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Abstract. This paper describes an effort to model a student’s changing
knowledge state during skill acquisition. Dynamic Bayes Nets (DBNs)
provide a powerful way to represent and reason about uncertainty in
time series data, and are therefore well-suited to model student knowl-
edge. Many general-purpose Bayes net packages have been implemented
and distributed; however, constructing DBNs often involves complicated
coding effort. To address this problem, we introduce a tool called BNT-
SM. BNT-SM inputs a data set and a compact XML specification of
a Bayes net model hypothesized by a researcher to describe causal re-
lationships among student knowledge and observed behavior. BNT-SM
generates and executes the code to train and test the model using the
Bayes Net Toolbox [1]. Compared to the BNT code it outputs, BNT-SM
reduces the number of lines of code required to use a DBN by a factor
of 5. In addition to supporting more flexible models, we illustrate how
to use BNT-SM to simulate Knowledge Tracing (KT) [2], an established
technique for student modeling. The trained DBN does a better job of
modeling and predicting student performance than the original KT code
(Area Under Curve = 0.610 > 0.568), due to differences in how it esti-
mates parameters.

1 Introduction

Intelligent Tutoring Systems (ITS) derive much of their power from having a
student model [3] that describes the learner’s proficiencies at various aspects of
the domain to be learned. For example, the student model can be used to de-
termine what feedback to give [4] or to have the students practice a particular
skill until it is mastered [2]. Unfortunately, assessing student knowledge is diffi-
cult because 1) we can only infer student knowledge from observation of student
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performance, 2) student performance may not be a perfect reflection of student
knowledge (e.g. performance is prone to guessing and slipping), and 3) the state
of student knowledge changes over time.

Dynamic Bayes Nets (DBNs) [5] address these difficulties in assessing stu-
dent knowledge by providing a powerful way to represent and reason about
uncertainty in time series data [4, 6]. Section 2 demonstrates how DBNs can
model student knowledge and performance. Unfortunately, constructing DBNs
typically requires a complicated coding effort. Section 3 describes BNT-SM, a
tool designed to reduce the cost of developing and evaluating Bayesian student
models. Section 4 illustrates how to use BNT-SM to simulate Knowledge Trac-
ing, an established technique for student modeling. Section 5 evaluates BNT-SM
by comparing it to the original Knowledge Tracing code. Finally, section 6 sum-
marizes BNT-SM’s contributions and limitations.

2 Dynamic Bayes Nets and Student Modeling

We will begin by applying DBNs to an example. Suppose we want to assess
the probability of a student knowing a skill. Since we cannot read the student’s
mind, we can only infer the knowledge state from a set of observable events, such
as student performance (whether the student applies the skill correctly) and tu-
tor intervention (whether the tutor gives assistance). We might have certain
assumptions about how the latter two factors interact with student knowledge.
For example, we might know that student performance on a task is affected by
student knowledge and moreover, tutor intervention affects both student knowl-
edge (by helping students to learn) and student performance (by scaffolding
the student’s current attempt without necessarily causing long-term learning).
Figure 1 depicts such causal relationships in a conditional independence graph
where:

K = student knowledge state (whether the student knows the skill or not)
H = tutor intervention (whether the tutor gives help or not)
C = observed student performance (whether correct or incorrect)

In DBNs, we usually model a latent variable (e.g. the unobserved student
knowledge state) as a changing state in time series data. A state is represented
as a node in the graph (e.g., K), while a time slice consists of a set of nodes that
are modeled at a point of time (e.g. the set {K, H , C}). Normally, we assume that
the parameters (or more precisely, the conditional probability distributions) in
a DBN do not change over time; rather, what changes is the value of the latent
variable. In the case of student modeling, we assume that student knowledge
changes over time, but not the parameters of the model itself. Thanks to this
assumption, we can model any number of time slices without estimating an
infinite number of parameters.

The conditional independence graph is a graphical representation of the
joint probability distribution specified in Equation 1. The joint probability for-
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Fig. 1. Dynamic Bayes Net for a student model. Unshaded nodes represent latent
variables; shaded nodes represent observed variables.

mulation ensures that inferences (estimates of the values of latent variables)
are mathematically sound and computationally efficient. This representation
makes it easy to include certain kinds of parameters in the model. For exam-
ple, the guess and slip rates for the vertical edges in Figure 1 are modeled as
P (C = true|K = false) and P (C = false|K = true), respectively.

Given the conditional independence graph and the values of the observed
variables (evidence), DBNs can infer the values of the latent variables. For ex-
ample, the DBN uses the observed evidence to compute the posterior probability
of the student knowing a skill by applying the Bayes rule as in Equation 2.

