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Abstract  

We propose a decision-theoretic architecture for 
selecting tutorial discourse actions. DT Tutor, an 
action selection engine which embodies our ap-
proach, uses a dynamic decision network to con-
sider the tutor’s objectives and uncertain beliefs 
in adapting to and managing the changing tuto-
rial state. It predicts the effects of the tutor’s dis-
course actions on the tutorial state, including the 
student’s internal state, and appears to be unique 
in explicitly predicting the student’s next action 
and its effect on the tutorial state. Based on the 
probabilities of predicted outcomes and their 
utilities, DT Tutor selects the tutorial action with 
maximum expected utility. We illustrate our ap-
proach with prototype applications for diverse 
domains: calculus problem-solving and elemen-
tary reading. Feasibility evaluations assess DT 
Tutor’s ability to select optimal actions quickly 
enough to keep the student engaged. 

Introduction 

A tutoring system achieves many of its objectives 
through discourse actions intended to influence the stu-
dent’s internal state. For instance, a tutor might tell the 
student a fact with the effect of increasing the student’s 
knowledge, thereby enabling the student to perform a 
problem-solving step. However, the tutor is inevitably 
uncertain about the student’s internal state, as it is un-
observable. Compounding the uncertainty, the student’s 
state changes throughout the course of a tutoring ses-
sion–that is the purpose of tutoring. To glean uncertain 
information about the student, a tutor must make infer-
ences based on observable student actions and guided 
by the tutor’s beliefs about the situation. The tutor is 
also likely to be concerned with observable attributes of 
the tutoring situation, or tutorial state, including the 
discourse between the tutor and the student and their 
progress at completing tutorial tasks (e.g., solving prob-
lems). 

The tutor’s actions depend not only on the tutorial 
state, but also on the tutor’s objectives, such as increas-
ing the student’s knowledge, helping the student 
achieve a task, and bolstering the student’s affective 

state (Lepper et al., 1993). Objectives and priorities 
may vary by tutor and even for an individual tutor over 
time. Often, a tutor must strike a balance among multi-
ple competing objectives (Lepper et al., 1993). 

This paper describes DT Tutor, a decision-theoretic 
approach for selecting tutorial discourse actions that 
considers the tutor’s uncertain beliefs and multiple ob-
jectives in adapting to and managing the changing tuto-
rial state. Prototype applications for diverse domains, 
calculus problem-solving and elementary reading, illus-
trate the approach. 

1 General Approach 

1.1 Belief and Decision Networks 

DT Tutor represents the tutor’s uncertain beliefs in 
terms of probability using Bayesian belief networks. A 
belief network is a directed acyclic graph with chance 
nodes to represent beliefs about attributes and arcs be-
tween nodes to represent conditional dependence rela-
tionships among the beliefs. Beliefs are specified in 
terms of probability distributions. DT Tutor’s chance 
nodes represent the tutor’s beliefs about the tutorial 
state. For each node with incoming arcs, a conditional 
probability table specifies the probability distribution 
for that node conditioned on the possible states of its 
parents. For nodes without incoming arcs, prior prob-
ability distributions are specified. 

Each node within a belief network represents an at-
tribute whose value is fixed. For an attribute whose 
value may change over time (such as a tutorial state 
attribute), separate nodes can be used to represent each 
value. Dynamic belief networks do just that. For each 
time in which the values of attributes may change, a 
dynamic belief network creates a new slice. Each slice 
is of a set of chance nodes representing attributes at a 
specific point in time. For tutoring, slices can be chosen 
to represent the tutorial state after a tutor or student 
action, when attribute values are likely to change. 
Nodes may be connected to nodes within the same or 
earlier slices to represent the fact that an attribute's 
value may depend on (1) concurrent values of other 
attributes and (2) earlier values of the same and other 
attributes.  



