
A Decision-Theoretic Approach for Selecting Tutorial Discourse Actions

R. Charles Murray
Intelligent Systems Program

University of Pittsburgh
Pittsburgh, PA 15260

rmurray@pitt.edu

Kurt VanLehn
LRDC

University of Pittsburgh
Pittsburgh, PA 15260

vanlehn@pitt.edu

Jack Mostow
Project LISTEN

Carnegie Mellon University
Pittsburgh, PA 15213
mostow@cs.cmu.edu

Abstract

We propose a decision-theoretic architecture for
selecting tutorial discourse actions. DT Tutor, an
action selection engine which embodies our ap-
proach, uses a dynamic decision network to con-
sider the tutor’s objectives and uncertain beliefs
in adapting to and managing the changing tuto-
rial state. It predicts the effects of the tutor’s dis-
course actions on the tutorial state, including the
student’s internal state, and appears to be unique
in explicitly predicting the student’s next action
and its effect on the tutorial state. Based on the
probabilities of predicted outcomes and their
utilities, DT Tutor selects the tutorial action with
maximum expected utility. We illustrate our ap-
proach with prototype applications for diverse
domains: calculus problem-solving and elemen-
tary reading. Feasibility evaluations assess DT
Tutor’s ability to select optimal actions quickly
enough to keep the student engaged.

Introduction

A tutoring system achieves many of its objectives
through discourse actions intended to influence the stu-
dent’s internal state. For instance, a tutor might tell the
student a fact with the effect of increasing the student’s
knowledge, thereby enabling the student to perform a
problem-solving step. However, the tutor is inevitably
uncertain about the student’s internal state, as it is un-
observable. Compounding the uncertainty, the student’s
state changes throughout the course of a tutoring ses-
sion–that is the purpose of tutoring. To glean uncertain
information about the student, a tutor must make infer-
ences based on observable student actions and guided
by the tutor’s beliefs about the situation. The tutor is
also likely to be concerned with observable attributes of
the tutoring situation, or tutorial state, including the
discourse between the tutor and the student and their
progress at completing tutorial tasks (e.g., solving prob-
lems).

The tutor’s actions depend not only on the tutorial
state, but also on the tutor’s objectives, such as increas-
ing the student’s knowledge, helping the student
achieve a task, and bolstering the student’s affective

state (Lepper et al., 1993). Objectives and priorities
may vary by tutor and even for an individual tutor over
time. Often, a tutor must strike a balance among multi-
ple competing objectives (Lepper et al., 1993).

This paper describes DT Tutor, a decision-theoretic
approach for selecting tutorial discourse actions that
considers the tutor’s uncertain beliefs and multiple ob-
jectives in adapting to and managing the changing tuto-
rial state. Prototype applications for diverse domains,
calculus problem-solving and elementary reading, illus-
trate the approach.

1 General Approach

1.1 Belief and Decision Networks

DT Tutor represents the tutor’s uncertain beliefs in
terms of probability using Bayesian belief networks. A
belief network is a directed acyclic graph with chance
nodes to represent beliefs about attributes and arcs be-
tween nodes to represent conditional dependence rela-
tionships among the beliefs. Beliefs are specified in
terms of probability distributions. DT Tutor’s chance
nodes represent the tutor’s beliefs about the tutorial
state. For each node with incoming arcs, a conditional
probability table specifies the probability distribution
for that node conditioned on the possible states of its
parents. For nodes without incoming arcs, prior prob-
ability distributions are specified.

Each node within a belief network represents an at-
tribute whose value is fixed. For an attribute whose
value may change over time (such as a tutorial state
attribute), separate nodes can be used to represent each
value. Dynamic belief networks do just that. For each
time in which the values of attributes may change, a
dynamic belief network creates a new slice. Each slice
is of a set of chance nodes representing attributes at a
specific point in time. For tutoring, slices can be chosen
to represent the tutorial state after a tutor or student
action, when attribute values are likely to change.
Nodes may be connected to nodes within the same or
earlier slices to represent the fact that an attribute's
value may depend on (1) concurrent values of other
attributes and (2) earlier values of the same and other
attributes.

Decision theory extends probability theory to pro-
vide a normative theory of how a rational decision-
maker should behave. Quantitative utility values ex-
press preferences among possible outcomes of deci-
sions. To decide among alternative actions, the ex-
pected utility of each alternative is calculated by taking
the sum of the utilities of all possible outcomes
weighted by the probabilities of those outcomes occur-
ring. Decision theory holds that a rational agent should
choose the alternative with maximum expected utility.
A belief network can be extended into a decision net-
work (equivalently, an influence diagram) by adding
decision and utility nodes along with appropriate arcs.
For DT Tutor, decision nodes represent tutorial action
alternatives and utility nodes represent the tutor’s pref-
erences among the possible outcomes.