P (K, L, C) = P (H) ∗ P (K|H) ∗ P (C|K, H) (1)

P (K = true|H, C) =
P (H, K = true, C)

P (H, K = true, C) + P (H, K = false, C)
(2)

In summary, DBNs provide a powerful way to represent and reason about
uncertainty in time series data, and are therefore well-suited to model student
knowledge. Indeed, others have applied DBNs to student modeling [4, 6].

3 BNT-SM: Bayes Net Toolkit for Student Modeling

Many general-purpose Bayes net packages have been implemented and distrib-
uted. For example, BNT 1, BUGS 2 and GMTK 3 are three popular Bayes net
packages that implement different inference and learning algorithms. We decided
to use BNT because it supports the most inference algorithms (including junc-
tion tree, variable elimination, and Gibbs sampling) and learning algorithms
(including both parameter learning and structure learning). More importantly,

1 BNT is available at http://bnt.sourceforge.net
2 BUGS is available at http://www.mrc-bsu.cam.ac.uk/bugs/
3 GMTK is available at http://ssli.ee.washington.edu/˜bilmes/gmtk



it supports DBNs, which are essential to student modeling. This software is dis-
tributed under the GNU Library General Public License and is implemented
using Matlab, a widely used and powerful mathematical software package.

We have extended BNT to reduce the cost to develop and evaluate student
models. We call this extension BNT-SM. A researcher can examine the factors
that may affect student knowledge simply by specifying the hypothesized causal
relationships in an XML specification file and providing empirical data.

By hiding most of the coding detail in constructing and training DBNs, BNT-
SM lets the researcher focus on the modeling aspect of the problem and quickly
experiment with alternative models. BNT-SM reduces the coding overhead by
providing a simpler language to specify DBN than the generic BNT code. BNT-
SM inputs a student model specified in an XML file. BNT-SM outputs BNT
Matlab code to train and evaluate this model. Its XML input is shorter than its
BNT output by a factor of at least 5, based on the model that we constructed.

4 Modeling Knowledge Tracing with BNT-SM

To provide a real example of using BNT-SM, we first introduce Knowledge Trac-
ing, a student modeling technique that is related to DBNs.

4.1 Knowledge Tracing

Knowledge Tracing (KT) [2] is an established technique for student modeling and
was first used in the ACT Programming Languages Tutor [2]. The goal of KT
is to estimate the student’s knowledge from his or her observed actions. At each
successive opportunity to apply a skill, KT updates its estimated probability that
the student knows the skill, based on the skill-specific learning and performance
parameters and the observed student performance (evidence).

Reye [6] showed that KT is special case of a DBN which assumes parameters
do not change across time slices. More specifically, the conditional independence
graph of KT can be drawn as Figure 2. (We rename the original KT variables
L0 and t as already know and learn for consistent naming with other sections.)
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Fig. 2. A DBN that simulates Knowledge Tracing. (1), (2), and (3) refer to
identifiers in the XML specification.



4.2 Example of Simulating KT with BNT-SM

Given that KT is a special case of DBNs, we now provide an example of sim-
ulating KT with BNT-SM. To use BNT-SM, a researcher needs to follow four
steps:

1. Specify the data source in an XML specification 4.
2. Specify the network structure in an XML specification.
3. Specify and initialize parameters in an XML specification.
4. Call RunBnet.m in Matlab.

There are two sections in the XML specification file. First, we specify the
data source as a tabulated file where each row represents a student’s attempt
to apply a skill. The columns of the data source file specify the values of the
observed variables (e.g. asr corr provides data for the correct node) according
to empirical data and leave the values of the latent variables (e.g. pknow) as a
question mark (so that the input and output files follow the same format).

user utterance_start_time skill pknow asr_corr

mTR4-6 2002-08-14_10:22:56 my ? 1

mTR4-6 2002-08-14_10:22:56 cat ? 1

...

After we have specified the data source, we specify the network structures.
As Figure 2 shows, KT has two nodes per time slice. The first node, named
pknow, represents student knowledge as a latent binary variable. The second
node, named correct, represents student performance as an observed binary
variable. Pknow has a within time slice connection to correct since we assume
that student knowledge affects student performance. Moreover, pknow has a
between time slice connection to pknow in the next time slice since we model
student knowledge as a changing state in the time series data. The following
XML (in two column format) instantiate the preceding discussion.

<nodes>

<node>

<name> pknow </name>

<values> 2 </values>

<type> discrete</type>

<observed>latent </observed>

<within> correct </within>

<between> pknow </between>

</node>

<node>

<name> correct </name>

<values> 2 </values>

<type> discrete</type>

<observed>asr_corr</observed>

<within></within>

<between></between>

</node>

</nodes>

4 For the detailed Document Type Definition of our XML specification file, please see
http://www.cs.cmu.edu/˜listen/BNT-SM.