 

Decision theory extends probability theory to pro-
vide a normative theory of how a rational decision-
maker should behave. Quantitative utility values ex-
press preferences among possible outcomes of deci-
sions. To decide among alternative actions, the ex-
pected utility of each alternative is calculated by taking 
the sum of the utilities of all possible outcomes 
weighted by the probabilities of those outcomes occur-
ring. Decision theory holds that a rational agent should 
choose the alternative with maximum expected utility. 
A belief network can be extended into a decision net-
work (equivalently, an influence diagram) by adding 
decision and utility nodes along with appropriate arcs. 
For DT Tutor, decision nodes represent tutorial action 
alternatives and utility nodes represent the tutor’s pref-
erences among the possible outcomes.  

A dynamic decision network (DDN) is like a dy-
namic belief network except that it also has decision 
and utility nodes to model decision-making in dynamic 
situations. The evolution of a DDN can be computed 
while keeping in memory at most two slices at a time 
(Huang et al., 1994). 

1.2 General Architecture 

The basis of our action selection engine is a DDN 
formed from dynamically created tutor action cycle 
networks (TACNs). A TACN consists of three slices, as 
illustrated in Figure 1. The tutorial state (States) within 
each slice is actually a sub-network representing the 
tutor’s beliefs about the tutorial state at a particular 
point in time (slice)1. The T Act1 decision node repre-
sents the tutorial action decision. The S Act2 chance 
node represents the student turn following the tutor’s 
action, and the Util2 utility node represents the utility of 
the resulting tutorial state.  

Each TACN is used for a single cycle of tutorial 
action, where a cycle consists of deciding a tutorial 
action and carrying it out, observing the next student 
action, and updating the tutorial state based on these 
two actions.  During the first phase (deciding upon a 
tutorial action), slice 0 represents the tutor’s current 
beliefs about the tutorial state. Slice 1 represents the 
tutor’s possible actions and predictions about their ef-
fects on the tutorial state. Slice 2 represents a prediction 
about the student’s next action and its effect on the tu-
torial state. The DDN update algorithm calculates 
which action has maximum expected utility.  

In the next phase of the cycle, the tutor executes 
that action and waits for the student response. When the 
student’s action has been observed, the tutor updates 
the network based on the observed student action.  

                                                      
1For sub-network and node names, a numeric subscript 
refers to the slice number. A subscript of s refers to any 
appropriate slice. 

At this point, the posterior probabilities in State2 
represent the tutor’s current beliefs. It is now time to 
select another tutor action, so another TACN is created 
and the DDN is rolled forward: Posterior probabilities 
from State2 of the old TACN are copied as prior prob-
abilities to State0 of the new TACN, where they repre-
sent the tutor’s current beliefs. The old TACN is dis-
carded. The tutor is now ready to begin the next cycle 
by deciding which action to take next. 

In principle, the tutor can look ahead any number 
of slices without waiting to observe student actions. 
The tutor simply predicts probability distributions for 
the next student action and the resulting State2, rolls the 
DDN forward, predicts the tutor’s next action and the 
following student action, and so on. Thus, the tutor can 
select an optimal sequence of tutorial actions for a fixed 
amount of look ahead. However, a large amount of look 
ahead is computationally expensive. 

With this architecture, the tutor not only reacts to 
past student actions, but also anticipates student actions 
and their ramifications. Thus it can act to prevent errors 
and impasses before they occur, just as human tutors 
often do (Lepper et al., 1993).   

2 Application Domains 

2.1 Calculus Problem-Solving 

The CTDT (Calculus Tutor, Decision-Theoretic) proto-
type was developed for calculus related rates problems 
(Murray & VanLehn, 2000). This domain was chosen 
because Singley (1990) developed a tutoring system for 
it whose interface made most student problem-solving 
actions, including goal-setting actions, observable. The 
prototype presumed an extension to the interface to 
make all problem-solving actions observable. This 
made it easier to predict the student’s next action, since 
CTDT could observe all of the student’s prior actions 
and only had to predict one action instead of combina-
tions of multiple actions. However, predicting the next 
student action was still not trivial, since calculus related 
rates problems may have more than one solution path, 
the steps of which may be executed in multiple orders.  

