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Abstract:  Using a machine learning approach to mine a database of over 70,000 oral 
reading mistakes transcribed by University of Colorado researchers, we generated 225 
rules based on graphophonemic context to predict the frequency of the 71 most 
common decoding errors in mapping graphemes to phonemes. To evaluate their 
generality, we tested how well they predicted the frequency of the same decoding 
errors for different readers on different text.  We achieved .473 correlation between 
predicted and actual frequencies, compared to .350 correlation for context-
independent versions of the same rules.  These rules may help an automated reading 
tutor listen better to children reading aloud. 

 
 

1. INTRODUCTION 
 
 This paper addresses the problem of how to predict students’ specific oral reading 
mistakes, called miscues.  This problem arose in the context of Project LISTEN’s automated 
Reading Tutor [6], which listens to children read aloud, but may also be of interest to the 
reading research and educational communities.  We report on work proposed and supervised 
by the last author and performed by the first three authors as part of the Fall 2000 offering of 
Sebastian Thrun’s graduate course on Machine Learning. 
 One reason to predict specific miscues is to improve listening accuracy, which must strike 
a tradeoff between detecting miscues and falsely rejecting correctly read words, thereby 
frustrating the student.  Previous work has approximated miscues as other words in the text 
being read, as concatenations of those words [7], or as phonemic truncations of the correct 
word [8].  This method accepted over 95% of correctly read words, but detected fewer than 
half the miscues serious enough to threaten comprehension. Moreover, even when miscues 
are too minor to remediate, modeling them inaccurately may lead the speech recognizer 
astray.  Thus a better model of miscues may not only improve miscue detection, but also 
reduce false rejection.  Manual identification of likely mispronunciations for individual words 
in a given text [9] is onerous and does not transfer to new text containing other words.  
Although other researchers have trained acoustic models for children’s oral reading [11], we 
are not aware of previous work to predict specific miscues in oral reading of connected text, 
or their frequencies. 



 Another reason to analyze miscues is to identify useful types of mistakes to listen for — 
whether to remediate immediately, tolerate as unimportant, or keep track of over time.  
Miscue analysis attempts to use a child’s omissions, substitutions, insertions, and self-
corrections to infer information about the child’s strategies for reading [3, 4, 12].  This 
information can be useful to researchers in understanding reading processes and to teachers in 
remediating them.  The ability to detect recurring instances of a particular type of miscue 
could help the Reading Tutor remediate the miscue.  For example, if the student frequently 
mispronounces the letter ‘i’ as the short vowel /IH/ instead of the long vowel /AY/ in words 
like “bite,” the Reading Tutor could explain how silent ‘e’ affects preceding vowels. 
 To address this problem, we applied a machine learning approach to a database of over 
70,000 oral reading miscues recorded, transcribed, and annotated by Professor Richard Olson, 
Helen Datta, and their colleagues as part of a separate multi-year study at the University of 
Colorado.  This database contained miscues by 868 subjects, mostly between the ages of eight 
and twelve, reading one of seven graded texts, ranging from 296 to 461 words in length.  
Each text included from two to four of the 22 graded passages in Spache’s Diagnostic 
Reading Scales [13], which are written at levels ranging from grade 1 to grade 7.  Based on 
subject reading levels, University of Colorado researchers assigned each subject to passages 
that he or she would find challenging, made recordings while the subject read, and manually 
coded miscues from the recordings.  For each miscue, they coded the word on which the 
miscue took place, a phonetic transcription of what the subject said, and information about 
the type and severity of the miscue. 
 We mined this corpus to develop a set of rules that predict specific mistakes readers are 
likely to make, and the frequencies of these mistakes. For example, one rule predicts that in a 
word where the grapheme sequence ‘…re…’ should be pronounced as the phoneme sequence 
/R EH/, readers will substitute an /IY/ phoneme for the /EH/ phoneme with a frequency of 
5.49%, under assumptions we will explain momentarily.  To validate our results, we set aside 
part of our data for testing.  We designated data from the grade 2 and grade 6 texts as our test 
data.  There was no overlap in subjects or text between our training and test data. 
 