A dynamic decision network (DDN) is like a dy-
namic belief network except that it also has decision
and utility nodes to model decision-making in dynamic
situations. The evolution of a DDN can be computed
while keeping in memory at most two slices at a time
(Huang et al., 1994).

1.2 General Architecture

The basis of our action selection engine is a DDN
formed from dynamically created tutor action cycle
networks (TACNs). A TACN consists of three slices, as
illustrated in Figure 1. The tutorial state (States) within
each slice is actually a sub-network representing the
tutor’s beliefs about the tutorial state at a particular
point in time (slice)1. The T Act1 decision node repre-
sents the tutorial action decision. The S Act2 chance
node represents the student turn following the tutor’s
action, and the Util2 utility node represents the utility of
the resulting tutorial state.

Each TACN is used for a single cycle of tutorial
action, where a cycle consists of deciding a tutorial
action and carrying it out, observing the next student
action, and updating the tutorial state based on these
two actions. During the first phase (deciding upon a
tutorial action), slice 0 represents the tutor’s current
beliefs about the tutorial state. Slice 1 represents the
tutor’s possible actions and predictions about their ef-
fects on the tutorial state. Slice 2 represents a prediction
about the student’s next action and its effect on the tu-
torial state. The DDN update algorithm calculates
which action has maximum expected utility.

In the next phase of the cycle, the tutor executes
that action and waits for the student response. When the
student’s action has been observed, the tutor updates
the network based on the observed student action.

1For sub-network and node names, a numeric subscript
refers to the slice number. A subscript of s refers to any
appropriate slice.

At this point, the posterior probabilities in State2
represent the tutor’s current beliefs. It is now time to
select another tutor action, so another TACN is created
and the DDN is rolled forward: Posterior probabilities
from State2 of the old TACN are copied as prior prob-
abilities to State0 of the new TACN, where they repre-
sent the tutor’s current beliefs. The old TACN is dis-
carded. The tutor is now ready to begin the next cycle
by deciding which action to take next.

In principle, the tutor can look ahead any number
of slices without waiting to observe student actions.
The tutor simply predicts probability distributions for
the next student action and the resulting State2, rolls the
DDN forward, predicts the tutor’s next action and the
following student action, and so on. Thus, the tutor can
select an optimal sequence of tutorial actions for a fixed
amount of look ahead. However, a large amount of look
ahead is computationally expensive.

With this architecture, the tutor not only reacts to
past student actions, but also anticipates student actions
and their ramifications. Thus it can act to prevent errors
and impasses before they occur, just as human tutors
often do (Lepper et al., 1993).

2 Application Domains

2.1 Calculus Problem-Solving

The CTDT (Calculus Tutor, Decision-Theoretic) proto-
type was developed for calculus related rates problems
(Murray & VanLehn, 2000). This domain was chosen
because Singley (1990) developed a tutoring system for
it whose interface made most student problem-solving
actions, including goal-setting actions, observable. The
prototype presumed an extension to the interface to
make all problem-solving actions observable. This
made it easier to predict the student’s next action, since
CTDT could observe all of the student’s prior actions
and only had to predict one action instead of combina-
tions of multiple actions. However, predicting the next
student action was still not trivial, since calculus related
rates problems may have more than one solution path,
the steps of which may be executed in multiple orders.

2.2 Project LISTEN’s Reading Tutor

RTDT (Reading Tutor, Decision-Theoretic) is a proto-

T Act 1

Slice 0
 Slice 1 Slice 2

State 1

S Act 2

 Util 2

State 2

State 0
Figure 1. Tutor Action Cycle Network, overview

type action selection engine for Project LISTEN’s
Reading Tutor, which helps children with reading skills
as they read aloud (Mostow & Aist, 1999). The Read-
ing Tutor has improved the reading of real students in
classrooms (Mostow & Aist, in press). It displays one
sentence at a time for the student to read, along with a
simple animated persona that appears to actively watch
and patiently listen. As the student reads, the Reading
Tutor uses automated speech recognition to detect when
the student may need help. Help is provided using both
speech and graphical display actions. To avoid disrupt-
ing the flow of reading, the Reading Tutor ignores er-
rors on 36 common function words (e.g., a, the) that are
unlikely to affect comprehension. For the Reading Tu-
tor’s corpus, about one-third of the words in a sentence
are non-function words, or content words.

Reading is a continuous activity in which student
turns may consist of multiple reading actions, where
each action is an attempt to read a word. Therefore,
RTDT must predict and respond to multiple student
actions per turn. This is in contrast to the episodic na-
ture of the calculus problem solving domain, for which
it was assumed that each student turn consists of a sin-
gle action.