2.2 Project LISTEN’s Reading Tutor 

RTDT (Reading Tutor, Decision-Theoretic) is a proto-
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Figure 1. Tutor Action Cycle Network, overview 



 

type action selection engine for Project LISTEN’s 
Reading Tutor, which helps children with reading skills 
as they read aloud (Mostow & Aist, 1999). The Read-
ing Tutor has improved the reading of real students in 
classrooms (Mostow & Aist, in press). It displays one 
sentence at a time for the student to read, along with a 
simple animated persona that appears to actively watch 
and patiently listen. As the student reads, the Reading 
Tutor uses automated speech recognition to detect when 
the student may need help. Help is provided using both 
speech and graphical display actions. To avoid disrupt-
ing the flow of reading, the Reading Tutor ignores er-
rors on 36 common function words (e.g., a, the) that are 
unlikely to affect comprehension. For the Reading Tu-
tor’s corpus, about one-third of the words in a sentence 
are non-function words, or content words.  

Reading is a continuous activity in which student 
turns may consist of multiple reading actions, where 
each action is an attempt to read a word. Therefore, 
RTDT must predict and respond to multiple student 
actions per turn. This is in contrast to the episodic na-
ture of the calculus problem solving domain, for which 
it was assumed that each student turn consists of a sin-
gle action.  

3 Tutor Action Cycle Networks in More Detail 

3.1 TACN Components 

Figure 2 provides a closer look at the major TACN 
components and their interrelationships. The States rep-
resentation in each slice consists of several sub-
networks. These include the Knowledges, Focuss, and 
Affects sub-networks which compose the student model, 
and the Task Progresss, and Discourse States sub-

networks. Depending on the application, some sub-
networks may not be required. For instance, RTDT 
does not model the student’s affective state and so its 
TACNs do not include the Affects sub-networks. Se-
lected sub-networks are described below. 

Arcs between corresponding sub-networks in dif-
ferent time slices represent the stability of attributes 
over time. For instance, the student’s knowledge in 
slice 1, Knowledge1, is likely to be about the same as 
the student’s knowledge in slice 0, Knowledge0, except 
as influenced by the tutor’s action, Tutor Action1.  

3.1.1 Tutor Action1 Nodes 
The purpose of the TACN is to compute the optimal 
alternative for Tutor Action1, which may consist of one 
or more decision nodes. For CTDT, Tutor Action1 con-
sists of two decision nodes, one to specify the topic of 
the tutor action, and another to specify the action type. 
The topic is the problem-related focus of the action, 
such as a problem step or related concept in the target 
domain. The type is the manner in which the topic is 
addressed, including prompt, hint, teach, positive or 
negative feedback, do (tell the student how to do a step) 
and null (no tutor action).  

For RTDT, Tutor Action1 is currently a single deci-
sion node with multiple topic alternatives and a single 
action type – hint for each word in the sentence or the 
sentence as a whole – plus null (no tutor action).  

3.1.2 Student Model Knowledges Sub-Network 
This sub-network represents the tutor’s beliefs about 
the student’s domain knowledge. Each Knowledges 
node has possible values known and unknown. For 
CTDT, the structure of the Knowledges sub-network is 
based on a hierarchical dependency network called a 

Figure 2. TACN architecture in more detail 
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problem solution graph (Conati et al., 1997). Nodes in 
this graph structure represent the student’s knowledge 
of (1) problem steps, and (2) rules licensing each step. 
Problem steps include the givens and every goal and 
fact along any path towards the solution. Arcs represent 
dependence between nodes. For instance, knowledge of 
a step depends on knowledge of both its prerequisite 
steps and the rule required to derive it.  