 

2. A SUITABLE HYPOTHESIS SPACE 
 
 Children identify printed words in various ways.  They may use a “decoding” strategy to 
read a word, i.e., map its successive graphemes to phonemes, perhaps imperfectly.  
Alternatively, they may try to guess the whole word from its first and last letters, its overall 
shape, the syntactic and semantic context, and/or even an accompanying illustration.  They 
may guess words that are particularly common, words that have similar patterns of letters, or 
even just words they know.  Furthermore, readers may frequently switch between strategies 
[12].  To attempt to learn in a hypothesis space that allows for all of these possibilities would 
probably require substantially more data than we had available.  We needed to make 
assumptions that would reduce the size of our hypothesis space.   
 Given this data and the goal of predicting the mistakes made by readers, we focused on 
errors that appeared to be the result of using a decoding strategy.  We were interested in when 
a subject would substitute, insert, or omit a phoneme.  We attempted to predict these types of 
errors, but did not attempt to predict whole-word substitutions or other errors that take place 
above the level of individual phonemes. 



 By focusing on errors in decoding 
graphemes to form pronunciations, 
we excluded the problem of 
predicting the words which subjects 
would be likely to guess.  By focusing 
on individual phonemes, we reduced 
the problem of trying to predict the misreading of an entire word to the problem of predicting 
an improper decoding of an individual grapheme.  These reductions in the size of our 
hypothesis space made it feasible to learn some interesting rules from our data.  Modeling 
other reading strategies may be worthwhile as well [1], but lies beyond the scope of this 
paper. 
 

2.1 Data Classes and Features 
 
 When analyzing the phonemes spoken using a grapheme decoding approach, it makes 
sense to look at the mapping from a grapheme, to the correct phoneme, to the phoneme that 
was actually spoken.  Throughout this paper, we refer to this mapping as a G to P to P’ 
mapping.  We also refer to portions of this mapping.  A G to P mapping, therefore, is a 
mapping from the grapheme to the correct phoneme.  Similarly, a P to P’ mapping is a 
mapping from the correct phoneme to the phoneme that was actually spoken by the subject.   
 Table 1 shows an actual sequence of G to P to P’ mappings for the word “present” as in 
“birthday present.”  Note that we use the caret symbol (‘^’) to represent the beginning of a 
word, the dollar symbol (‘$’) to represent the end of a word, and the underscore symbol (‘_’) 
to represent a null grapheme or phoneme.  In this sequence, the reader substituted different 
vowel sounds for each occurrence of /EH/ and appended a pair of phonemes to the 
pronunciation.   
 The G to P to P’ mappings where P does not equal P’ represent decoding errors that we 
would like to be able to predict.  These mappings, therefore, are considered positive examples 
of decoding errors.  Consequently, negative examples have P equal to P’. 
 

2.2 Assumption Validity 
 
 In order to focus on miscues resulting from a grapheme decoding process, we needed to 
disregard data that did not appear to be the result of a grapheme decoding process.  For 
example, a subject who mispronounced the word “present” as the word “party” was obviously 
not using a grapheme decoding approach.  We needed to be able to identify and disregard this 
type of data. 
 We approached this problem by defining a metric of how closely a subject’s 
mispronunciation matched the correct pronunciation for a word.  We expect that a 
mispronunciation that matches the correct pronunciation reasonably closely was likely 
produced by a grapheme decoding approach.  We have assumed that correct pronunciations, 
which do not reveal the strategy being used, are the result of a grapheme decoding approach.  
While we defer the details of our metric until section 3.3, we mention it here because defining 
such a metric was vital to focusing on data that matched the assumptions underlying the 
hypothesis space we defined. 
 

 

 

 

 

Table 1 – Basic G to P to P’ mappings. 