After we have specified the graphical model, we specify the parameters. For
example, we define the parameter named guess as the conditional probability
P (C = true|K = false) (abbreviated P2(T|F)) and initialize it to a random
value. P1, P2, and P3 denote the conditional probability distributions labeled
(1), (2), and (3) in Figure 2. Notice that some parameters are initialized to
something like 1 − P1(T ) such that probability distributions sum to one. Also,
KT assumes there is no forgetting once a student learns a skill, so the forget

parameter is set to 0.

<eclasses>

<eclass>

<id> 1 </id>

<values> 2 </values>

<eq> P1(pknow) </eq>

<cpd>

<eq> P1(T) </eq>

<init> rand </init>

<param> already know </param>

<eq> P1(F) </eq>

<init> 1-P1(T) </init>

<param> null </param>

</cpd>

</eclass>

<eclass>

<id> 2 </id>

<values> 4 </values>

<eq> P2(correct|pknow) </eq>

<cpd>

<eq> P2(T|F) </eq>

<init> rand </init>

<param> guess </param>

<eq> P2(F|T) </eq>

<init> rand </init>

<param> slip </param>

<eq> P2(F|F) </eq>

<init> 1-P2(T|F) </init>

<param> null </param>

<eq> P2(T|T) </eq>

<init> 1-P2(F|T) </init>

<param> null </param>

</cpd>

</eclass>

<eclass>

<id> 3 </id>

<values> 4 </values>

<eq> P3(pknow|pknow) </eq>

<cpd>

<eq> P3(T|F) </eq>

<init> rand </init>

<param> learn </param>

<eq> P3(F|T) </eq>

<init> 0.000 </init>

<param> forget </param>

<eq> P3(F|F) </eq>

<init> 1-P3(T|F) </init>

<param> null </param>

<eq> P3(T|T) </eq>

<init> 1-P3(F|T) </init>

<param> null </param>

</cpd>

</eclass>

</eclasses>

After we have specified the graphical model in an XML specification file and
provided the empirical data, we then call the RunBnet.m script in Matlab to start
the training (estimating the parameters) and evaluating procedure (estimating
the values of the latent variables). The student model’s estimation of student
knowledge is output to a file similar to the data source file, except that the ques-



tion marks are replaced by the estimates. The resulting skill-specific parameters
are output as follows:

skill #students #cases already know learn guess slip

my 179 4490 0.904 0.034 0.605 0.073

cat 178 1579 0.953 0.045 0.274 0.074

...

To demonstrate BNT-SM’s flexibility and ease of use, we point out that it
is easy to extend our two node student model (KT) to the three node student
model in Figure 1. To model the new tutor intervention node and its causal
relationships to student knowledge and student performance, it suffices to add
just 13 lines to the XML specification file. In contrast, KT code is limited to the
simple 2-node model.

5 Evaluation of Model Fit

KT and DBNs estimate model parameters differently. The original KT code
treats parameter estimation as a curve-fitting problem and uses a conjugate gra-
dient search method by Powell [7]. In contrast, DBNs typically use Expectation
Maximization to estimate the parameter values. We now perform an empirical
comparison of the two parameter estimation procedures.

5.1 Data Collection

Our data came from 360 children between six and eight years old who used
Project LISTEN’s Reading Tutor [8] in the 2002-2003 school year. Over the
course of the school year, these students read approximately 1.95 million words
(as heard by the automatic speech recognizer). On average, students used the
tutor for 8.5 hours.

During a session with the Reading Tutor, the tutor presented one sentence
(or fragment) at a time for the student to read aloud. The student’s speech was
segmented into utterances delimited by silences. Each utterance was processed by
the Automatic Speech Recognizer (ASR) and aligned against the sentence. This
alignment scored each word of the sentence as either accepted (read correctly)
or rejected (misread or omitted). For modeling purposes, this paper treats each
English word as a separate skill.

5.2 Evaluation Metric

Since student knowledge is a latent variable that cannot be directly observed, we
have no gold standard to compare against. Instead, we used the trained student
model to predict whether the ASR would accept or reject a student’s next reading
of the word. An ROC (Receiver Operating Characteristic) curve measures the
performance of a binary classifier by plotting the true positive rate against the



false positive rate of varying decision threshold. The area under the ROC curve
(AUC) is a reasonable performance metric for classifier systems, assuming no
knowledge of the true ratio of misclassification costs.

To evaluate the model fits, we computed the correlation and the AUC be-
tween the student model’s estimate of the student knowledge and the actual
performance (as scored by the ASR).

5.3 Method

To determine which parameter estimation method provided a better model fit
to student performance data, we first separated the training and testing set by
splitting the students into two groups. The split was done by sorting the students
according to their amount of Reading Tutor usage and alternately assigning
students to the two sets. Then, we set up a DBN using BNT-SM to simulate KT
and compared it against the curve fitting code of the original KT code.