For RTDT, Knowledges includes Know_Word_is 
nodes to represent the student’s knowledge of how to 
read each content word i, and a Know_Sentences node 
to represent the student’s knowledge of the sentence.   

In slice 1, each Knowledge1 node is influenced by 
the tutor’s action. For instance, a tutorial hint about a 
particular problem step or word increases the probabil-
ity that the node corresponding to the knowledge ele-
ment is known.  

3.1.3 Student Model Focuss Sub-Network 
The Focuss sub-network represents the student’s focus 
of attention within the current tutorial task. For CTDT, 
this may be any problem step, so Focuss has the same 
problem solution graph structure as Knowledges. Steps 
for which prerequisites have been completed but that 
have not yet been completed themselves are most likely 
to be in focus. Nodes representing these steps have 
some distribution over the values ready and in_focus, 
where in_focus means that the step is in the student’s 
focus of attention. Consistent with a human depth-first 
problem-solving bias (Newell & Simon, 1972), any 
such steps that are in the student’s current solution path 
are most likely to be in_focus. The probability that an 
uncompleted step is in_focus attenuates with each pass-
ing time slice as other problem steps come into focus 
(Murray & VanLehn, 2000). 

For RTDT, Focuss models the first content word in 
the student’s focus of attention. Focus_Word_is nodes 
for each content word i have possible values in_focus 
and out_of_focus. A bias that the student will continue 
reading with the next word in the sentence is modeled 
by the Student Action2 nodes (see below).  

In slice 1, each Focus1 node is influenced by the 
tutor’s action. For instance, if the tutor hints about a 
problem step or word, the corresponding node is likely 
to be in_focus. In slice 2, the student action influences 
the tutor’s beliefs about the student’s focus of attention 
(in Focus2). For instance, if the student experiences an 
impasse on a problem step or a word, the corresponding 
node is more likely to be in_ focus.  

3.1.4 Student Action2 Nodes 
DT Tutor appears to be unique in explicitly predicting 
the student’s actions and their effect on the tutorial 
state. The Student Action2 nodes represent one or more 
actions taken on the student’s turn. For CTDT, a single 
student action is assumed. This action is represented by 

two nodes, one for the action topic and another for the 
action type. The action topic may be any problem step 
and the action type may be correct, error, impasse, or 
null (no student action).  

For RTDT, the student turn may include multiple 
reading actions, where each action is an attempt to read 
a word. Each word i is represented by a Word_i2 node 
with values not_read, error, or correct, modeling stu-
dent turns ranging from no productive attempt (all 
words not_read), to all words read correctly (all words 
correct), to any combination in between. In addition, a 
Sentence2 node models the student’s reading of the sen-
tence as a whole as either fluent or disfluent. 

Both CTDT and RTDT probabilistically predict the 
next student action. For CTDT, Focus1 influences the 
action topic. Given the action topic, whether the action 
type will be correct, error or impasse depends on the 
student’s knowledge. Therefore, both the action topic 
and Knowledge1 influence the action type. 

For RTDT, influences on each Word_i2 node from 
the corresponding Focus_Word_i1 node probabilisti-
cally predict which word the student will attempt first. 
For any word that the student attempts, an influence 
from the corresponding Know_Word_i1 node predicts 
whether the student’s reading will be correct or in er-
ror. We assume that if a student reads one word cor-
rectly, she is most likely to attempt the next word, and 
so on, until she gets stuck or makes an error. Therefore, 
arcs from each node Word_i2 to node Word_i+12, i = 
{1, 2, …, n-1} for an n-word sentence, model the influ-
ence of reading word i correctly on the likelihood that 
the student will attempt word i+1.  

3.1.5 Discourse States Sub-Network 
For CTDT, a Coherence node represents the coherence 
of the tutor’s action in response to the previous student 
action as either coherent or incoherent. For instance, 
negative feedback in response to a correct student ac-
tion is incoherent. A Relevance node models how well 
the tutor cooperates with the student’s focus of atten-
tion by assessing the extent to which the same problem 
steps are in_focus before and after the tutor’s action.  

