30-100 Hz), for all participants, just for children, and just for adults. Since lexical properties are 
notoriously highly correlated with each other, we limited the predictors used as fixed factors in the 
model to four different but relevant lexical properties: age-of-acquisition (AOA; a measure of how 
long a word has been known and how early it was learned), frequency (a measure of how often a word 
has been encountered), naming latency (a measure of how difficult the word is to read aloud), and 
letter bigram frequency (a measure of how visually familiar a word appears). Age-of-acquisition 
norms (AOA) and word frequencies from the SUBTLEX-US database of subtitles came from 
Kuperman, Stadthage-Gonzalez, & Brysbaert (Kuperman et al., 2012); naming latencies and the mean 
bigram frequency measure came from the English Lexicon Project (Balota et al., 2007). Even among 
these four factors, high correlations between age-of-acquisition and word frequency proved 
problematic for the models, so we used the age-of-acquisition residuals remaining after accounting for 
the shared variance with frequency (via a linear regression). Since we had no eye tracking, we relied 
on speech recognition to estimate when a reader read each word, so we excluded silent reading data 
from this analysis. We computed the start and end times of each read word by manually transcribing 
each oral reading utterance and using the Sphinx3 speech recognizer (CMU, 2008) in forced alignment 
mode to time-align the utterance to its transcript.  In this analysis, there were variations in the EEG 
segment durations. 

Models predicted the log power in each frequency band from the residual log age-of-acquisition, 
log frequency, mean letter bigram frequency, and standardized naming latencies (z-scores). All 
variables were centered by subtracting the mean for the overall sample. We included individual reader 
identity and word identity as random factors to model the distribution of readers and texts by allowing 
the intercept to vary by reader and word. Table 4 shows the direction of the correlation between each 
lexical variable and each EEG frequency band (positive or negative), both overall and separated by 
age group. The number of pluses or minuses indicates the p-value of the coefficient.  Raw coefficient 
values are difficult to interpret due to the varying scales and log transformations.   

Pooled data showed that overall, the lower frequency, more difficult words were associated with 
an increase in low frequency power across the delta, theta, and alpha bands. The gamma band, on the 
other hand, decreased for words learned later than would be expected based on frequency alone. To 
better interpret this finding in relation to AOA itself (rather than AOA residuals), we ran a model 
containing just log age-of-acquisition, without frequency. This model showed a positive relationship 
between AOA and gamma band activity (p < .05); later-learned words are associated with increased 
gamma activity. A model containing word frequency only (without AOA) shows no relationship in 
children between word frequency and gamma band activity. 



Table 5: Correlations of EEG power spectra to lexical features of words: Age-of-acquisition 
residuals, SUBTLEX-US word frequency, standardized naming latency, and mean bigram 
frequency. A single + or – indicates p<.05; two indicates p<.01; three indicates p < .001. 

 

 

Delta 
(1-3 Hz) 

Theta 
(4-7 Hz) 

Alpha 
(8-11 Hz) 

Beta 
(12-29 Hz) 

Gamma 
(30-100 Hz) 

Overall AOA     - - - 

Frequency - - - - -   

Naming Latency      

Bigram      
Children AOA     - - - 

Frequency      

Naming Latency      

Bigram      
Adults AOA +     

Frequency - - - - - - - -  

Naming Latency    + - 

Bigram -     
 
Separate models for children and adults revealed several observations: (1) Word frequency effects 

on the EEG signal are driven by the adult reader data. (2) Many effects occurred only in adults and did 
not reach significance in the pooled data, including delta band sensitivity to age-of-acquisition and 
bigram frequency, and increased beta power with decreased gamma power for words that take longer 
to name. (3) The increase in gamma for late AOA words was non-existent in adults, but strong in 
children. 

The adult-only sensitivity to word frequency, naming latency, and bigram frequency can perhaps 
be accounted for by the fact that word frequencies and bigram frequencies are computed from adult 
corpora. Children may not have the same relationship with these measures of word frequency or 
bigram frequency because those frequencies may not reflect the actual frequency of encountered 
words for this age group. Moreover, naming latencies are based on adult readers, not children.  

It stands to reason that age-of-acquisition is a more relevant lexical feature for children, because it 
is more likely to reflect which words they have learned or not learned, and how robust their word 
representations are likely to be. The difference in the quality of lexical representations between a word 
learned at age 2 (e.g., “daddy,” “birthday”) and age 6 (e.g., “dancer”, “camera”) might be small for an 
adult reader, but might be very large for a 7 or 8-year-old reader. Gamma activity has been associated 
with linking visual stimuli with other knowledge and memory. It is associated generally with binding. 
The late AOA words are likely to be words that the children are just learning or seeing for the first 
time, whereas the adult readers should know all of the words in our passages. The gamma band 
appears to be sensitive to the learning process occurring when children see new words. Gamma is not 
simply sensitive to visual novelty, as it has no relationship to bigram frequency, even in adults. 
Instead, based on prior studies, we hypothesize that the gamma band is sensitive to when a child is 
linking the visual form of an unfamiliar word to memory. 



CHALLENGES, LIMITATIONS, AND FUTURE WORK 
Unlike traditional ERP research conducted under carefully controlled laboratory conditions, our study 
involved several challenges due to its design and setting. 