The curve fitting algorithm is a general purpose routine for the minimization
of a function in several variables. The algorithm implemented is a modification of
conjugate gradient search by Powell [7]. The legacy code was part of the original
KT code 5.

For DBN, we used the Expectation Maximization (EM) algorithm to optimize
the data likelihood (i.e. the probability of observing our student performance
data). EM is the standard algorithm used in the machine learning community
to estimate DBN parameters when the structure is known and there exist latent
variables. EM is guaranteed to converge to a local maximum on the likelihood
surface. We used the junction tree algorithm for exact inference.

After training with each method, we cross validated by using the result-
ing student models to predict student performance in the testing set. We then
computed the correlation and AUC between predicted student knowledge and
observed performance.

5.4 Results

As Table 1 shows, EM outperforms the original KT’s curve fitting code on both
the correlation and the AUC evaluation metrics. Their two correlation coeffi-
cients are reliably different at p < 0.01. The values of model fit appear low
because we are predicting individual student performance data rather than ag-
gregated performance. It is difficult to predict a student’s individual responses.
To determine an upper bound on the best possible correlation, we did a cheating
experiment that can peek at the future data when it makes a wrong predic-
tion. The cheating experiment further assumed monotonicity constraints. That
is, a correct response always increases the student model’s estimate of student
knowledge, whereas an incorrect response decreases the estimate. The cheating
experiment revealed that the maximum correlation of any model that obeyed

5 Source code is courtesy of Albert Corbett,
http://www.cs.cmu.edu/˜rsbaker/curvefit.tar.gz.



Table 1. KT vs DBNs Model Fit

Method Correlation AUC
Curve-fitting 0.07 0.568
DBN’s EM 0.16 0.610

Table 2. KT vs DBNs Parameters

Method already know learn guess slip
Curve-fitting 0.33 0.19 0.72 0.07
DBN’s EM 0.68 0.14 0.64 0.07

monotonicity constraints was only 0.5. Note that this maximum performance
requires peeking at the data to be predicted and is not necessarily attainable by
any actual model.

As Table 2 shows, EM estimates much higher already know and lower learn

parameters than curve fitting. EM’s already know estimate of 0.68 is more plau-
sible than curve fitting’s estimate of 0.33. The 20 most frequent words of English
account for about 33% of text words. Since we are using the weighted average
for parameter values (weighted by the number of times students encountered the
word in the Reading Tutor), an initial knowledge of 0.33 would be comparable
to six through ten year old knowing only these 20 words–an unlikely proposition
at best. EM’s estimate of 0.68 would be comparable to students knowing only
the 431 most frequent words in English, which is much more believable.

6 Conclusion and Future Work

In summary, this paper describes how DBNs provide a powerful way to model
student knowledge in an Intelligent Tutoring System. We introduce a tool called
BNT-SM that helps training and evaluating DBNs. The main advantages of
BNT-SM are that it is 1) flexible, 2) easy to use, and 3) provides a better model
fit and a more plausible model parameters, at least on our data set. We invite
the student modeling community to download BNT-SM at
http://www.cs.cmu.edu/˜listen/BNT-SM.

Currently, BNT-SM handles Bayes nets with any number of latent and ob-
served variables, but the variables are limited to discrete values. Moreover, there
exist some restrictions on the possible causal relationships that a researcher may
model. For instance, BNT-SM does not allow links that go backward in time or
that skip forward past the next time slice. Although generality was a top prior-
ity when we designed BNT-SM, we have tested it on only three simple networks
(two of them discussed in this paper), so it may have limitations of which we
are unaware. Thus, we encourage researchers to try out BNT-SM and provide
valuable feedback for us to improve its generality.

As future work, we wish to explore the generality of BNT-SM by providing
XML specification files for various popular student models. Moreover, we wish



to investigate more complex models such as models with continuous variables, as
well as hierarchical models. Hierarchical Bayes nets allow researchers to model
more than one level of factors, where a higher level factor (such as overall reading
proficiency) affects multiple lower level factors (such as individual words).

Another issue that we would like to address in the future is the compu-
tational complexity of training the DBN. Since we’re using an exact inference
engine (junction tree), training time is rather long. As it currently stands, EM
takes 25 hours to estimate parameters for the DBN that simulates KT, while the
curve-fitting code in the original KT code takes only 2 hours. There are several
ways to speed up training. For instance, we can use approximate inference al-
gorithms that trade off accuracy for efficiency. BNT already implements several
approximation algorithms , including Gibbs Sampling and variational methods.
Another way to speed up the training process is to formulate the network us-
ing some specialized, well-studied formalism such as Hidden Markov Models, for
which more efficient algorithms exist.
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