 For RTDT, Discourse States is simply the number 
of discourse turns, counted as a measure of success at 
avoid spending too much  time on a sentence  

3.1.6 Utility2 Nodes 
Utility2 consists of several utility nodes in a structured 
utility model representing tutor preferences regarding 
tutorial state outcomes. Total utility is a weighted sum 
of the utilities for each tutorial state component (e.g., 
student knowledge, student affect, task progress, etc.). 
The tutor’s behavior can easily be modified by chang-
ing the  utilities or their weights. For instance, by as-
signing a high weight to student knowledge and a low 
weight to task progress, the tutor focuses on increasing 



 

student knowledge at the expense of task progress.  

3.2 Implementation 

With input from a problem solution graph (CTDT) or 
text (RTDT), DT Tutor creates a TACN with default 
values for prior and conditional probabilities and utili-
ties. Default values are specified by parameter for easy 
modification. An optional file specifies any prior prob-
ability or utility values that differ from the defaults. 
After creating the initial TACN, DT Tutor recommends 
tutorial actions, accepts inputs representing tutor and 
student actions, updates the network, and adds new 
TACNs to the DDN as appropriate.  

Both of DT Tutor’s applications are prototypes for 
testing the viability and generality of the approach. 
CTDT does not yet have a graphical user interface, and 
RTDT has not been integrated with the Reading Tutor. 
Therefore, simulated student input was used for feasi-
bility evaluations. 

4 Technical Feasibility Evaluations 

4.1 Response Time 

One of the major challenges facing probabilistic sys-
tems for real-world domains is tractability (Cooper, 
1990). Therefore, we tested whether applications based 
on DT Tutor can respond in real-time. All tests were 
performed on a 667-MHz Pentium III PC with 128-MB 
of RAM. Using Cooper’s (1988) algorithm for decision 
network inference with belief network algorithms, we 
tested with three algorithms: an exact clustering algo-
rithm (Huang & Darwiche, 1996) and two approximate 
algorithms, likelihood sampling and heuristic impor-
tance (Shachter & Peot, 1989), with 1,000 samples 
each. The times reported are the mean over 10 trials. 
The times for the approximate algorithms were ex-
tremely close, with neither holding an advantage in all 
cases, so they are not distinguished below. 

For CTDT, only the approximate algorithms had 
reasonable response times for both problems tested: 1.5 
seconds for a 5-step problem and 2.1 seconds for an 11-
step problem. 

For the Reading Tutor’s corpus of readings, sen-
tence length ranges from approximately 5 to 20 words 
as reading level progresses from kindergarten through 
fifth grade, with approximately two-thirds content 
words. We tested response times for preemptive help 
on sentences with 2 to 14 content words. Our response 
time goal was 0.5 seconds or less. For all three algo-
rithms, response times for sentences with up to 7 con-
tent words were less than 0.5 seconds, ranging from 
0.04 seconds for 2 content words to .49 seconds for 7 
content words. Response times for the exact algorithm 
blew up starting at 10 content words with a time of 
12.48 seconds. Response times for the approximate 

algorithms remained promising (as explained below) 
for up to 12 content words, ranging from .59 seconds 
for 8 content words to 3.14 seconds for 12 content 
words. However, response times for even the approxi-
mate algorithms blew up at 13 content words with 
times of 23-26 seconds. Therefore, response time for 
preemptive help was satisfactory for students at lower 
reading levels, did not meet the goal for longer sen-
tences (starting at 8 content words or approximately 12 
words total), and was entirely unsatisfactory even with 
the approximate algorithms for the longest sentences 
(13-14 content words or approximately 20 words total).   

