
Analytic Comparison of Three Methods to Evaluate 
Tutorial Behaviors 

Jack Mostow and Xiaonan Zhang
 

mostow@cs.cmu.edu, xiaonanz@cs.cmu.edu 

Project LISTEN, School of Computer Science, Carnegie Mellon University 

Abstract.  We compare the purposes, inputs, representations, and assumptions of 

three methods to evaluate the fine-grained interactions of intelligent tutors with 

their students.  One method is conventional analysis of randomized controlled 

trials (RCTs).  The second method is learning decomposition, which estimates 

the impact of each practice type as a parameter in an exponential learning curve.  

The third method is knowledge tracing, which estimates the impact of practice 

as a probability in a dynamic Bayes net.  The comparison leads to a 

generalization of learning decomposition to account for slips and guesses. 

1 Introduction 

Educational data mining researchers have used various methods to analyze fine-grained 

tutor data in order to evaluate the effects of tutorial actions on student behavior, including  

randomized controlled trials (RCTs), learning decomposition, and knowledge tracing.  

Other papers [1, 2] compare these three methods empirically.  In this paper we compare 

their fundamental characteristics descriptively and analytically.  We now briefly describe 

these methods, and then the dimensions along which the remainder of the paper compares 

them.  We describe the three methods in terms of the high-level strategic ideas they 

embody, the particular instantiations that we compare, and specific implementations of 

these instantiations. 

1.1 Randomized controlled trials analysis 

The high-level strategic idea of RCTs is that randomizing assignment to treatments 

allows the strong causal inference that significant differences in outcome are due to 

differences in treatment.  In RCTs, participants are randomly assigned to receive one of 

several different interventions. RCT analysis aggregates and compares the outcomes 

under each condition, to assess the effectiveness of different interventions. For example, 

Project LISTEN’s Reading Tutor [3] chooses randomly among multiple ways to help the 

student learn a given word. To compare their effectiveness using RCT analysis, the 

Reading Tutor randomly chooses for each student how to teach or practice a given word.  

For each such randomized trial, we measure its outcome, e.g., how well the student reads 

the word at the next encounter of it.  By comparing the aggregated outcomes for each 

intervention, we can statistically estimate how effective they are relative to one another.   

RCT analysis is instantiated by a statistical test or model to estimate the effects of 

treatment and possibly other variables.  Common examples include t-test and ANOVA. 

The test or model is implemented as the computation of a standard statistical formula, 

typically in a statistical package such as SPSS. 



1.2 Learning decomposition 

The strategic idea of learning decomposition is to distinguish among different types of 

exposure in fitting a model of learning to students’ performance data, in order to obtain 
empirical estimates of the relative impact of different types of practice or instruction.  

Prior work [4-6] instantiates this idea in terms of a particular model form, namely an 

exponential learning curve, by expressing the amount of exposure as a function of the 

amount of exposure of each type, namely a linear combination of them. 

Alternative model forms would produce alternative instantiations.  One plausible 

alternative to an exponential learning curve is a power law.  Power laws are often used to 

fit performance data averaged over multiple participants, but exponential curves tend to 

fit individual performance data better than power law curves do [7].  A more complex 

alternative [8] is based on a richer theoretical model of learning and forgetting over time, 

but must be expressed recursively instead of in closed form, and has more parameters to 

fit. 

The instantiation of learning decomposition used in this paper generalizes the classic 

exponential learning curve to distinguish the effectiveness of m different types of 

practice, as shown in Equation 1: 

performance = A × e 
–b × (β 1t1 + … + βmtm

)
 (1) 

In the equation, performance measures a learning outcome, such as error rate, help 

requests, or response time:  the lower the value, the better the student learned.   The 

variables ti  (i=1…m) represent the amount of type i practice that the student has had, as 

measured by the number of practice opportunities of that type.  The free parameters A, b, 

and βi’s are estimated from observations of student performance.  Here A represents the 

student’s initial performance without any prior practice, and b is the learning rate. 