3 Tutor Action Cycle Networks in More Detail

3.1 TACN Components

Figure 2 provides a closer look at the major TACN
components and their interrelationships. The States rep-
resentation in each slice consists of several sub-
networks. These include the Knowledges, Focuss, and
Affects sub-networks which compose the student model,
and the Task Progresss, and Discourse States sub-

networks. Depending on the application, some sub-
networks may not be required. For instance, RTDT
does not model the student’s affective state and so its
TACNs do not include the Affects sub-networks. Se-
lected sub-networks are described below.

Arcs between corresponding sub-networks in dif-
ferent time slices represent the stability of attributes
over time. For instance, the student’s knowledge in
slice 1, Knowledge1, is likely to be about the same as
the student’s knowledge in slice 0, Knowledge0, except
as influenced by the tutor’s action, Tutor Action1.

3.1.1 Tutor Action1 Nodes
The purpose of the TACN is to compute the optimal
alternative for Tutor Action1, which may consist of one
or more decision nodes. For CTDT, Tutor Action1 con-
sists of two decision nodes, one to specify the topic of
the tutor action, and another to specify the action type.
The topic is the problem-related focus of the action,
such as a problem step or related concept in the target
domain. The type is the manner in which the topic is
addressed, including prompt, hint, teach, positive or
negative feedback, do (tell the student how to do a step)
and null (no tutor action).

For RTDT, Tutor Action1 is currently a single deci-
sion node with multiple topic alternatives and a single
action type – hint for each word in the sentence or the
sentence as a whole – plus null (no tutor action).

3.1.2 Student Model Knowledges Sub-Network
This sub-network represents the tutor’s beliefs about
the student’s domain knowledge. Each Knowledges
node has possible values known and unknown. For
CTDT, the structure of the Knowledges sub-network is
based on a hierarchical dependency network called a

Figure 2. TACN architecture in more detail

Utility2

Tutor Action1

Slice 0 Slice 1 Slice 2

Student
Model0

Student
Model2

Discourse
State2

Task
Progress2

Student
Model1

Focus0 Focus2 Focus1

Student
Action2

Knowledge0 Knowledge2 Knowledge1

Affect0 Affect2 Affect1

Discourse
State0

Task
Progress0

Discourse
State1

Task
Progress1

problem solution graph (Conati et al., 1997). Nodes in
this graph structure represent the student’s knowledge
of (1) problem steps, and (2) rules licensing each step.
Problem steps include the givens and every goal and
fact along any path towards the solution. Arcs represent
dependence between nodes. For instance, knowledge of
a step depends on knowledge of both its prerequisite
steps and the rule required to derive it.

For RTDT, Knowledges includes Know_Word_is
nodes to represent the student’s knowledge of how to
read each content word i, and a Know_Sentences node
to represent the student’s knowledge of the sentence.

In slice 1, each Knowledge1 node is influenced by
the tutor’s action. For instance, a tutorial hint about a
particular problem step or word increases the probabil-
ity that the node corresponding to the knowledge ele-
ment is known.

3.1.3 Student Model Focuss Sub-Network
The Focuss sub-network represents the student’s focus
of attention within the current tutorial task. For CTDT,
this may be any problem step, so Focuss has the same
problem solution graph structure as Knowledges. Steps
for which prerequisites have been completed but that
have not yet been completed themselves are most likely
to be in focus. Nodes representing these steps have
some distribution over the values ready and in_focus,
where in_focus means that the step is in the student’s
focus of attention. Consistent with a human depth-first
problem-solving bias (Newell & Simon, 1972), any
such steps that are in the student’s current solution path
are most likely to be in_focus. The probability that an
uncompleted step is in_focus attenuates with each pass-
ing time slice as other problem steps come into focus
(Murray & VanLehn, 2000).

For RTDT, Focuss models the first content word in
the student’s focus of attention. Focus_Word_is nodes
for each content word i have possible values in_focus
and out_of_focus. A bias that the student will continue
reading with the next word in the sentence is modeled
by the Student Action2 nodes (see below).

In slice 1, each Focus1 node is influenced by the
tutor’s action. For instance, if the tutor hints about a
problem step or word, the corresponding node is likely
to be in_focus. In slice 2, the student action influences
the tutor’s beliefs about the student’s focus of attention
(in Focus2). For instance, if the student experiences an
impasse on a problem step or a word, the corresponding
node is more likely to be in_ focus.

3.1.4 Student Action2 Nodes
DT Tutor appears to be unique in explicitly predicting
the student’s actions and their effect on the tutorial
state. The Student Action2 nodes represent one or more
actions taken on the student’s turn. For CTDT, a single
student action is assumed. This action is represented by

two nodes, one for the action topic and another for the
action type. The action topic may be any problem step
and the action type may be correct, error, impasse, or
null (no student action).