For decision-making purposes, it is sufficient to 
correctly rank the optimal alternative. When only the 
rank of the optimal alternative was considered, the ap-
proximate algorithms were correct on every trial in the 
tests above. While this result cannot be guaranteed, it 
may make little practical difference if the alternative 
selected has an expected utility that is close to the 
maximum value. Moreover, many sampling algorithms 
have an anytime property that allows an approximate 
result to be obtained at any point in the computation 
(Cousins et al., 1993), so accuracy can continue to im-
prove until a response is needed. For RTDT, response 
times for corrective feedback should generally be faster 
because RTDT does not consider helping with words 
that have already been read correctly. In any case, faster 
response times can be expected as computer hardware 
and probabilistic reasoning algorithms continue to im-
prove. Therefore, the response times reported above for 
the approximate algorithms show promise that DT Tu-
tor applications for real-world domains will be able to 
respond accurately enough within satisfactory response 
time. To handle the more challenging cases (such as the 
longest sentences faced by RTDT) in the near-term, 
application-specific adjustments may be required – e.g., 
abstraction in the knowledge representation within 
TACN components.  

4.2 Action Selections 

DT Tutor’s decision-theoretic representation guarantees 
that its decisions will be optimal given the belief struc-
ture and objectives that it embodies. Nevertheless, the 
first step in evaluating a tutoring system is to verify that 
its behavior is consistent with strong intuitions about 
the pedagogical value of tutorial actions in specific 
situations, and this is a prerequisite for testing with hu-
man subjects. The space of network structures, prob-
ability and utility values, in combination with all possi-
ble student actions, is infinite, so the most we can do is 
sample from this space.  

First, we used default parameters to initialize 
TACNs with intuitively plausible probability and utility 
values. Next, we simulated student action inputs while 
perturbing probability and utility values to probe di-
mensions of the situation space. Following are some 



 

significant behaviors:  
• Proactively attempts to prevent student failures 
• Avoids helping unless the student appears to need it. 
• Adapts to the student’s apparent focus of attention. 
• Tends to favor increasing student knowledge over 

direct help with task steps, since increasing the stu-
dent’s knowledge facilitates task progress anyway. 

• Considers the student’s affective state (CTDT). 
• Prioritizes tutorial topics based on utility. 

5 Related Work 

Tutoring is a type of practical, mixed-initiative interac-
tion. By mixed-initiative interaction, we mean collabo-
rative interaction between participants characterized by 
dynamic negotiation of initiative, or control of the in-
teraction (e.g., Allen, 1999; Horvitz, 1999b). Mixed-
initiative interaction includes a variety of action types, 
including but not limited to conversation (Horvitz, 
1999b). Tutoring involves practical dialogue, in which 
the participants pursue specific goals or tasks (Allen et 
al., 2001). Dialogue models can use any communica-
tion protocol and are independent of natural language 
(Allen, 1999). Besides natural language, computer-
supported communication channels include graphical 
user interfaces and menu-based systems (Allen, 1999). 
In addition to research specific to tutoring, a good deal 
of research has addressed practical, mixed-initiative 
interaction more generally. This research can be charac-
terized along a number of dimensions.  

5.1 Decision-Theoretic Action Selection 

One broad dimension on which DT Tutor has focused 
is decision-theoretic action selection, taking into ac-
count both the system’s uncertainty about the user and 
the system’s objectives. The sub-dimensions discussed 
below correspond to various methods used in decision-
theoretic modeling. Like DT Tutor, the systems of Hor-
vitz and colleagues (e.g., Horvitz et al., 1998; Horvitz 
& Paek, 1999; Paek & Horvitz, 2000) model the state 
of the collaboration, including the user’s state, with 
connected sets of Bayesian models, and employ deci-
sion theory for optimal action-selection. The systems 
described in, e.g., (Horvitz & Paek, 1999; Paek & Hor-
vitz, 2000) also use value-of-information to guide user 
queries and observation selection. DT Tutor does not 
query the user or select observations and so it does not 
consider value-of-information. Traum (e.g., 1999) 
computes the expected utility of various grounding al-
ternatives, and Walker (1998) uses decision-theoretic 
methods to combine multiple measures of dialogue 
performance.   