Finally, the free parameters βi (i=2…m) represent the impact of type i practice relative to 

type 1 practice, whose impact β1 we define to be 1 as a baseline for comparison. 

For example, consider how learning decomposition can apply to our previous example of 

comparing different tutorial interventions to teach student a word.  The performance 

measure can be word reading time.  The variable ti counts the number of times the student 

received intervention of type i.  The estimate of each βi measures the effectiveness of 

intervention type i compared to the baseline. For instance, if β2 = 2, it means that on 

average a type 2 intervention is twice as helpful as a type 1 intervention. 

Implementation of learning decomposition refers to how the model is fit to the data.  For 

example, our implementation uses SPSS to perform unconstrained non-linear regression 

using the Levenberg-Marquardt procedure. 

1.3 Knowledge tracing 

The general idea of knowledge tracing is to model a student’s performance and changing 

knowledge state during skill acquisition, and to use the model to update an estimate of 



this state based on successive observations of student performance.  Atkinson [9] 

proposed a Markov model relating knowledge to performance.  Corbett and Anderson 

[10] used a simple 2-state model – the state of not knowing a given skill, and the state of 

knowing the skill. 

An instantiation of knowledge tracing specifies a particular model of learning.  We 

represent the two knowledge states in Corbett and Anderson’s model as a hidden node in 

a dynamic Bayes network (DBN).  The value of this node is true if the student knows the 

skill at a given step, and false if not.  The node is hidden, so its value cannot be observed 

directly.  Instead, knowledge tracing maintains the probability Pr(Ki) that the student has 

learned that skill at time step i.  It uses observations of the student’s performance to 

update this probability each time the student encounters an opportunity to use the skill. 

We extend this basic knowledge tracing model to incorporate and compare the efficacy of 

different types of tutorial interventions. Figure 1 shows the graphical representation of 

the extended model. 
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Figure 1.  Knowledge tracing model extended with “Tutor Intervention” node 

From the graph we can see that the model is a DBN with 3 nodes at each time step i.  The 

binary valued hidden node Ki represents whether the student knows the skill at time i.  

Pr(Ki) is a probabilistic estimate of this binary student knowledge variable.  Pi represents 

the student’s observed performance (e.g. correct or incorrect) on that skill at time i.  

Using a DBN for knowledge tracing lets us generalize its original formulation [10] by 

including additional nodes.  For instance, Chang et al. [11] added a node to represent help 

requests.  To evaluate interventions, we include tutor intervention Ti as a discrete variable 

to represent which tutorial intervention is made at time i.  Links in the model encode 

conditional dependencies between variables. 

A model is described by the following parameters: 



 knew:  Probability that the student already knew the skill prior to any instruction 

 prob_Ti:  Probability that the intervention is of type i.  

 learn_Ti:  Probability of acquiring the skill from an intervention of type Ti, i.e. 

P(Ki+1=true | Ki= false, Ti) 

 forget_Ti:  Probability of losing a known skill conditioned on an intervention of type 

Ti, i.e. P(Ki+1=false | Ki= true, Ti) 

 guess:  Probability of answering correctly without knowing the skill, i.e. P(Pi=true| 

Ki= false) 

 slip:  Probability of answering incorrectly despite knowing the skill, i.e., P(Pi=false| 

Ki= true). 

The problem of comparing the effects of different types of tutorial behaviors then reduces 

to comparing the values of the learn_Ti and forget_Ti parameters for the different Ti’s 

corresponding to those types of behaviors. 

An implementation of this model includes an off-line training procedure to learn the 

model parameters from a corpus of performance data, and a runtime update procedure to 

revise the estimate of the student’s knowledge based on observed performance at step n.  

The BNT-SM implementation of knowledge tracing [12] uses BNT’s EM procedure to fit 

the model.  The update procedure can be implemented by a general Bayes net inference 

procedure, or by a procedure to compute specific formulas derived from the model. 

1.4 Dimensions of comparison 

Basic questions about RCTs, learning decomposition, and knowledge tracing include: 

 What outputs are these methods designed to produce? 

 What inputs do they require? 

 What models are they based on? 