 

G p r e s e n t $ $ 
P /P/ /R/ /EH/ /Z/ /EH/ /N/ /T/ _ _ 
P’ /P/ /R/ /IY/ /Z/ /IH/ /N/ /T/ /AX/ /D/ 



3. DATA CONVERSION 
 
 To factor each word-level miscue into individual grapheme-to-phoneme mappings, we 
needed to know the correspondence between the graphemes in the word and the phonemes in 
the correct and incorrect pronunciations.  The University of Colorado database did not 
provide this correspondence.  Project LISTEN members Greg Aist and Becky Kennedy had 
already computed these correspondences for the correct pronunciations of all but 49 of the 
881 distinct words in the Spache passages used in the Colorado database, so we added the rest 
by hand. However, these correspondences were expressed in the phoneme set of the Sphinx 
pronunciation dictionary [14], rather than in the phonemic notation used to transcribe the 
miscues in the database. 
 Converting our data to a set of G to P to P’ mappings therefore required three steps.  First 
we translated the miscues from University of Colorado phonetic notation to Sphinx notation.  
Then we aligned each translated miscue against the correct pronunciation of the word to 
compute its P to P’ mappings.  Finally, we used the graphophonemic correspondence for the 
correct pronunciation to factor each miscue into individual G to P to P’ mappings, one for 
each grapheme in the word.  Aligning the pronunciations also allowed us to compute a 
pronunciation similarity metric that we used to determine whether to consider a miscue to be 
the result of a grapheme decoding approach. 
 

3.1 Miscue Conversion 
 
 We converted University of Colorado pronunciations into Sphinx pronunciations with a 
simple pattern matching process.  Table 2 illustrates the notations.  To handle conversions 
involving the flap1 and schwa2 phonemes, as well as minor differences in pronunciations, we 
defined ten Sphinx phoneme pairs to be approximately equal.  Five of the ten pairs defined 
the schwa phoneme to be approximately equal to the vowel phonemes /AH/, /EH/, /IH/, 
/OW/, and /UH/.  Two of the pairs defined the flap phoneme to be approximately equal to the 
/D/ and /T/ phonemes.  The remaining three pairs defined approximate equality between 
/AXR/ and /ER/, between /AA/ and /AO/, and between /AO/ and /OW/. 
 

3.2 Pronunciation Alignment 
 
 With the miscue in Sphinx notation, we needed to align it with the correct pronunciation 
of the word.  This allowed us to determine what parts of the pronunciation were problematic 

                                                 
1 The flap phoneme represents the sound associated with the ‘d’ in “faded” and with the ‘t’ in “fated.” 
2 The schwa phoneme represents a reduced vowel.  It is used when it is impossible to distinguish a particular 

vowel sound, as in the vowel sounds near the ends of the words “wagon”, “engine”, and “cradle.” 

Table 2 – Colorado and Sphinx phonetic transcriptions of a ‘Rosetta Stone’ example. 

English A whole joy was reaping, but they've 
Colorado * hOl joy wuz rEping but THAv 
Sphinx AX HH+OW+L JH+OY W+AA+Z R+IY+P+IH+NG B+AH+T DH+EY+V 

 

English gone south, you should fetch azure Mike. 
Colorado gon sowth U shood fech azher MIk 
Sphinx G+AO+N S+AW+TH Y+UW SH+UH+D F+EH+CH AE+ZH+ER M+AY+K 

 



for the subject.  We used a dynamic 
programming algorithm, derived from a 
solution to the longest common substring 
problem [2].  The algorithm considered 
possible alignments of the phonemes 
sequences, awarded points based on the 
quality of the match in each phoneme pair 
of a potential alignment, and selected the 
alignment with the best score.  The 
algorithm awarded five points if the 
phonemes of a pair were identical, three 
points if they were approximately equal, 
and a single point if they were both 
vowels or were both consonants.  These point values were selected arbitrarily, but comparison 
of the resulting alignments to manual alignments indicated that these values worked well. 
 