Many tutoring systems use Bayesian networks for 
student modeling (e.g., Conati et al., 1997), but almost 
all of them still make decisions heuristically. DT Tu-

tor’s CTDT prototype follows (Conati et al., 1997) and 
others in basing its probabilistic Knowledge Networks 
on problem solution graphs. CAPIT (Mayo & Mitrovic, 
2001, to appear) is apparently the only published tutor-
ing system other than DT Tutor to use decision theory 
for action selection. CAPIT bases its decisions on a 
single objective and ignores the student’s internal state 
to focus on observable variables. DT Tutor considers 
multiple objectives, including objectives related to a 
rich model of the student’s internal state. 

A few systems adapt probabilities online (e.g., 
Albrecht et al., 1997; Horvitz, 1999a; Mayo & Mi-
trovic, 2001, to appear), which DT Tutor does not do. 
Horvitz (1999a) also adapts ”context-dependent” utili-
ties online. Instead of adapting utilities according to 
context, DT Tutor adapts overall expected utility using 
fixed utilities based on the outcomes of chance nodes 
which model the underlying (changing) context. While 
DT Tutor’s approach is computationally equivalent, it 
more accurately models the components of expected 
utility in the many situations where it is the context 
(represented by chance nodes) and not the set of prefer-
ences (represented by utility nodes) that is changing.  

A number of probabilistic approaches have been 
tried to model the temporal evolution of the collabora-
tion, including dynamic and single-stage network rep-
resentations (e.g., Horvitz et al., 1998). (Albrecht et al., 
1997) uses dynamic belief networks for user modeling. 
Very few if any systems other than DT Tutor use a dy-
namic decision network to combine consideration of 
uncertainty, objectives, and the changing state within a 
unified paradigm. DT Tutor also appears to be unique 
in proactively looking ahead to probabilistically predict 
the user’s next action and its effect on the collaboration.  

5.2 Attributes Modeled 

Systems vary a great deal as to which attributes of the 
mixed-initiative interaction are modeled. For instance, 
the systems of (Allen et al., 2001; Allen et al., 2001, to 
appear; Horvitz & Paek, 1999; Paek & Horvitz, 2000) 
handle the interaction from end-to-end, from recogni-
tion of speech and other inputs to generation of speech 
and other outputs. Other systems (e.g., Albrecht et al., 
1997; Horvitz et al., 1998) make do with “keyhole” 
observations of user actions obtained from external 
application program facilities. Collagen (Rich & 
Sidner, 1998) observes application program actions by 
both the user and an external system “agent,” as well as 
user selections from a system-specified communication 
menu. DT Tutor leaves input recognition and detailed 
output generation to components external to the basic 
system architecture. DT Tutor’s RTDT prototype is 
designed to combine DT Tutor’s action selection en-
gine with the graphical user interface and speech rec-
ognition and generation facilities of Project LISTEN’s 
Reading Tutor for end-to-end handling of interaction 



 

with the student.  
While some systems focus on modeling detailed 

discourse phenomena such as grounding (e.g., Paek & 
Horvitz, 2000; Traum, 1999), DT Tutor focuses on in-
teraction at the problem-solving or task level, including 
reasoning about the user’s task-related goals and 
knowledge. Systems such as those described in (Allen 
et al., 2001, to appear; Conati et al., 1997; Horvitz & 
Paek, 1999; Rich & Sidner, 1998) also incorporate rea-
soning about interaction at the problem-solving level. 
The initial versions of the systems described in (Horvitz 
et al., 1998) avoid detailed modeling of the task state. 
Like DT Tutor, the systems of (Allen et al., 2001, to 
appear; Horvitz & Paek, 1999; Rich & Sidner, 1998) 
provide a domain-independent general architecture 
which can be tailored to specific task domains.   