 What are their underlying assumptions? 

Sections 2-5, respectively, compare the three methods with respect to these questions. 

2 Intended output 

The three methods differ in the purpose they are designed to achieve, that is, what outputs 

they compute. 

RCT analysis compares trial outcomes to identify factors that predict or affect outcomes, 

primarily treatment condition.  Thus it is a natural way to compare interventions.   It can 



estimate student ability that affects outcomes by including student identity as a factor in a 

statistical test, but such assessment does not exploit the randomized treatment 

assignment.  Thus RCT analysis evaluates interventions more than students.  Moreover, 

this evaluation analyzes an entire set of trials simultaneously, so even if it estimates 

student ability as a factor, it is not designed to update this estimate incrementally based 

on sequential observations of student performance. 

Learning decomposition can also fit student parameters such as initial performance and 

learning rate, but its primary purpose is to compare the relative impact of different types 

of practice.  Its performance prediction for how a student will do at the N
th

 encounter of a 

skill depends only on how much prior practice of each type he or she got on that skill – 

not on how well he or she performed on it previously – unless encounters are treated as 

different types based on their immediate outcomes. 

Learning decomposition could incorporate information about prior performance by 

treating successful and unsuccessful encounters as two different types of practice.  This 

possibility might in fact be interesting to explore.  However, it does not escape the fact 

that simply counting the number of encounters of different types ignores order and 

recency effects.  Thus the resulting model would predict the same performance after 5 

correct responses followed by 5 incorrect responses as it would predict after 5 incorrect 

responses followed by 5 correct responses.  However, learning decomposition can model 

some recency effects by treating spaced and massed practice as different types [4]. 

Knowledge tracing is specifically designed to update, at each practice opportunity, a 

tutor’s estimate of an individual student’s mastery of the skill(s) it exercises.  

Conditioning this update on practice type makes it possible to evaluate how each type of 

practice affects learning.  Based on the latest knowledge estimate (plus the slip and guess 

parameters), the tutor can predict how well the student is about to perform, and plan 

accordingly – for example by picking an easier problem to prevent a likely imminent 

failure. 

Knowledge tracing makes a more informed prediction of performance than learning 

decomposition does, because the prediction reflects performance during prior practice, 

not just the amount of practice.  For example, suppose the data set includes sequences of 

N-1 practice opportunities by two different students on the same skill, with the same 

sequence of practice types, but that one sequence consists of successes and the other 

sequence consists of failures.  Knowledge tracing will predict higher performance after 

the successes than after the failures, because its prediction is conditioned on observed 

performance.  In contrast, learning decomposition – unless it includes any student-

specific parameters or distinguishes past encounters by performance -- will predict the 

same performance in both cases, because its prediction is based solely on the number and 

type of practice opportunities. 

Knowledge tracing updates its estimate of student knowledge based on sequential 

observations of student performance, and is sensitive to their order – but not their timing. 

Learning decomposition can address this limitation to some extent by treating massed and 

spaced trials as different types of practice.  Analogously, knowledge tracing can 



condition the parameters learn and forget based on the time elapsed between successive 

encounters of a skill.  For both methods, this ad hoc refinement models temporal effects 

as discrete, for example by classifying a student’s successive encounters of a skill as 

occurring on the same or different days [4].  A more complex method [8] models 

continuous temporal effects based on a deeper theory of memory. 

3 Information input 

The three methods differ in what data they input, that is, which observations they 

consider. 

RCT analysis compares only observed outcomes, so it simply ignores trials whose 

outcomes were unobserved, undefined, or masked.  For example, a student’s performance 

in reading a word is unobserved when the Reading Tutor reads it, undefined when the 

Reading Tutor gives unrequested help on the word before accepting it, and masked by 

recency effects if the student has seen the word earlier the same day. 

Learning decomposition analyzes trials both as outcomes and as practice.  It excludes 

trials as outcomes where performance is unobserved, undefined, or masked, but in each 

case the encounter counts as practice. 