For RTDT, the student turn may include multiple
reading actions, where each action is an attempt to read
a word. Each word i is represented by a Word_i2 node
with values not_read, error, or correct, modeling stu-
dent turns ranging from no productive attempt (all
words not_read), to all words read correctly (all words
correct), to any combination in between. In addition, a
Sentence2 node models the student’s reading of the sen-
tence as a whole as either fluent or disfluent.

Both CTDT and RTDT probabilistically predict the
next student action. For CTDT, Focus1 influences the
action topic. Given the action topic, whether the action
type will be correct, error or impasse depends on the
student’s knowledge. Therefore, both the action topic
and Knowledge1 influence the action type.

For RTDT, influences on each Word_i2 node from
the corresponding Focus_Word_i1 node probabilisti-
cally predict which word the student will attempt first.
For any word that the student attempts, an influence
from the corresponding Know_Word_i1 node predicts
whether the student’s reading will be correct or in er-
ror. We assume that if a student reads one word cor-
rectly, she is most likely to attempt the next word, and
so on, until she gets stuck or makes an error. Therefore,
arcs from each node Word_i2 to node Word_i+12, i =
{1, 2, …, n-1} for an n-word sentence, model the influ-
ence of reading word i correctly on the likelihood that
the student will attempt word i+1.

3.1.5 Discourse States Sub-Network
For CTDT, a Coherence node represents the coherence
of the tutor’s action in response to the previous student
action as either coherent or incoherent. For instance,
negative feedback in response to a correct student ac-
tion is incoherent. A Relevance node models how well
the tutor cooperates with the student’s focus of atten-
tion by assessing the extent to which the same problem
steps are in_focus before and after the tutor’s action.

 For RTDT, Discourse States is simply the number
of discourse turns, counted as a measure of success at
avoid spending too much time on a sentence

3.1.6 Utility2 Nodes
Utility2 consists of several utility nodes in a structured
utility model representing tutor preferences regarding
tutorial state outcomes. Total utility is a weighted sum
of the utilities for each tutorial state component (e.g.,
student knowledge, student affect, task progress, etc.).
The tutor’s behavior can easily be modified by chang-
ing the utilities or their weights. For instance, by as-
signing a high weight to student knowledge and a low
weight to task progress, the tutor focuses on increasing

student knowledge at the expense of task progress.

3.2 Implementation

With input from a problem solution graph (CTDT) or
text (RTDT), DT Tutor creates a TACN with default
values for prior and conditional probabilities and utili-
ties. Default values are specified by parameter for easy
modification. An optional file specifies any prior prob-
ability or utility values that differ from the defaults.
After creating the initial TACN, DT Tutor recommends
tutorial actions, accepts inputs representing tutor and
student actions, updates the network, and adds new
TACNs to the DDN as appropriate.

Both of DT Tutor’s applications are prototypes for
testing the viability and generality of the approach.
CTDT does not yet have a graphical user interface, and
RTDT has not been integrated with the Reading Tutor.
Therefore, simulated student input was used for feasi-
bility evaluations.

4 Technical Feasibility Evaluations

4.1 Response Time

One of the major challenges facing probabilistic sys-
tems for real-world domains is tractability (Cooper,
1990). Therefore, we tested whether applications based
on DT Tutor can respond in real-time. All tests were
performed on a 667-MHz Pentium III PC with 128-MB
of RAM. Using Cooper’s (1988) algorithm for decision
network inference with belief network algorithms, we
tested with three algorithms: an exact clustering algo-
rithm (Huang & Darwiche, 1996) and two approximate
algorithms, likelihood sampling and heuristic impor-
tance (Shachter & Peot, 1989), with 1,000 samples
each. The times reported are the mean over 10 trials.
The times for the approximate algorithms were ex-
tremely close, with neither holding an advantage in all
cases, so they are not distinguished below.

For CTDT, only the approximate algorithms had
reasonable response times for both problems tested: 1.5
seconds for a 5-step problem and 2.1 seconds for an 11-
step problem.

For the Reading Tutor’s corpus of readings, sen-
tence length ranges from approximately 5 to 20 words
as reading level progresses from kindergarten through
fifth grade, with approximately two-thirds content
words. We tested response times for preemptive help
on sentences with 2 to 14 content words. Our response
time goal was 0.5 seconds or less. For all three algo-
rithms, response times for sentences with up to 7 con-
tent words were less than 0.5 seconds, ranging from
0.04 seconds for 2 content words to .49 seconds for 7
content words. Response times for the exact algorithm
blew up starting at 10 content words with a time of
12.48 seconds. Response times for the approximate

algorithms remained promising (as explained below)
for up to 12 content words, ranging from .59 seconds
for 8 content words to 3.14 seconds for 12 content
words. However, response times for even the approxi-
mate algorithms blew up at 13 content words with
times of 23-26 seconds. Therefore, response time for
preemptive help was satisfactory for students at lower
reading levels, did not meet the goal for longer sen-
tences (starting at 8 content words or approximately 12
words total), and was entirely unsatisfactory even with
the approximate algorithms for the longest sentences
(13-14 content words or approximately 20 words total).