3.3 Measuring Alignment Quality 
 
 Given the method we used for aligning pronunciations, we defined our metric of 
alignment quality to be the score of the alignment divided by the number of graphemes in the 
aligned pronunciation.  Alignment quality scores, therefore, had values ranging from zero to 
five. 
 Defining our metric in this way gave us a reasonable measure of whether a subject was 
using a grapheme decoding approach.  If the subject’s pronunciation was very close to the 
correct pronunciation, the alignment yielded a score close to five.  If the subject’s 
pronunciation could not be reconciled with the correct pronunciation, the alignment yielded a 
score close to zero.  This metric also allowed subjects to make more pronunciation mistakes 
in longer words.  It seems reasonable that subjects using a grapheme decoding approach 
would have made more decoding errors as words became longer. 
 Table 3 contains actual miscues for the word “present,” together with the scores that the 
pronunciation alignments for these miscues received.  Example (1) appears to be the result of 
a subject guessing the word “party.”  This pronunciation does not align well with the 
pronunciation for “present”, and so it received a low score.  Example (3), with a score of 
three, seems to be the result of a grapheme decoding process.  The child substituted a vowel 
and appended a pair of phonemes, but the pronunciation is a reasonably close match. We 
include Example (4) to illustrate a shortcoming of our metric.  While this example did align 
well with the correct pronunciation, this subject may have guessed the word “president,” and 
so may not have been using a grapheme decoding approach.  Example (5), an exact match 
except for a single vowel substitution, received a score of (5+5+1+5+5+5+5) / 7 = 4.43. 
  For the remainder of this work, we filtered our positive examples to those G to P to P’ 
mappings derived from miscues whose alignment score was at least 2.5.  Figure 1 shows a 
histogram of miscue alignment scores, grouped in bins of size 0.5.  By filtering out miscues 
with alignment scores less than 2.5, we removed about half the miscues.  This was necessary, 
however, to avoid interference from data that could not be reconciled with a grapheme 
decoding process. 
 
 

 

 

 

 

Table 3 – Example miscues on the word “present,” and their 
alignment scores. 

 
present 

/P+R+EH+Z+EH+N+T/ 
 

#   Pronunciation   Score 

( 1 )   / P+AA+R+D+IY/ 1.50 
( 2 )   / P+R+EH+S/ 2.29 
( 3 )   / P+R+IY+S+EH+N+T+AX+D/ 3.00 
( 4 ) / P+R+EH+Z+AX+D+IH+N+T/ 3.67 
( 5 )   / P+R+IY+Z+EH+N+T/ 4.43 



4. INITIAL RESULTS 
 
 With our data in the form of a set of 
G to P to P’ mappings, we obtained some 
initial results.  We computed the most 
common positive G to P to P’ examples 
in our training data.  These initial results 
gave us a sense of what mappings we 
should continue to investigate.  We also 
conducted some preliminary tests to see if 
these results generalized to an 
independent test set.  These initial tests 
indicated that it is likely we would be 
able to predict errors in an independent 
test set. 
 

4.1 Common G to P to P’ Mappings 
 
 After converting subject miscues, 
aligning them to the correct 
pronunciation, and filtering out the 
miscues with an alignment score below 
2.5, our training data yielded 33,713 
instances of 1807 distinct G to P to P’ 
mappings.  Luckily for this work, 1346 of 
those mappings occurred less than ten 
times each and accounted for a total of 
less than 12% of the training instances.  
We did not try to predict these errors, as any one of them occurred far too infrequently for the 
data to have provided us with enough information about its causes.  We instead focused our 
attention on the seventy-one mappings that occurred at least one hundred times.  This 
threshold is arbitrary, but the resulting mappings accounted for more than 53% of mapping 
instances. 
 Table 4 lists the ten most common mappings in our training data, all ten of which turned 
out to be insertions or deletions.  Thus, the most common error was to ignore a letter ‘s,’ 
thereby deleting the phoneme /S/ – such as the plural ending of the word “plants.”  The figure 
shows the number of times each mapping occurred. 
 

4.2 Mappings in an Independent Test Set 
 
 Given the common G to P to P’ mappings in our training data, it was appropriate to 
wonder if these mappings would also be common in an independent data set.  Computing the 
G to P to P’ mappings in our test data yielded 13,722 instances of 1085 distinct G to P to P’ 
mappings.  As should be expected, the mappings were not identical to those from the training 
set.  Substantial overlap can be seen, however, by looking at the frequency in the test data of 
the seventy-one mappings in the training data on which we focused our work.  This data is 
plotted in Figure 2.  The chart contains 142 points.  The seventy-one points that form a 

Table 4 – The ten most common training G to P to P’, with 
example words from the training data. 