Knowledge tracing represents outcomes and practice as the same performance nodes in a 

dynamic Bayes net, and tolerates missing and partial observations.  For example, credit 

for a word is undefined if masked by tutor-initiated help, but the word encounter still 

updates the estimated probability that the student has learned the word. 

4 Model form:  representation, computation, and extension 

The three methods differ in how they are represented, applied, and extended. 

RCT analysis has no hidden variables to estimate, no initialization conditions to be 

sensitive to, and no local minima to get stuck on.  An appropriate statistical test to 

compare outcomes between different subsets of trials is practically instantaneous in a 

standard statistical package such as SPSS, even with many thousands of trials.  Extending 

the analysis involves adding outcome variables to test, and features to disaggregate by or 

include as factors in statistical tests such as ANOVA. 

Learning decomposition estimates parameters that represent the impact of each mode of 

practice in an exponential model of performance over time.  Non-linear regression in 

SPSS 11.0 took only about one minute to fit hundreds of models (one for each word) to 

thousands of word encounters in our empirical comparison of evaluation methods [1].  

Extending models means adding parameters to further distinguish types of practice or 

other influence on performance, e.g. effect of length on word reading. 

Knowledge tracing, generalized to distinguish different practice types, estimates 

parameters that represent the impact of each type of practice on a hidden knowledge state 

in a dynamic Bayes net, and the effect of this knowledge on observed student 



performance.  BNT-SM [12] takes about 10 hours to train and evaluate models on a data 

set that learning decomposition takes only a minute to fit.  Extending the model means 

adding nodes to represent observations, and links to represent hypothesized causal 

influences. 

5 Underlying assumptions 

RCT analysis treats trials as separate and does not attempt to model the causal effects of 

one trial on the outcome of another, such as diminishing effects of successive trials on the 

same skill, or transfer effects from practice on one skill to performance on another [13].  
At most it accounts for statistical dependencies among related trials by using tests with 

the appropriate number of degrees of freedom.  For example, instead of treating all trials 

on a story word as independent, we can average outcomes for each type of practice over 

all the students who received that type of practice on the word. 

In contrast, both learning decomposition and knowledge tracing assume particular models 

of how performance improves with practice.  On the surface, they look very different.  

Knowledge tracing can be expressed as a dynamic Bayes net that incrementally updates 

estimates of a hidden skill, while learning decomposition is expressed as a closed-form 

exponential function that predicts performance directly. 

Although their surface form differs markedly, the mathematics of these two methods is 

closely related at a deeper level in a way that is useful to elucidate because it not only 

reveals their underlying similarities, but shows how to bridge some of their differences.  

In particular, starting from a Bayesian model of knowledge tracing we can derive 

learning and performance curves that we can relate to learning decomposition.   

5.1 Derivation of learning decomposition from knowledge tracing 

Knowledge tracing estimates the probability Pr(Kn) that the student knows a given skill at 

time step n, according to a dynamic Bayes net model.  For brevity we will abbreviate 

Pr(Kn) as Kn.  The parameters of this model include the knew probability K0 that the 

student already knew the skill prior to instruction, the learn probability L of acquiring the 

skill from a step, the forget probability of losing a skill, the guess probability g of 

answering correctly without knowing the skill, and the slip probability s of answering 

incorrectly despite knowing the skill. 

We are interested in how Kn changes over time according to this model.  The probability 

of knowing the skill at step n given that the student did not know it at step n-1 is L.  If we 

assume zero probability of forgetting, the probability (1 - Kn) of not knowing the skill at 

step n is the probability of not knowing the skill at the previous step, times the probability 

of not learning it, or (1 - Kn-1)×(1 – L).  Consequently the ratio (1 - Kn) / (1 - Kn-1) is the 

constant (1 – L), and the probability (1 - Kn) can be expressed in closed form as (1 - K0) × 

(1 – L)
 n

.  That is, ignorance at step n requires not knowing the skill in advance, followed 

by not learning it. 