We faced a class size imbalance issue because we had more easy sentences than difficult ones and 
more non-words than real words. We addressed this issue by 1) undersampling to balance the training 
data, and 2) complementing overall accuracy by reporting accuracy within each class as a class-size-
independent measure, unlike precision, which class size imbalance can inflate. 

We faced variation in stimulus duration caused by student self-pacing. The Reading Tutor waited 
to display the next sentence until the student clicked to see it or finished reading the current sentence. 
Difficult sentences usually have more words, are more complex in syntactic structure, and thus took 
more time to read than easy sentences. We originally (Mostow et al., 2011) addressed this issue by 
averaging feature values over the duration of each stimulus.  However, average feature values may 
vary as a result of duration.  For example, suppose there is a cyclical peak in raw EEG signal every 10 
seconds.  Then the maximum raw EEG power will be higher for 10 second long sentences, which will 
each contain this peak, than for 5 second sentences, only half of which will contain the peak.  This 
phenomenon is due to the method of segmentation, but not to text difficulty.  In this paper, we 
addressed the issue by truncating sentences to equal durations, reframing the question as “can we 
classify difficulty based on the first 5 seconds of reading a sentence?”  

However, this method also poses a potential problem.  If there is a systematic signal related to, for 
example, end-of-sentence processing, it is more likely that a short sentence would include that signal 
when truncated than a longer sentence (because the shorter sentence will be truncated near the end of 
the sentence, whereas the longer sentence will be truncated closer to the middle).  Taking advantage of 
this phenomenon is not cheating in the sense of exploiting duration information provided as classifier 
input, but it ignores the remainder of the sentence.  We are currently exploring ways of segmenting the 
data so as not to take advantage of signals that may be related to the duration and location of the 
segments, rather than the cognitive state we intended to induce by varying text difficulty.  A general 
lesson in evaluating classifiers is to beware of clues to class identity based on how the data is 
segmented into instances. 

Another cautionary note when training classifiers on continuous temporal data is to avoid 
inappropriately exploiting temporal continuity. If a mental state persists or varies slowly over a period 
of time, lumping all data points together and cross validating on the aggregated data set may overlook 
temporal dependencies among data points. For instance, when reading sentences in a story, the 
“reading something difficult” state may persist for several sentences. A naïve 10-fold cross validation 
that overlooks temporal dependencies and simply splits the data randomly may put sentences from the 
same story into both the training and test sets, thereby inflating classifier performance. We addressed 
this issue by cross-validating between stories instead of sentences. 

Much work remains. In particular, muscle movements might cause EMG artifacts in the recorded 
EEG signals. If so, we could be detecting muscle movements as indicators of mental states. For 
example, perhaps when users realize that a dialogue system has misrecognized what they said, they 
consistently raise an eyebrow, thereby causing a peak in the EEG signal. We have no evidence of such 
an effect, and to be safe we mitigated the risk of EMG artifacts by using wavelets to denoise data, and 
considering only utterances with high reported signal quality. But even just detecting motor proxies 
for mental states could be useful for a tutor. 

Future work includes detecting additional mental states, and improving detection accuracy.  We 
are pursuing multiple complementary approaches.  First, we want to add another EEG channel, if 



necessary by wearing two single-channel devices.  Second, we need to collect more data.  Besides 
manipulating stimuli experimentally, we can label training data based on observable events in 
longitudinal data. For instance, we can label an event as learning a skill if the student performs the 
skill better at the next opportunity.  Third, we are trying more sophisticated training methods. 

Finally, we need to figure out how to exploit EEG-based detection of mental states despite 
imperfect accuracy. Initially it may be useful only by aggregating over many observations, for 
instance to identify words unfamiliar to many students, or text “hot spots” that cause comprehension 
difficulty for many students. As the accuracy of mental state detection improves, EEG may contribute 
additional evidence to aggregate within an individual student model so as to enable more intelligent 
tutoring. If accuracy improves enough to rely on individual observations, an EEG-enabled tutor may 
respond in real-time, e.g., by explaining an unfamiliar word or paraphrasing a confusing sentence. 

CONCLUSION 
This study showed that the EEG data from a single electrode portable recording device can 
discriminate with significantly above-chance accuracy between reading easy and difficult sentences, 
on data pooled across populations (children and adults) and modalities (oral and silent reading). We 
achieved weak but still above-chance accuracy in detecting comprehension failure and lexical status of 
isolated words. Most interesting, we identified frequency bands sensitive to difficulty and to various 
lexical properties, suggesting the feasibility of using EEG to detect transient changes in cognitive task 
demands or specific attributes of lexical access. 

Although weak, the statistically reliable relationship between reading difficulty and relatively 
impoverished EEG data illustrates its potential to detect mental states relevant to tutoring, such as 
comprehension, engagement, and learning. At the level of longitudinal data aggregated across 
students, such information could help generate and test hypotheses about learning, elucidate the 
interplay among emotion, cognition, and learning, and inform specific tutor responses to students. At 
the level of dynamic data about an individual student, the tutor could adapt to the student, either by 
responding immediately to a detected mental state, or by adapting more slowly to a cumulative student 
model updated over time. In summary, this pilot study gives hope that a school-deployable EEG 
device may someday capture information that intelligent tutors can use to teach better. 
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