 

G P P’ # Example 

s /S/ _ 1164 plants 
s /Z/ _ 746 arms 
_ _ /N/ 735 ha  d 
$ _ /Z/ 724 car   
n /N/ _ 670 land 
t /T/ _ 626 went 
_ _ /R/ 517 c  ook 
r /R/ _ 476 trip 
e /EH/ _ 475 quiet 
_ _ /AX/ 442 eng  lish 
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Figure 1 – Histogram of training data miscues, binned by 
alignment score.  The bars on the right are above our 

threshold value of 2.5. 

 



smooth curve are the seventy-one most 
common mappings in the training data 
and are sorted by what percent of the total 
number of miscue mappings they 
represent.  Each of these points is 
associated with a point on the same 
vertical line that represents the percent of 
miscue mappings the same error 
represents in the test data.  The 
correlation coefficient is .582. 
 It seems reasonable, therefore, to use 
the frequency of mappings in our training 
data to predict the miscue mappings that 
will occur in an independent data set.  It 
was important to verify this point, 
because the rest of our work required that 
the frequency of decoding errors in the training set generalize to other readers and other text. 
 
 

5. MISCUE CONTEXT ANALYSIS 
 
 We decided to examine the contexts of decoding errors to see when particular decoding 
errors occur with a noticeably higher or lower frequency.  By determining the contexts in 
which a particular miscue mapping is either more or less likely, we can improve the accuracy 
of our predictions for these contexts.  It is important for an automated reading tutor to be 
given the best predictions possible, as the imperfections in speech recognizer technology 
assure that a speech recognizer will sometimes hallucinate the errors it is told are likely. 
 In order to find contexts that make a particular miscue mapping more or less likely, we 
applied a decision tree to a set of positive and negative mapping examples.  The context of 
each mapping defined a set of features for that mapping.  While our positive mapping 
examples were explicit in the University of Colorado data, our negative examples were 
implicit, and so we had to generate them.  We then adjusted our data to compensate for the 
fact that we were using a classifier3 to do density estimation4.  Finally, we used a modified 
version of the C4.5 decision tree package [10] to discover which graphophonemic contexts 
had a substantial impact on the frequency of particular decoding errors. 
 

5.1 Defining Our Feature Set 
 

 We defined the features of a G to P to P’ mapping to be the graphemes, phonemes, and 
grapheme to phoneme mappings that appeared adjacent to the G to P to P’ mapping in the 
word.  Considering graphemes as context is a natural result of our assumption of a grapheme 

                                                 
3 A classifier uses the features of objects to attempt to learn the classes to which data items belong.  In our case, a 

classifier attempts to classify the value of P’ spoken by the subject as correct or incorrect. 
4 Density estimation is the identification of locations in space where something occurs with high or low 

frequency.  In our case, the context of G to P to P’ mappings define the space and we are looking for high or 
low frequencies of positive examples. 
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Figure 2 – The percent of total miscues in the training and 
test data of the seventy-one miscue mappings that are most 

common in the training data, ordered on the x-axis by 
frequency in the training data. 



decoding process.  We also considered phonemes as context because it seems reasonable that 
we could find an influence by a variety of graphemes only when they map to a particular 
phoneme.  Because we are making predictions of reading mistakes, we did not consider the 
value of P’ in nearby mappings to be a feature.  We do not have prior knowledge of these 
values in our planned application of decoding error prediction. 
 Ideally, we would like to be able to consider all of the graphemes, phonemes, and 
grapheme to phoneme mappings in a word.  We might even want to look beyond the current 
word, to see if the previous word has an influence on subject miscues.  Because our data set 
does not contain enough distinct words to allow this approach, we limited the feature set of a 
mapping to the values of G, of P, and of the G to P mapping in the locations directly on either 
side of the mapping.  Considering even the two locations on either side of a mapping resulted 
in a number of rules that could be applied to only a single word in our training data. 
 