DT Tutor uses a detailed model of the user to cus-
tomize its actions. Systems such as those described in 
(Conati et al., 1997; Horvitz et al., 1998; Langley et al., 
1999) incorporate user models for similar reasons. The 
systems of (Paek & Horvitz, 2000; Traum, 1999) do 
without a user model for modeling grounding interac-
tions, while (Allen et al., 2001) does without a user 
model by customizing responses based on discourse 
obligations and task demands.  

A model of the user’s focus of attention can be 
critical to providing timely and appropriate assistance 
(Horvitz, 1999b). DT Tutor models the user’s focus of 
attention within a task domain using cues from both the 
discourse context and the domain structure, as do the 
systems of (Allen et al., 2001; Horvitz et al., 1998; Rich 
& Sidner, 1998). Some of the research by Horvitz and 
colleagues (e.g., Paek & Horvitz, 2000) uses a coarser 
definition of focus of attention, at the level of which 
task the user is attending to. 

There is widespread agreement that multiple con-
siderations are relevant to selecting system actions, 
including discourse characteristics (e.g., Allen, 1999; 
Allen et al., 2001, to appear; Rich & Sidner, 1998; 
Traum, 1999; Walker et al., 1998), task demands 
(Allen, 1999; Rich & Sidner, 1998), and multiple 
sources of evidence about user needs (Horvitz et al., 
1998). DT Tutor uses decision theory to balance multi-
ple considerations, as do the other decision-theoretic 
systems discussed above. The remaining research is 
mostly silent about how to prioritize considerations. 

For practical discourse, the system may have its 
own goals apart from the needs of the user, such as ac-
complishing a particular task. In many systems, consid-
eration of the system’s goals is hard-wired and implicit  
(Allen et al., 2001). DT Tutor selects actions in service 
of its own goals and priorities (many of which concern 
the student’s state), which are explicitly specified in 
terms of utility. With this explicit representation, DT 
Tutor’s behavior can easily be modified by simply 
changing utilities or their weights. Of the research dis-

cussed above, only the work by Allen and colleagues 
(e.g. Allen et al., 2001) appears to explicitly consider 
the system’s goals in addition to the user’s goals.  

6 Future Work 

We are currently selecting a domain for fleshing DT 
Tutor out into a complete tutoring system, either by 
adding a user interface or by embedding it within an 
existing system. Our next major milestone will be test-
ing its efficacy with students.  

Efficiently obtaining more accurate probability and 
utility values is a priority. However, precise numbers 
may not always be necessary. For instance, diagnosis 
(say, of the student’s knowledge) in Bayesian systems 
is often surprisingly insensitive to imprecision in speci-
fication of probabilities (Henrion et al., 1996). For a 
decision system, it is sufficient to correctly rank the 
optimal decision alternative, regardless of the exact 
expected utility. Moreover, if the actual expected utili-
ties of two or more alternatives are very close, it may 
make little practical difference which one is selected. 

Conclusions 

This work has shown that a decision-theoretic approach 
can be used to select tutorial discourse actions that are 
optimal, given the tutor’s beliefs and objectives. DT 
Tutor’s architecture balances tradeoffs among multiple 
competing objectives and handles uncertainty about the 
changing tutorial state in a theoretically rigorous man-
ner. Discourse actions are selected both for their direct 
effects on the tutorial state, including the student’s in-
ternal state, and their indirect effects on the subsequent 
student turn and the resulting tutorial state. The rich 
tutorial state representation may include any number of 
attributes at various levels of detail, including the dis-
course state, task progress, and the student’s knowl-
edge, focus of attention, and affective state. Response 
time remains a challenge, but testing with approximate 
algorithms shows promise that applications for diverse 
real-world domains will be able to respond with satis-
factory accuracy and speed. This approach might be 
applied more generally to other types of practical, 
mixed-initiative interaction.  
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