For decision-making purposes, it is sufficient to
correctly rank the optimal alternative. When only the
rank of the optimal alternative was considered, the ap-
proximate algorithms were correct on every trial in the
tests above. While this result cannot be guaranteed, it
may make little practical difference if the alternative
selected has an expected utility that is close to the
maximum value. Moreover, many sampling algorithms
have an anytime property that allows an approximate
result to be obtained at any point in the computation
(Cousins et al., 1993), so accuracy can continue to im-
prove until a response is needed. For RTDT, response
times for corrective feedback should generally be faster
because RTDT does not consider helping with words
that have already been read correctly. In any case, faster
response times can be expected as computer hardware
and probabilistic reasoning algorithms continue to im-
prove. Therefore, the response times reported above for
the approximate algorithms show promise that DT Tu-
tor applications for real-world domains will be able to
respond accurately enough within satisfactory response
time. To handle the more challenging cases (such as the
longest sentences faced by RTDT) in the near-term,
application-specific adjustments may be required – e.g.,
abstraction in the knowledge representation within
TACN components.

4.2 Action Selections

DT Tutor’s decision-theoretic representation guarantees
that its decisions will be optimal given the belief struc-
ture and objectives that it embodies. Nevertheless, the
first step in evaluating a tutoring system is to verify that
its behavior is consistent with strong intuitions about
the pedagogical value of tutorial actions in specific
situations, and this is a prerequisite for testing with hu-
man subjects. The space of network structures, prob-
ability and utility values, in combination with all possi-
ble student actions, is infinite, so the most we can do is
sample from this space.

First, we used default parameters to initialize
TACNs with intuitively plausible probability and utility
values. Next, we simulated student action inputs while
perturbing probability and utility values to probe di-
mensions of the situation space. Following are some

significant behaviors:
• Proactively attempts to prevent student failures
• Avoids helping unless the student appears to need it.
• Adapts to the student’s apparent focus of attention.
• Tends to favor increasing student knowledge over

direct help with task steps, since increasing the stu-
dent’s knowledge facilitates task progress anyway.

• Considers the student’s affective state (CTDT).
• Prioritizes tutorial topics based on utility.

5 Related Work

Tutoring is a type of practical, mixed-initiative interac-
tion. By mixed-initiative interaction, we mean collabo-
rative interaction between participants characterized by
dynamic negotiation of initiative, or control of the in-
teraction (e.g., Allen, 1999; Horvitz, 1999b). Mixed-
initiative interaction includes a variety of action types,
including but not limited to conversation (Horvitz,
1999b). Tutoring involves practical dialogue, in which
the participants pursue specific goals or tasks (Allen et
al., 2001). Dialogue models can use any communica-
tion protocol and are independent of natural language
(Allen, 1999). Besides natural language, computer-
supported communication channels include graphical
user interfaces and menu-based systems (Allen, 1999).
In addition to research specific to tutoring, a good deal
of research has addressed practical, mixed-initiative
interaction more generally. This research can be charac-
terized along a number of dimensions.

5.1 Decision-Theoretic Action Selection

One broad dimension on which DT Tutor has focused
is decision-theoretic action selection, taking into ac-
count both the system’s uncertainty about the user and
the system’s objectives. The sub-dimensions discussed
below correspond to various methods used in decision-
theoretic modeling. Like DT Tutor, the systems of Hor-
vitz and colleagues (e.g., Horvitz et al., 1998; Horvitz
& Paek, 1999; Paek & Horvitz, 2000) model the state
of the collaboration, including the user’s state, with
connected sets of Bayesian models, and employ deci-
sion theory for optimal action-selection. The systems
described in, e.g., (Horvitz & Paek, 1999; Paek & Hor-
vitz, 2000) also use value-of-information to guide user
queries and observation selection. DT Tutor does not
query the user or select observations and so it does not
consider value-of-information. Traum (e.g., 1999)
computes the expected utility of various grounding al-
ternatives, and Walker (1998) uses decision-theoretic
methods to combine multiple measures of dialogue
performance.