This formula expresses the prior probability of (not) knowing the skill at time n; it is not 

conditioned on any observed student performance.  Observed performance affects our 

estimate of student skills, but this effect is evidentiary, not causal:  according to the 

model, student performance does not influence student knowledge.  In short, even without 

any observation of student performance, we can still use the model to predict student 

knowledge. 

We are also interested in the performance predicted by the model, specifically in the error 

rate expected at step n.  The probability Wn of a wrong response at step n can be split into 

two cases – either not knowing and not guessing, or knowing but slipping.  Consequently 

Wn = (1 - Kn) × (1- g) + Kn × s.  Plugging in our closed form expression for (1 - Kn) gives 

Wn  = (1 - K0) × (1 – L)
 n 

× (1- g) + (1 - (1 - K0) × (1 – L)
 n

) × s 

= [(1 - K0) × (1- g) - (1 - K0) × s] × (1 – L)
 n 

+ s 

= s + (1 – g – s) × (1 - K0) × (1 – L)
 n

. 

What if the learning probability varies with the type of step?  We can generalize (1 – L)
 n 

to the product (1 – L1) × … × (1 – Ln).  If there are m types of steps, with ti steps of type i, 

each with learning probability Li, we rewrite this product as (1–L1) 
t
1 × … × (1–Lm) 

t
m, 

and generalize the predicted error rate to: 

s + (1 – g – s) × (1 - K0) ×(1 – L1) 
t
1 × … × (1 – Lm) 

t
m 

If  s = g = 0, this formula reduces to (1 - K0) ×(1 – L1) 
t
1 × … × (1 – Lm) 

t
m , which relates 

to the learning decomposition formula A × e 
–b × (β 1t1 + … + βmtm

)
 as follows. The factors 

(1 – L1) … (1 – Lm) correspond to the coefficients β1, …, βm that represent the relative 

value of different types of practice.  More precisely, since (1 – Li) 
t
i  = exp(log(1-Li)× ti)),  

the expression log(1 – Li )  corresponds to β1.  The factor (1 - K0) corresponds to A × e 
–b

. 

This derivation reveals that we can extend learning decomposition to include slip rate s 

and guess rate g in the generalized formula s + (1 – g – s) × A × e 
–b × (β 1t1 + … + βmtm

)
 .  

The additive term s represents the asymptotic performance beyond which the error rate 

will not decrease even with unlimited practice. 

However, it is important to point out that the generalized formula, at least in the form 

above, applies to the rate of errors or help requests, but not to response time.  The reason 

is that the parameter s appears both as an additive term and in the factor (1 – g – s).  If the 

formula represents a time quantity, s must be expressed in some unit of time.  But the s in 

(1 – g – s) must be unit-free to be comparable with the constant 1 and the probability g.  

Since s cannot be both a temporal quantity and unit-free, the overall formula cannot 

represent a time quantity, and in fact must itself be unit-free. 

Extending this generalized formula to predict time or other continuous measures of 

performance requires modeling how they are affected by slips and guesses.  For example, 

if guessing takes negligible time, the guess parameter g already models the effect of 



guesses on performance time:  if s = 0, then g = 0.5 cuts predicted performance time in 

half.  But if guesses take non-negligible time, modeling them requires extending the 

formula by interpolating it with guessing time.  Likewise, modeling the effect of slips on 

time requires replacing the additive term s with slip time, e.g. the time to misread a 

known word.  The extended form of the generalized formula therefore looks like this, 

where the expressions slip time and guess time depend on how they are modeled: 

s × (slip time) + g × (guess time) + (1 – g – s) × A × e 
–b × (β 1t1 + … + βmtm

)
   

6 Contributions 

This paper provides a descriptive and analytical comparison of three methods to evaluate 

tutorial behaviors:  RCT analysis, learning decomposition, and knowledge tracing using 

DBNs.    We compare their inputs, outputs, models, and assumptions.  In particular, we 

elucidate the underlying mathematical relationship between knowledge tracing and 

learning decomposition, thereby showing how to generalize learning decomposition to 

incorporate slip and guess parameters.  We hope that other researchers will find this 

paper useful in making informed choices of which method(s) to use to model and 

evaluate learning in tutors. 
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