5.2 Defining Our Training Data 
 
 The University of Colorado data set explicitly codes the miscues made by subjects, but 
not the words they read correctly.  Using a decision tree requires that we have both positive 
and negative training examples.  We derived our positive examples directly from the miscue 
data, but needed to infer our negative examples.  We generated our negative examples by 
assuming that the absence of an error for a word indicated that the word was read correctly.  
For each subject, we examined each instance of a G to P mapping in the passage read by that 
subject.  For each instance, we checked the errors made by the subject to see if an error 
occurred on that instance.  If we did not find an error, we created a negative training example.  
If we did find an error, we examined the alignment score for the miscue containing the error.  
As discussed earlier, we ignored the error if the alignment score was less than 2.5.  In this 
case, we created neither a positive example nor a negative example, as the subject was 
probably not using a grapheme decoding approach.  If the alignment score was at least 2.5, 
we created a positive training example.     
 The process described gave us positive and negative examples that portrayed the contexts 
in which subjects using a grapheme decoding approach had trouble with a particular mapping.  
However, the resulting data was not yet appropriate for the application of a decision tree 
classifier, because we needed the classifier to do density estimation.  To clarify the problem, 
consider the training examples that resulted from applying the described process to the 
miscue mapping from ‘e’ to /EH/ to /IY/.  The resulting training examples showed that, of the 
23,514 instances of a mapping from ‘e’ to /EH/ apparently produced by a grapheme decoding 
approach, /IY/ was substituted for /EH/ in 229 instances, a frequency of 0.97%.  The entropy5 
of the data set, therefore, was low.  If we considered the subset of this data where the ‘e’ to 
/EH/ mapping is preceded by the grapheme ‘r’ mapped to the phoneme /R/, we found that the 
substitution occurred in 85 of 1547 instances, a frequency of 5.49%.  This was exactly the 
type of contextual influence that we wanted to identify.  However, the entropy of the subset 
of the data where this rule applies was higher than that of the original data set. Decision tree 
learners try to minimize the entropy of a data set.  If C4.5 had identified this subset of the 
data, it would have increased entropy. 

                                                 
5 Entropy is a measure of the homogeneity of a set of data.  A data set that is very homogenous will have low 

entropy.  A data set that is very heterogeneous will have high entropy.   For a discussion of entropy and 
decision trees, see [5].  



 We remedied this problem by duplicating our positive examples until they represented 
approximately half of our training examples.  In the case of the ‘e’ to /EH/ to /IY/ mapping, 
we used 103 instances of each of our 85 positive examples, for a total of 23,857 positive 
examples and 23,285 negative examples.  The resulting data set had a positive example 
frequency of 50.32% and very high entropy.  Because we duplicated only our positive 
examples, the subset of the mappings preceded by the grapheme ‘r’ mapped to the phoneme 
/R/ consisted of 8755 positive instances and 1462 negative instances.  This subset had a 
positive example frequency of 85.69%, and consequently much lower entropy.  This change 
allowed C4.5 to work properly, and we recovered the actual miscue frequency by 
compensating for the ratio of positive example duplication after C4.5 identified meaningful 
contexts.  
 
 

6. RESULTS AND EVALUATION 
 
 Application of the decision tree algorithm to the seventy-one mappings discussed in 
section 4.1 yielded 11,697 rules.  We identified positive rules of interest and evaluated the 
performance of these rules on our independent test set.  Similarly, we evaluated negative rules 
of interest. 
 