Many tutoring systems use Bayesian networks for
student modeling (e.g., Conati et al., 1997), but almost
all of them still make decisions heuristically. DT Tu-

tor’s CTDT prototype follows (Conati et al., 1997) and
others in basing its probabilistic Knowledge Networks
on problem solution graphs. CAPIT (Mayo & Mitrovic,
2001, to appear) is apparently the only published tutor-
ing system other than DT Tutor to use decision theory
for action selection. CAPIT bases its decisions on a
single objective and ignores the student’s internal state
to focus on observable variables. DT Tutor considers
multiple objectives, including objectives related to a
rich model of the student’s internal state.

A few systems adapt probabilities online (e.g.,
Albrecht et al., 1997; Horvitz, 1999a; Mayo & Mi-
trovic, 2001, to appear), which DT Tutor does not do.
Horvitz (1999a) also adapts ”context-dependent” utili-
ties online. Instead of adapting utilities according to
context, DT Tutor adapts overall expected utility using
fixed utilities based on the outcomes of chance nodes
which model the underlying (changing) context. While
DT Tutor’s approach is computationally equivalent, it
more accurately models the components of expected
utility in the many situations where it is the context
(represented by chance nodes) and not the set of prefer-
ences (represented by utility nodes) that is changing.

A number of probabilistic approaches have been
tried to model the temporal evolution of the collabora-
tion, including dynamic and single-stage network rep-
resentations (e.g., Horvitz et al., 1998). (Albrecht et al.,
1997) uses dynamic belief networks for user modeling.
Very few if any systems other than DT Tutor use a dy-
namic decision network to combine consideration of
uncertainty, objectives, and the changing state within a
unified paradigm. DT Tutor also appears to be unique
in proactively looking ahead to probabilistically predict
the user’s next action and its effect on the collaboration.

5.2 Attributes Modeled

Systems vary a great deal as to which attributes of the
mixed-initiative interaction are modeled. For instance,
the systems of (Allen et al., 2001; Allen et al., 2001, to
appear; Horvitz & Paek, 1999; Paek & Horvitz, 2000)
handle the interaction from end-to-end, from recogni-
tion of speech and other inputs to generation of speech
and other outputs. Other systems (e.g., Albrecht et al.,
1997; Horvitz et al., 1998) make do with “keyhole”
observations of user actions obtained from external
application program facilities. Collagen (Rich &
Sidner, 1998) observes application program actions by
both the user and an external system “agent,” as well as
user selections from a system-specified communication
menu. DT Tutor leaves input recognition and detailed
output generation to components external to the basic
system architecture. DT Tutor’s RTDT prototype is
designed to combine DT Tutor’s action selection en-
gine with the graphical user interface and speech rec-
ognition and generation facilities of Project LISTEN’s
Reading Tutor for end-to-end handling of interaction

with the student.
While some systems focus on modeling detailed

discourse phenomena such as grounding (e.g., Paek &
Horvitz, 2000; Traum, 1999), DT Tutor focuses on in-
teraction at the problem-solving or task level, including
reasoning about the user’s task-related goals and
knowledge. Systems such as those described in (Allen
et al., 2001, to appear; Conati et al., 1997; Horvitz &
Paek, 1999; Rich & Sidner, 1998) also incorporate rea-
soning about interaction at the problem-solving level.
The initial versions of the systems described in (Horvitz
et al., 1998) avoid detailed modeling of the task state.
Like DT Tutor, the systems of (Allen et al., 2001, to
appear; Horvitz & Paek, 1999; Rich & Sidner, 1998)
provide a domain-independent general architecture
which can be tailored to specific task domains.

DT Tutor uses a detailed model of the user to cus-
tomize its actions. Systems such as those described in
(Conati et al., 1997; Horvitz et al., 1998; Langley et al.,
1999) incorporate user models for similar reasons. The
systems of (Paek & Horvitz, 2000; Traum, 1999) do
without a user model for modeling grounding interac-
tions, while (Allen et al., 2001) does without a user
model by customizing responses based on discourse
obligations and task demands.

A model of the user’s focus of attention can be
critical to providing timely and appropriate assistance
(Horvitz, 1999b). DT Tutor models the user’s focus of
attention within a task domain using cues from both the
discourse context and the domain structure, as do the
systems of (Allen et al., 2001; Horvitz et al., 1998; Rich
& Sidner, 1998). Some of the research by Horvitz and
colleagues (e.g., Paek & Horvitz, 2000) uses a coarser
definition of focus of attention, at the level of which
task the user is attending to.

There is widespread agreement that multiple con-
siderations are relevant to selecting system actions,
including discourse characteristics (e.g., Allen, 1999;
Allen et al., 2001, to appear; Rich & Sidner, 1998;
Traum, 1999; Walker et al., 1998), task demands
(Allen, 1999; Rich & Sidner, 1998), and multiple
sources of evidence about user needs (Horvitz et al.,
1998). DT Tutor uses decision theory to balance multi-
ple considerations, as do the other decision-theoretic
systems discussed above. The remaining research is
mostly silent about how to prioritize considerations.

For practical discourse, the system may have its
own goals apart from the needs of the user, such as ac-
complishing a particular task. In many systems, consid-
eration of the system’s goals is hard-wired and implicit
(Allen et al., 2001). DT Tutor selects actions in service
of its own goals and priorities (many of which concern
the student’s state), which are explicitly specified in
terms of utility. With this explicit representation, DT
Tutor’s behavior can easily be modified by simply
changing utilities or their weights. Of the research dis-

cussed above, only the work by Allen and colleagues
(e.g. Allen et al., 2001) appears to explicitly consider
the system’s goals in addition to the user’s goals.

6 Future Work

We are currently selecting a domain for fleshing DT
Tutor out into a complete tutoring system, either by
adding a user interface or by embedding it within an
existing system. Our next major milestone will be test-
ing its efficacy with students.

Efficiently obtaining more accurate probability and
utility values is a priority. However, precise numbers
may not always be necessary. For instance, diagnosis
(say, of the student’s knowledge) in Bayesian systems
is often surprisingly insensitive to imprecision in speci-
fication of probabilities (Henrion et al., 1996). For a
decision system, it is sufficient to correctly rank the
optimal decision alternative, regardless of the exact
expected utility. Moreover, if the actual expected utili-
ties of two or more alternatives are very close, it may
make little practical difference which one is selected.

Conclusions

This work has shown that a decision-theoretic approach
can be used to select tutorial discourse actions that are
optimal, given the tutor’s beliefs and objectives. DT
Tutor’s architecture balances tradeoffs among multiple
competing objectives and handles uncertainty about the
changing tutorial state in a theoretically rigorous man-
ner. Discourse actions are selected both for their direct
effects on the tutorial state, including the student’s in-
ternal state, and their indirect effects on the subsequent
student turn and the resulting tutorial state. The rich
tutorial state representation may include any number of
attributes at various levels of detail, including the dis-
course state, task progress, and the student’s knowl-
edge, focus of attention, and affective state. Response
time remains a challenge, but testing with approximate
algorithms shows promise that applications for diverse
real-world domains will be able to respond with satis-
factory accuracy and speed. This approach might be
applied more generally to other types of practical,
mixed-initiative interaction.

Acknowledgments

This research was sponsored by the Cognitive Science
Division of the Office of Naval Research under grant
N00014-98-1-0467. Our decision-theoretic inference is
performed by the SMILE reasoning engine for graphi-
cal probabilistic models contributed to the community
by the Decision Systems Laboratory of the University
of Pittsburgh (http://www.sis.pitt.edu/~dsl). We thank
the reviewers for helpful suggestions, including calling
our attention to some important related work.

http://www.sis.pitt.edu/~dsl

References

Albrecht, D. W., Zukerman, I., Nicholson, A. E., &
Bud, A. (1997). Towards a Bayesian model for key-
hole plan recognition in large domains. 6th Interna-
tional Conference on User Modeling, pp. 365-376.

Allen, J. F. (1999). Mixed-initiative interaction. IEEE
Intelligent Systems, September/October, pp. 14-16.

Allen, J., Ferguson, G., & Stent, A. (2001). An archi-
tecture for more realistic conversational systems. In-
telligent User Interfaces 2001 (IUI-01), 1-8.

Allen, J. F., Byron, D. K., Dzikovska, M., Ferguson,
G., Galescu, L., & Stent, A. (2001, to appear). To-
wards conversational human-computer interaction. AI
Magazine.

Conati, C., Gertner, A., VanLehn, K., & Druzdzel, M.
(1997). On-line student modeling for coached prob-
lem solving using Bayesian networks. 6th Interna-
tional Conference on User Modeling, pp. 231-242.

Cooper, G. F. (1988). A method for using belief net-
works as influence diagrams. In Workshop on Uncer-
tainty in Artificial Intelligence, pp. 55-63.

Cooper, G. F. (1990). The computational complexity of
probabilistic inference using Bayesian belief net-
works. Artificial Intelligence 42, 393-405.

Cousins, S. B., Chen, W., & Frisse, M. E. (1993). A
tutorial introduction to stochastic simulation algo-
rithms for belief networks. Artificial Intelligence in
Medicine 5, 315-340.

Henrion, M., Pradhan, M., Del Favero, B., Huang, K.,
Provan, G., & O'Rorke, P. (1996). Why is diagnosis
in belief networks insensitive to imprecision in prob-
abilities?Twelfth Annual Conference on Uncertainty
in Artificial Intelligence, pp. 307-314.