6.1 Positive Rules 
 
 A positive rule, which indicates that a particular miscue mapping is more likely in a given 
context, was obtained from each positive node in the generated trees.  In these cases, the 
frequency of the miscue mapping in the given context is greater than the frequency of the 
miscue mapping in the general case, which we shall refer to as the base frequency of the 
miscue mapping.  Because we wanted our predictions to have a reasonable likelihood of 
generalizing to new words, we identified two other criteria for a rule to be considered 
significant.  First, the rule needed to apply to at least three distinct words in the training data.  
Second, the rule needed to define a context in which a miscue occurred with frequency of at 
least one percent in the training examples.  These criteria were met by 225 positive rules.  
Table 5 lists the fifty rules with the highest predicted miscue frequency, with words in the 
training data that were matched by the rules.  For example, the first rule in the right column 
predicts substitution of the /IY/ in a mapping from ‘e’ to /EH/ in contexts of the form 
‘…re…’ where ‘re’ should be pronounced as /R EH/.  The predicted miscue frequency for 
these examples ranges from 16.5% to 3.8%.   
 We evaluated each of the 225 rules by generating test examples in the same way that we 
generated training examples, except that we used the independent training data described in 
section 1.  Of the 225 rules, 157 matched words in the test data.  To determine the predicted 
number of errors, we multiplied the predicted miscue frequency for these 157 rules by the 
total number of test examples matched by the rules.  We then compared this prediction to the 
actual number of miscues in the examples matched by the rules.  The results, sorted by the 
predicted number of miscues, are given in Figure 3.  The correlation coefficient is .473. 
  



 To determine if it is worthwhile for an automated reading tutor to consider context, we 
compared these results to those obtained by considering only the base frequency of the 
miscue mappings.  For the same test examples used to evaluate the context rules, the values 
had a correlation coefficient of .350 — indicating that rules based on graphophonemic 
context provide a better prediction than rules based only on base miscue frequency.   
 

6.2 Negative Rules 
 
 A negative rule, which indicates 
that an error is less likely in a given 
context, was obtained from each 
negative node in the generated trees.  
Negative rules are of interest because 
they indicate situations in which it is 
very unlikely for a subject to make an 
otherwise common decoding error.  An 
automated reading tutor could tell the 
speech recognizer not to listen for a 
mistake in a particular context, thus 
reducing the number of errors 
hallucinated by the speech recognizer. 

 
 
 

Table 5 – The top fifty positive rules and examples of words in the training data to which they apply. 
The rules are listed in descending order by predicted miscue frequency. 

 
Left 

Context 
Error 

Right 
Context 

Example 
Word 

 
Left 

Context 
Error 

Right 
Context 

Example 
Word 

u /AH/ n /N to _/  unusual  r /R/ e /EH to IY/  present 
p /P/ o /AA to AH/  poppies  d /D/ s /Z to _/  backwoodsman 
c /K/ o /AA to AH/  competent  t /T/ e /EH to _/  eaten 
t /T/ s /S to _/  plants  m /M/ s /Z to _/  arms 

m /M/ i /IH to AY/  mint  ^ sh /SH to S/ /IH/ shillings 
m /M/ e /EH to AE/  men  d /D/ s /Z to _/ $ birds   

sh /SH/ i /IH to EH/  shillings  d /DX/ e /EH to _/  proceeded 
p /P/ e /EH to _/  competent  ll /L/ y /IY to _/  woolly 

e /EH/ s /Z to _/ $ produces     e /EH/ d /D to _/  visited 
t /T/ e /EH to _/ d expected  e /EH/ s /Z to _/  present 
c /S/ e /EH to _/  produces   sh /SH to S/ /IH/ shillings 

a /AX/ n /N to _/  d England  w a /AA to EH/  want 
or _ /_ to AH/  m for  m  /P/ o /AA to OW/  poppies 

n /AX/ n /N to _/  didn’t   t /T to D/ o /AX/ mastodon 
t _ /_ to R/ /AH/ t  usks  ure _ /_ to Z/ $ picture   

e /IH/ t /T to _/  pretended  t /T/ e /EH to IH/ d expected 
m /M/ a /AX to AE/  material  n ed /D to _/  cleaned 
n /N/ i /IH to _/  colonists  t o /OW to AH/  tobacco 

ee _ /_ to Z/ $ tree     c /K to _/ o /AX/ decoration 
ure /AXR/ _ /_ to Z/ $ picture     l /L to _/ u /AH/ bluff 

/K/ o /AA to _/  colonists  /AXR/ _ /_ to S/ d northwar  d 
or /ER/ _ /_ to R/  recor  d  d /D/ e /EH to _/  pretended 
i /IH/ s /S to _/  colonists  ie /IY/ s /Z to S/  duties 

 s /S to SH/ o /AX/ mason  s /S/ t /T to _/  mastodon 
c /K/ r /R to _/  crate   c /K to _/ r /R/ democratic 
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Figure 3 – Comparison for positive rules of the context 
prediction and the actual number of errors in test data, 

ordered on the x-axis by the predicted number. 