Horvitz, E. (1999a). Principles of mixed-initiative user
interfaces. In CHI '99, ACM SIGCHI Conference on
Human Factors in Computing Systems.

Horvitz, E. (1999b). Uncertainty, action, and interac-
tion: In pursuit of mixed-initiative computing. IEEE
Intelligent Systems, September/October, pp. 17-20.

Horvitz, E., Breese, J., Heckerman, D., Hovel, D., &
Rommelse, K. (1998). The Lumiere project: Bayes-
ian user modeling for inferring the goals and needs of
software users. In Fourteenth Conference on Uncer-
tainty in Artificial Intelligence, pp. 256-265.

Horvitz, E., & Paek, T. (1999). A computational archi-
tecture for conversation. In Seventh International
Conference on User Modeling, pp. 201-210.

Huang, C., & Darwiche, A. (1996). Inference in belief
networks: A procedural guide. International Journal
of Approximate Reasoning 15, 225-263.

Huang, T., Koller, D., Malik, J., Ogasawara, G., Rao,
B., Russell, S., & Weber, J. (1994). Automated sym-

bolic traffic scene analysis using belief networks. In
Twelfth National Conference on Artificial Intelli-
gence, pp. 966-972.

Langley, P., Thompson, C., Elio, R., & Haddadi, A.
(1999). An adaptive conversational interface for des-
tination advice. In Third International Workshop on
Cooperative Information Agents.

Lepper, M. R., Woolverton, M., Mumme, D. L., &
Gurtner, J.-L. (1993). Motivational techniques of ex-
pert human tutors: Lessons for the design of com-
puter-based tutors. Computers as Cognitive Tools,
pp. 75-105. Lawrence Erlbaum Associates.

Mayo, M., & Mitrovic, A. (2001, to appear). Optimis-
ing ITS behaviour with Bayesian networks and deci-
sion theory. International Journal of Artificial Intel-
ligence in Education 12.

Mostow, J., & Aist, G. (1999). Giving help and praise
in a reading tutor with imperfect listening -- because
automated speech recognition means never being
able to say you're certain. CALICO Journal 16(3).

Mostow, J., & Aist, G. (in press). Evaluating tutors that
listen: An overview of Project LISTEN. In Smart
Machines in Education: The coming revolution in
educational technology. MIT/AAAI Press.

Murray, R. C., & VanLehn, K. (2000). DT Tutor: A
dynamic, decision-theoretic approach for optimal se-
lection of tutorial actions. Intelligent Tutoring Sys-
tems, 5th International Conference, pp. 153-162.

Newell, A., & Simon, H. A. (1972). Human Problem
Solving. Englewood Cliffs, NJ: Prentice-Hall, Inc.

Paek, T., & Horvitz, E. (2000). Conversation as action
under uncertainty. In 16th Conference on Uncertainty
in Artificial Intelligence.

Rich, C., & Sidner, C. L. (1998). COLLAGEN: A col-
laboration manager for software interface agents.
User Modeling and User-Adapted Interaction 8(3/4).

Shachter, R., & Peot, M. (1989). Simulation approaches
to general probabilistic inference on belief networks.
In Fifth Annual Conference on Uncertainty in Artifi-
cial Intelligence, Vol. 5, pp. 221-231.

Singley, M. K. (1990). The reification of goal structures
in a calculus tutor: Effects on problem solving per-
formance. Interactive Learning Environments 1, 102-
123.

Traum, D. R. (1999). Computational models of ground-
ing in collaborative systems. Working Papers of the
AAAI Fall Symposium on Psychological Models of
Communication in Collaborative Systems, 124-131.

Walker, M. A., Litman, D. J., Kamm, C. A., & Abella,
A. (1998). Evaluating spoken dialogue agents with
PARADISE: Two case studies. Computer Speech
and Language 12(3), 317-347.

	Abstract
	Introduction
	1	General Approach
	1.1	Belief and Decision Networks
	1.2	General Architecture

	2	Application Domains
	2.1	Calculus Problem-Solving
	2.2	Project LISTEN’s Reading Tutor

	3	Tutor Action Cycle Networks in More Detail
	3.1	TACN Components
	3.1.1	Tutor Action1 Nodes
	3.1.2	Student Model Knowledges Sub-Network
	3.1.3	Student Model Focuss Sub-Network
	3.1.4	Student Action2 Nodes
	3.1.5	Discourse States Sub-Network
	3.1.6	Utility2 Nodes

	3.2	Implementation

	4	Technical Feasibility Evaluations
	4.1	Response Time
	4.2	Action Selections

	5	Related Work
	5.1	Decision-Theoretic Action Selection
	5.2	Attributes Modeled

	6	Future Work
	Conclusions
	Acknowledgments
	References