 We evaluated the 107 negative rules that apply to at least two words in the training data, 
predict the error will not be made, and define a context for a miscue mapping with a base 
frequency greater than one percent.  Of these rules, 69 matched words in the test data.  The 
average absolute difference between the predicted and actual number of errors in the test 
examples matched by the rules was 1.4 errors for the context rule predictions (standard 
deviation of 3.2), compared to 7.4 errors for the context-independent predictions (standard 
deviation of 13.7).  We change criterion here due to zero variance in the context predictions. 
 
 

7. CONCLUSION 
 
 Our results indicate that we can successfully predict graphophonemic contexts in which 
some oral reading miscues are particularly likely or particularly unlikely.  Our results also 
indicate that the predictions that consider context are better than those that consider only base 
frequency of a miscue. 
 This work derived a new representation from the University of Colorado data.  The new 
representation enabled us to conduct analyses that were not feasible with the data in its 
original form.  Representing miscues as sets of G to P to P’ mappings, filtering out the 
miscues that did not appear to be the result of a decoding approach, and examining the 
features of mappings allowed us to discover new information about the miscues.  Further 
analysis of the data in this factored representation may lead to additional discoveries. 
 The work reported here did not modify the Reading Tutor itself.  Now that we have 
learned rules to predict high-frequency errors, we have started off-line experiments to try 
listening for them.  One goal is to increase the Reading Tutor’s detection of mistakes serious 
enough to warrant intervention.  Another goal is to reduce its false alarm rate by deliberately 
ignoring minor mistakes.  A further step in this direction would be to split up the miscues 
based on whether they are coded in the Colorado data as minor, so as to train one set of rules 
for minor miscues to ignore, and a separate set of rules for more serious miscues. 
 Knowledge about which reading mistakes occur frequently is useful in another way too:  
for deciding on what to focus tutoring.  Now that we have identified some frequent mistakes, 
we can design new instructional activities to remediate or prevent them.  Moreover, given 
knowledge of which graphemes are misread in which contexts, we can identify correct 
context-specific mappings that apply frequently and reliably in those contexts.  We can then 

Table 6 – The top twenty negative rules and examples of words in the training data to which they apply. 
The rules are listed in descending order by the base frequency of the miscue. 

 

Left 
Context 

Error 
Right 

Context 
Example 

Word 
 

Left 
Context 

Error 
Right 

Context 
Example 

Word 
u /AH/ d /DX to _/  study  i /IH/ s /Z to _/ $ his   

 o /AX to _/ /M/ from   a /AA to AE/ n want 
^ s /S to _/ l /L/   slow  l a /AA to AE/ r large 
^ s /S to _/ e /EH/   settle  wh /W/ e /EH to _/  when 
^ s /S to _/ ee /IY/   seed  h /HH/ e /EH to _/  helped 

t /T/ o /AA to AH/  stop  g /G/ e /EH to _/  get 
/P/ o /AA to _/  upon  th /DH/ e /EH to _/  there 
/B/ o /AA to _/  body  w /W/ e /EH to _/  west 
^ o /AA to _/    objects  m /M/ e /EH to _/  men 

/T/ o /AA to _/  stop  l /L/ e /EH to _/ ph elephants 
   



target those mappings as instructional objectives.  Teaching such mappings does not 
necessarily mean teaching them as abstract rules, which young children are unlikely to 
understand.  Instead, we are designing instructional activities to teach such mappings by 
presenting examples, and helping children induce the rules by calling attention to the context. 
 Future work will show whether the learned rules indeed enable Project LISTEN’s 
Reading Tutor to listen more accurately and informatively to children’s oral reading.  The 
learned rules may be of interest in their own right to reading researchers, and to the AI and 
education community as an interesting example of educational data mining. 
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